用户名: 密码: 验证码:
返回舱动态稳定性物理机理分析及被动/主动控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再入返回舱为了获得较大的气动阻力并减少气动加热,通常采用钝倒锥外形,然而在跨声速区这种外形经常是动态不稳定的,受到外界扰动后容易进入表现为极限环形式的自激振动状态。目前国内外对返回舱动态失稳的物理机理及其控制方法十分关注,但仍有许多问题尚未解决。本文主要针对返回舱跨声速区的动态不稳定现象,构建适用于计算气固耦合的非定常复杂流场的时、空高阶精度格式,采用数值模拟方法探讨返回舱动态不稳定特性的物理机理;运用机理分析的结果,研究返回舱动态不稳定特性的被动控制方法;最后采用计算空气动力学、飞行力学和控制技术相结合的多学科融合的研究方法,对返回舱动态不稳定问题的主动控制方法进行初步的探索。
     首先,基于返回舱非定常流场多模态特性对格式精度和高分辨率的要求,引入Power限制器,对NND格式和WNND格式(包括通量型和守恒变量型)进行改进,构建了PNND格式和PWNND格式(包括通量型和守恒变量型)。在此基础上,针对不同物理问题特点,建立了时间导数离散方法不同的显式和隐式PNND格式、PWNND格式,并通过求解线性方程、一维Euler方程、三维定常/非定常Navier-Stokes方程,对PNND格式和PWNND格式进行了数值分析和代码验证。
     其次,采用时、空高精度的PWNND数值计算方法,分别对返回舱定常流场、强迫振动流场和自由振动流场进行了数值模拟,分析返回舱跨声速区动态不稳定机理。①定常流动计算结果表明:跨声速区,后体在整个气动力贡献中所占的比例较大;攻角较小时,后体涡核呈闭合环状;攻角增大时,后体涡环逐渐断裂为两部分,其中处于下方的马蹄涡占主导地位,控制整个回流区内的流动。②返回舱强迫振动/自由振动流场的俯仰力矩迟滞曲线基本呈双“8”字形。对前、后体俯仰力矩曲线作出分析的结果显示:返回舱的动态不稳定性主要由其后体俯仰力矩系数的滞后引起,而前体存在相位前移,起到增强返回舱动态稳定性的作用。③分析了反映返回舱动态特性的特征尺度的选取方法;根据流场与返回舱之间的能量交换关系,提出了减少流场对后体做功(减少外界能量输入)的被动控制方法,即可通过修改返回舱的后体外形来改善返回舱的动态稳定性,为返回舱动态不稳定的被动控制提供了理论依据。
     再次,基于返回舱动态不稳定性的机理分析,分别从修改后体外形、移动质心位置以及两者组合的方法出发,研究了各种被动控制方法对返回舱俯仰动态不稳定的控制效果。①对六种不同后体外形的返回舱自由振动流场的计算结果表明:其中五种外形都通过减少振动过程中流场对返回舱后体做功,有效地增强了返回舱的动态稳定性(与原始外形相比极限环振幅减小),另外一种外形由于底部面积增加(造成外界能量输入增加)而没有达到控制目的。②对三种不同质心位置的返回舱自由振动流场的计算结果表明:质心位置越靠近返回舱大头顶点,振动周期越小,一个振动周期内前体对流场做的功就越多,其动态稳定性也就越好;相反,质心位置距离返回舱大头顶点越远,其动稳定性越差。③对三种修改外形与移动质心位置的组合被动控制方法的返回舱自由振动流场的计算结果表明:组合控制方法比单独一种方法能够更有效地改进返回舱的动态稳定性。
     最后,采用计算空气动力学、飞行力学和控制技术相结合的多学科研究方法对返回舱俯仰动态稳定性主动控制问题进行了初步的探索。利用简化的双姿控发动机组成的控制系统,采用时、空高精度数值计算方法及多种控制技术,对带横向喷流的流固耦合流场进行了数值模拟,通过计算结果分析比较了不同控制方法的控制效果。①研究了带横向喷流飞行器的强迫振动流场,结果表明:强迫振动喷流流场的气动特性与稳态喷流状态有明显的区别,飞行器的振动对横向喷流流场产生了非定常效应,使得推力放大因子随俯仰角周期变化,与固定姿态下得到的推力放大因子存在差异。②第一种经典控制方法在加大阻尼比后,能够将返回舱改出极限环振动状态,但当俯仰角速度最终稳定在零附近做小振幅振荡时,姿控发动机的控制力矩很小(控制力矩仅与俯仰角速度相关),不能够把返回舱控制在平衡位置,偏差较大。③与第一种方法相比,第二种经典控制方法在控制量中考虑了俯仰角的贡献,阻尼比较小时,返回舱仍然很难改出极限环振动状态,提高阻尼比后,返回舱能够很快改出极限环振动状态;随着自振角频率的增加,返回舱能够在更短的时间内达到基本稳定状态,并且俯仰角收敛至更加靠近平衡攻角的位置。针对第二种经典控制方法设计了一种分段自振角频率控制策略,使得返回舱更加逼近平衡位置,控制效果得到改善。④智能化的模糊控制方法避免了经典控制方法对运动数学模型过于依赖的问题,数值模拟结果显示:除了第一种经典的模糊控制方法存在调节死区外,其它四个模糊控制算例都能够在不需要控制系统精确数学模型的基础上,对返回舱的动态不稳定特性进行有效的控制。
Reentry capsules typically have blunt conical noses, which are designed to achieve the aerodynamic drag and decrease the aerodynamic heating. Unfortunately these blunt bodies tend to experience dynamic instability and this can lead to angular motions that frequently develop into limit cycles. The dynamic instability of the reentry capsules has been studied for long time, but many problems