用户名: 密码: 验证码:
预防仔猪腹泻外源抗体—卵黄抗体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对导致仔猪腹泻的主要产肠毒素大肠杆菌K88,建立了K88及其三种变异体K88ab、K88ac和K88ad的PCR鉴定方法,进而对武汉及其周边地区规模化猪场进行了ETEC K88及其变异体的流行病学调查,确定了K88ac是武汉及周边地区腹泻仔猪粪样中ETEC K88变异体最常见的一类;通过对ETEC K88ac培养条件、黏附素抗原提取、黏附素诱导蛋鸡免疫应答和卵黄抗体的加工特性的研究,建立了抗ETEC K88ac黏附素卵黄抗体的制备技术;通过体外和体内试验研究了抗ETEC K88ac黏附素卵黄抗体预防仔猪腹泻的机理和应用效果。结果如下:
     1.以ETEC K88ab、K88ac和K88ad标准菌株为试验材料,建立了ETEC K88及其三种变异体K88ab、K88ac和K88ad的PCR鉴定方法,并对武汉及其周边地区猪场进行了ETEC K88及其变异体的流行性调查。结果表明:K88ab、K88ac和K88ad用设计的引物,经PCR均扩增出特异性目的大