still remain unresolved. In order to study the mechanism of dynamic instability, it has to de done at first to simulate the transonic steady/unsteady flowfield of reentry capsules with high order accuracy schemes developed in this thesis. The passive control methods are developed on the basis of study of the mechanism of dynamic instability. With computational fluid dynamic, the intercourse of flight mechanics and control techniques, active control methods are developed elementarily to weaken or eliminate the dynamic instability of reentry capsules.
     Firstly, based on the demands for schemes in simulating the unsteady flowfield numerically, the NND schemes and WNND(Weighted NND) schemes are updated with the power limiter. The second-order accurate flux- or conservational variable- PNND (Power NND) schemes and the third-order accurate flux- or conservational variable-PWNND(Power WNND) schemes are designed. According to different characteristics of physical problems, different explicit or implicit time discrete schemes are constructed. Some typical numerical tests, including the linear-wave equation, 1D Euler equations and 3D Navier-Stokes equations, are presented to demonstrate the excellent capability of the PNND schemes and the PWNND schemes in reducing smearing near discontinuities and getting good resolution in smooth regions.
     Secondly, with the high order accurate conservational variable- PWNND schemes, the steady flowfield, the forced oscillation flowfield and the free oscillation flowfield are simulated to analyze the mechanism on the dynamic instability of reentry capsules.①The numerical results of steady flowfield show: The proportion between base aerodynamic and the total aerodynamic in transonic speeds is larger than that in supersonic speeds. The ring vortex distorts with the incident angle increasing, the horseshoe vortex becomes dominant behind the capsule.②The numerical results of forced/free oscillation flowfield show: The hysteresis loops of pitch moment coefficient become in the style of double "8" in C_m~θplane. The dynamic instability is caused by the hysteresis of the base pitch moment coefficient.③The characteristic length and velocity are analyzed for the dynamic instability of reentry capsules. According to the energy relation between the capsules and the flowfield, the passive control methods of modifying the base shape are proposed to improve the dynamic instability of reentry capsules.
     Thirdly, based on the analysis of the mechanism on the dynamic instability, the control effects are evaluated for several passive control methods including base shape modified, mass center moved and the combination methods.①The numerical results of free oscillation flowfield with six passive control conditions of base shapes modified show: Five shapes improve the dynamic stability(the swing of the limit cycle decreases) and one fails with the energy increasing from the flowfield.②The numerical results of free oscillation flowfield with three passive control conditions of mass center moved show: The work conducted by the front body of the reentry capsules to the flowfield increases with the mass center moving to the top point of the reentry capsules, and the dynamic stability turns better. The dynamic stability turns worse with the mass center moving to the base of the reentry capsules.③The numerical results of free oscillation flowfield with three combination passive control methods show: To improve the dynamic stability of the reentry capsules, the combination passive control methods should be considered.
     Lastly, with computational fluid dynamic, the intercourse of flight mechanics and control techniques, active control methods are developed elementarily to weaken or eliminate the dynamic instability of reentry capsules. The unsteady coupling flowfield with cross jet are solved in simplified attitude control system by the high order accurate PWNND schemes. The results are analyzed to evaluate the control effects.①The numerical results of forced oscillation flowfield of a space vehicle with cross jet show: During the forced oscillation, the normal force amplification factor changes with the pitching angle periodically. The oscillation of the space vehicle makes unsteady effects on the jet flowfield and the aerodynamic performance shows great difference with the steady jet flowfield.②The first classic active control method can break the limit cycle oscillation with the damp ratio increasing. The control moment turns weak when the angular velocity of the reentry capsule converges to zero. The reentry capsules can't keep the balance place and the error of the pitch angle and the balance place is a bit large.③The second classic active control method considers the contribution of the pitch angle. This control method can also break the limit cycle oscillation with the damp ratio increasing. With the angular frequency increasing, the reentry capsules can get the steady state in shorter time. The reentry capsules can get closer to the balance place. A control strategy with subsection angular frequency is introduced to the second classic active control method. The pitch angle gets more close to the balance place and the control effect gets better.④In the fuzzy control methods, the exact oscillation mathematic model of the reentry capsule isn't needed, which is indispensability for the above two classic active control methods. The numerical results show: The first classic fuzzy control method has a bug that the adjust dead region appears during the control process. The other four fuzzy control examples all display effective control to the dynamic instability of the reentry capsule without the exact oscillation mathematic model.
引文
[1]Moseley WC,Martino JC.Apollo Wind Tunnel Program:NASA TN D-3748;1966.
    [2]Desai PN,Mitcheltree RA,Cheatwood FM.Sample Returns Missions in the Coming Decade.51st International Astronautical Congress:IAF-00-Q.2.04;2000.
    [3]方方.神舟飞船返回舱气动设计综述.航天器工程 2004;13(1):124-131.
    [4]刘伟,张鲁民.钝体俯仰阻尼导数数值计算.空气动力学学报1997;15(4):427-435.
    [5]任玉新,刘秋生,沈孟育.飞行器动态稳定性参数的数值计算方法.空气动力学学报 1996;14(2):117-126.
    [6]赵梦熊.载人飞船空气动力学.北京:国防王业出版社;2000.
    [7]Mitcheltree RA,Kellas S.A Passive Earrh-Entry Capsule for Mars Sample Return.AIAA 98-2851;1998.
    [8]Cheatwood FM,L.Winchenbach G,Hathaway W,Chapman G.Dynamic Stability Testing of the Genesis Sample Return Capsule.AIAA 2000-1009;2000.
    [9]Chapman GT,Yates LA.Limit Cycle Analysis of Blunt Entry Vehicles AIAA 99-1022;1999.
    [10]Chapman GT,Yates LA.Dynamics of Planetary Probes:Design and Testing Issues.AIAA 98-0797;1998.
    [11]Cahen GL.Effects of Shape and Mass Properties on Subsonic Dynamics of Planetary Probes.Journal of spacecraft and rockets 1975;12(8):509-511.
    [12]Winchenbach GL,Hathaway WH,Chapman GT,C.Berner,A.Ramsey.The Dynamic Stability of Blunt Atmospheric Entry Configurations.AIAA 2000-4115;2000.
    [13]Winchenbach GL,Chapman GT,Hathaway WH,A.Ramsey,C.Berner.Dynamic Stability of Blunt Atmospheric Entry Configurations.Journal of spacecraft and rockets 2002;39(1):51-55.
    [14]Mitcheltree RA,Fremaux CM,Yates LA.Subsonic Static and Dynamic Aerodynamics of Blunt Entry Vehicles.AIAA 99-1020;1999.
    [15]Mitcheltree RA,Fremaux CM.Subsonic Dynamics of Stardust Sample Return Capsule:NASA TM 110329;1997.
    [16]Chapman GT,Mitcheltree RA,Hathaway WH.Transonic and Low Supersonic Static and Dynamic Aerodynamic Characteristics of the Stardust Sample Return Capsule.AIAA 99-1021;1999.
    [17]C.Berner,Winchenbach GL.A Numerical and Experimental Investigation of Generic Space Probes.AIAA 98-0798;1998.
    [18]Rasmussen ML,D.B.Kirk.A Study of Damping in Nonlinear Oscillations:NASA TR TR-249;1966.
    [19]杨在山.载人飞船返回舱的气动特性分析与外形设计.气动实验与测量控制 1996;10(4):12-17.
    [20]张涵信,袁先旭,谢昱飞,叶友达.关于建立非定常非线性动态稳定系统的问题.2003空气动力学前沿研究论文集.北京:中国宇航出版社;2003.
    [21]张涵信,袁先旭,叶友达,谢昱飞.飞船返回舱俯仰振荡的动态稳定性研究.空气动力学学报 2002;20(3):247-259.
    [22]张鲁民,潘梅林,唐伟.载人飞船返回舱空气动力学.北京:国防工业出版社;2002.
    [23]Chapman GT,C.Berner,Hathaway WH,Winchenbach GL,Mitcheltree RA.The Use of Spherical Bases to Elminate Limit Cycles of Blunt Entry Vehicles.AIAA 99-1023;1999.
    [24]T.ABE,S.SATO,Y.MATSUKAWA,K.YAMAMOTO,K.HIRAOKA.Study for Dynamically Unstable Motion of Reentry Capsule.AIAA 2000-2589;2000.
    [25]Susumu T,Kozo F.Study on the Mechanism of the Instability of a Re-Entry Capsule at Transonic Speeds.AIAA 2000-2603;2000.
    [26]Susumu T,Kouju H,Kozo F.Numerical Analysis of Dynamic Stability of a Reentry Capsule at Transonic Speed.AIAA Journal 2001;39(4):646-653.
    [27]Susumu T,Kouju H,Kozo F.Numerical Analysis of Dynamic Stability of a Reentry Capsule at Transonic Speeds.AIAA 98-4451;1998.
    [28]Susumu T,Kozo F.Computational Study of the Flow Field Behind Blunt Capsules at Transonic Speeds.AIAA 99-3414;1999.
    [29]刘伟,沈清,张鲁民,张涵信.钝倒锥体动导数数值工程模拟.国防科技大学学报 1998;20(1):5-8.
    [30]周伟江,汪翼云.返回舱三维高超声速绕流及近尾迹流场数值模拟.力学学报 1994;26(5):513-520.
    [31]周伟江.返回舱自山振动跨声速非定常流场数值模拟.空气动力学学报2000;18(1):46-51.
    [32]洪金森,洪诗权.再入飞行器极限环分析.空气动力学学报2005;23(2):204-209.
    [33]吴宗成,朱自强,李津,陈泽民.绕大钝头短体外形跨音速大迎角湍流流动计算.北京航空航天大学学报 2002;28(6):675-678.
    [34]何开锋,和争春.飞船返回舱跨声速全局稳定性研究.飞行力学 1999;17(3):34-38.
    [35]Kandil OA,Menzies MA.Effective Control of Computationally Simulated Wing Rock in Subsonic Flow.AIAA 97-0831;1997.
    [36]A.Cavallo,G.D.Maria,F.Ferrara.Attitude Control for Low Lift/Drag Re-Entry Vehicles.Journal of guidance,control,and dynamics 1996;19(4):816-822.
    [37]Rubenstein DS,Carter DW.Attitude Control System Design for Return of the Kistler K1 Orbital Vehicle.Journal of spacecraft and rockets 2000;37(2):273-282.
    [38]A.Fujimori,M.Kurozumi,P.N.Nikiforuk,M.M.Gupta.Flight Control Design of an Automatic Landing Flight Experiment Vehicle.Journal of guidance,control,and dynamics 2000;23(2).
    [39]Lin CL,Chen YY.Design of Fuzzy Logic Guidance Law against High-Speed Target.Journal of guidance,control,and dynamics 2000;23(1):17-25.
    [40]Johnson EN,Calise AJ,Corban JE.A Six Degree-of-Freedom Adaptive Flight Control Architecture for Trajectory Following.AIAA 2002-4776;2002.
    [41]Johnson EN,Calise AJ,El-shirbiny HA,Rysdyk RT.Feedback Linearization with Neural Network Augmentation Applied to X-33 Attitude Control.AIAA 2000-4157;2000.
    [42]张涵信,沈孟育.计算流体力学-差分方法的原理和应用.北京:国防工业出版社:2003.
    [43]张涵信,呙超,宗文刚.网格与高精度差分计算问题.力学学报1999;31(4):398-405.
    [44]刘儒勋,舒其望.计算流体力学的若干新方法.北京:科学出版社;2004.
    [45]张涵信,沈孟育.计算流体力学.差分方法的原理和应用.北京:国防工业出版社;2003.
    [46]Harten A,Engquist B,Osher S,Chakravarthy S.Uniformly High Order Essential Non-Oscillatory Schemes.Journal of Computational Physics 1987;71:231-303.
    [47]C.-W.Shu.Numerical Experiments on the Accuracy of Eno and Modified Eno Schemes.Journal of Scientific Computing 1990;5:127-149.
    [48]C.-W.Shu,S.Osher.Efficient Implementation of Essential Non-Oscillatory Shock Capturing Schemes.Journal of Computational Physics 1988;77:439-471.
    [49]C.-W.Shu,S.Osher.Efficient Implementation of Essential Non-Oscillatory Shock Capturing Schemes Ⅱ.Journal of Computational Physics 1989;83:32-78.
    [50]E.Fatemi,J.Jerome,S.Osher.Solution of the Hydrodynamic Device Model Using High Order Non-Oscillatory Shock Capturing Algorithms.IEEE Transactions on Computer-Aided Design of Integrated Circuits and systems 1991;10:232-244.
    [51]X.-D.Liu,S.Osher,T.Chan.Weighted Essential Non-Oscillatory Schemes.Journal of Computational Physics 1994;115:217-237.
    [52]G.Jiang,C.-W.Shu.Efficient Implementation of Weighted Eno Schemes.Journal of Computational Physics 1996;126:202-228.
    [53]Grasso F,Pirozzoli S.Shock Wave-Thermal Inhomogeneity Interaction:Analysis and Numerical Simulations of Sound Generation.Phys.Fluids 2000;12:205-219.
    [54]Pirozzoli S,Grasso F,D'Andrea A.Interaction of a Shock Wave with Two Counter-Rotating Vortices:Shock Dynamics and Sound Production.Phys.Fluids 2001;13:3460-3481.
    [55]Rault A,Chiavassa G,Donat R.Shock-Vortex Interactions at High Mach Numbers.J.Sci.Comput.2003;19:347-371.
    [56]Zhang S,Zhang Y-T,Shu C-W.Multistage Interaction of a Shock Wave and a Strong Vortex.Phys.Fluids 2005;17(11).
    [57]Jiang G-S,Shu C-W.A High Order Weno Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics.Journal of Computational Physics 1999;150:561-594.
    [58]zhang Y-T,Shi J,Shu C-W.Numerical Viscosity and Resolution of High-Order Weighted Essentially Nonoscillatory Schemes for Compressible Flows with High Reynolds Numbers.Phys.Rev.E Stat Nonlin Soft Matter Phys.2003;68(4).
    [59]Grasso F,Pirozzoli S.Simulations and Analusis of the Coupling Process of Compressible Vortex Pairs:Free Evolution and Shock Induced Coupling.Phys.Fluids 2001;13:1343-1366.
    [60]Yang Y,Yang S,Chen Y,Hsu C.Implicit Weighted Eno Schemes for the Three-Dimentional Incompressible Navier-Stokes Equations.Journal of Computational Physics 1998;146:464-487.
    [61]Z.-J.Wang,R.-F.Chen.Optimized Essentially Non-Oscillatory Schemes for Computational Aeroacoustics.AIAA 2001-1101;2001.
    [62]Ren Y-x,Liu Me,Zhang H-x.A Characteristic-Wise Hybrid Compact-Weno Scheme for Solving Hyperbolic Conservation Laws.Journal of Computational Physics 2003;192:365-378.
    [63]沈孟育,李海东,刘秋生.用解析离散法构造Weno-Fct格式.空气动力学学报 1998;16(1):56-63.
    [64]宗文刚.高阶紧致格式及其在复杂流场求解中的应用[博士学位论文].绵阳:中国空气动力研究与发展中心;2000.
    [65]Han-xin Z,Qin L.On Problems to Develop Physical Analysis in Cfd.Journal of CFD 2002;10(4):466-476.
    [66]D.Levy,G.Puppo,G.Russo.Central Weno Schemes for Hyperbolic Systems of Conservation Laws.Math.Model.Numer.Anal.1999;33:547-571.
    [67]D.Levy,G.Puppo,G.Russo.A Third Order Central Weno Scheme for 2d Conservation Laws.Applied Numerical Mathematics 2000;33:415-421.
    [68]D.Levy,G.Puppo,G.Russo.Compact Central Weno Schemes for Multidimensional Conservation Laws.SIAM J.Sci.Comput.2000;22:656-672.
    [69]Friedrichs O.Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids.Journal of Computational Physics 1998;144:194-212.
    [70]Hu C,Shu C-W.Weighted Essentially Non-Oscillatory Schemes on Triangular Meshess.Journal of Computational Physics 1999;150:97-127.
    [71]D.S.Balsara,C.-W.Shu.Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes with Increasingly High Order of Accuracy.Journal of Computational Physics 2000;160:405-452.
    [72]Shu C-W.Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws:ICASE 97-65;1997.
    [73]J.-X.Qiu,C.-W.Shu.Hermite Weno Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method:One Dimensional Case.Journal of Computational Physics 2004;193:115-135.
    [74]Tang L.A New Approach to Construct Weno Schemes AIAA 2001-0283;2001.
    [75]A.Iske,T.soner.On the Structure of Function Spaces in Optimal Recovery of Point Functionals for Eno-Schemes,Ⅲ.Numerische Mathematik 1996;74:177-201.
    [76]S.Christofi.The Study of Building Blocks for Eno Schemes[Ph.D.Thesis]:Brown University;1995.
    [77]侯中喜,易仕和,李桦.高精度分辨率WENO格式分析与改进.国防科技大学学报 2003;25(1):17-20.
    [78]Lin S-Y,Hu J-J.Parametric Study of Weno Schemes in Truncation,Dissipation,and Dispersion Errors.AIAA 2000-2623;2000.
    [79]Henrick AK,Aslam TD,Powers JM.Mapped Weighted Essentially Non-Oscillatory Schemes:Achieving Optimal Order near Critical Points.Journal of Computational Physics 2005;207:542-567.
    [80]Zhang S,Shu C-W.Convergence Towards Steady State Solution of the Euler Equations with Weno Schemes.(to be printed)
    [81]宗文刚,邓小岗,张涵信.双重加权实质无波动激波捕捉格式.空气动力学学报 2003;21(2):218-225.
    [82]宗文刚,邓小岗,张涵信.双重加权实质无波动激波捕捉格式的改进和应用.空气动力学学报 2003;21(4):399-407.
    [83]S.Serna,A.Marquina.Power Eno Methods:A Fifth-Order Accurate Weighted Power Eno Method.Journal of Computational Physics 2004;194:632-658.
    [84]徐振礼,邱建贤,刘儒勋.双曲守恒律方程WENO格式的优化方法.中国科学技术大学学报 2004;34(1):29-37.
    [85]Gustafasson B.The Convergence Rate for Difference Approximation to General Mixed Initial Boundary Value Problems.SIAM J.Numer.Anal.1981;18(2):179-190.
    [86]沈清,张涵信,高树椿.一种高精度、高分辨率激波捕捉的迎风型NND格式.第七届全国计算流体力学会议文集;1994.p 49-55.
    [87]刘伟,赵海洋,谢昱飞.三阶WNND格式的构造及在复杂流动中的应用.应用数学和力学 2005;26(1):32-39.
    [88]Liu W,Zhang H-x,Zhao H-y.Numerical Simulation and Physical Characteristics Analysis for Slender Wing Rock.Journal of Aircraft 2006;43(3):858-861.
    [89]赵海洋,刘伟,万国新.WNND格式在稳态问题中的应用.空气动力学学报2005;23(3):334-338.
    [90]Mohamed G-E-H.Fluid Mechanics from the Beginning to the Third Millennium.Int.J.Engng ED.1998;14(3):177-185.
    [91]Harten A.A High Resolution Schemes for Hypersonic Conservation Laws.Journal of Computational Physics 1983;49:357-393.
    [92]F.M.White.粘性流体动力学.北京:机械工业出版社;1982.
    [93]P.K.Sweby.High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws.SIAM J.Numer.Anal.1984;21:995-1011.
    [94]Shu C-W,Osher S.Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes i.Journal of Computational Physics 1988;77:439-471.
    [95]Pulliam TH,Chaussee DS.A Diagonal Form of an Implicit Approximate Factorization Algorithm.Journal of Computational Physics 1981;39:347-363.
    [96]Jameson A.Time Dependent Calculation Using Multigrid with Application to Unsteady Flows Past Airfoils and Wings.AIAA-91-1596;1991.
    [97]袁先旭.非定常流动数值模拟及飞行器动态特性分析研究[博士学位论文].绵阳:中国空气动力研究与发展中心;2002.
    [98]Thomas PD,Lombard CK.Geometric Conservation Law and Its Application to Flow Computations on Moving Grids.AIAA Journal 1979;17(10):1030-1037.
    [99]Bladwin B,Lomax H.Thin-Layer Approximation and Algebraic Model for Separation Flows.AIAA 78-257;1978.
    [100]Degani D,Schiff LB.Computation of Turbulent Supersonic Flows around Pointed Bodies Having Crossflow Separation.Journal of Computational Physics 1986;66:173-196.
    [101]谢昱飞.细长圆锥超声速绕流的非对称分离及其诱导之等角速度锥转运动的计算分析[博士学位论文].绵阳:中国空气动力研究与发展中心;2005.
    [102]吴子牛.计算流体力学基本原理.北京:科学出版社;2001.
    [103]刘伟.细长机翼摇滚机理的非线性动力学分析及数值模拟方法研究[博士学位论文].长沙:国防科学技术大学;2004.
    [104]U.Ghia.An Essential Tool for Computational Fluid Dynamics:Numerical Grid Generation - an Overview.AIAA 99-3710;1999.
    [105]《航空气动力手册》编写组.航空动力手册.北京:国防工业出版社;1983.
    [106]Harris CD.Two-Dimensional Aerodynamic Characteristics of the Naca0012Airfoil in the Langley 8-Feet Transonic Pressure Tunnel:NASA TM-81927;1981.
    [107]Cardonna FX,Tung C.Experimental and Anlytical Studies of a Model Helicopter Rotor in Hover.Vertical 1981;5:149-161.
    [108]Steger JL,Lomax H.Transonic Flow About Two Dimension Airfoils by Relaxation Procedures.AIAA Journal 1972;10(1):49-54.
    [109]Lohner R,Parikh P.Generation of Tree Dimensional Instructured Grids by the Advancing Front Methods.International J.Numer.Methods Fluids 1988;8:1135-1149.
    [110]Landon RH.Naca0012 Oscillating and Transient Pitching,Compendium of Unsteady Aerodynamic Measurements,Data Set3 AGARD Report R2702;1982.
    [111]Batina JT.Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes.AIAA89-0115;1989.
    [112]郭正.包含运动边界的多体非定常流场数值模拟方法研究[博士学位论文].长沙:国防科技大学;2002.
    [113]宋文萍,杨永,乔志德.用双时间推进法求解非定常n-S方程的有关问题讨论.西北工业大学学报 2000;1813):433-437.
    [114]R.A.Mitcheltree,R.G.Wilmoth,F.M.Cheatwood,G.J.Brauckmann,F.A.Greene.Aerodynamics of Stardust Sample Return Capsule.AIAA 97-2304;1997.
    [115]纪楚群,周伟江.钟形返回舱空气动力特性数值模拟.航天返回与遥感2001;20(1):32-37.
    [116]Haimes R,Kenwright D.On the Velocity Gradient Tensor and Fluid Feature Extraction.AIAA 99-3288;1999.
    [117]Hunt JCR,Abell CJ,Peterka JA,Woo H.Kinematical Studies of the Flows around Free or Surface Mounted Obstacles,Applying Topology to Flow Visualization.Journal of Fluid Mech.1978;86:179-200.
    [118]张鲁民,潘海林,唐伟.载人飞船返回舱空气动力学.北京:国防工业出版社:2002.
    [119]Yeneriz MA,Davis JC,Cooper GK,Harvey DW.Comparison of Calculation and Experiment for a Lateral Jet from a Hypersonic Biconic Vehicle.AIAA 89-2548;1989.
    [120]Hsieh T,A.B.Wardlaw J.Numerical Simulation of Cross Jets in Hypersonic Flow over a Biconic Body.AIAA 94-0165;1994.
    [121]段毅,杨永.高超音速横侧喷流流场干扰研究.高超声速第十二届技术交流会会议文集:2004.
    [122]周维,刘宏,刘嘉,王发民.超音速来流中侧向喷流干扰流场的数值模拟.航空学报 2004;25(2):108-112.
    [123]杨彦广.高超声速主流中的横向喷流干扰效应研究[博士学位论文].四川绵阳:中国空气动力研究与发展中心;2003.
    [124]诸静.模糊控制理论与系统原理.北京:机械工业出版社;2005.
    [125]章卫国,杨向忠.模糊控制理论与应用.西安:西北工业大学出版社;2001.
    [126]F.A.Haidinger,C.Weiland.Jet/Airflow Interaction Study on a Non-Winged Reentry Vehicle at Supersonic Speed.AIAA 97-0409;1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700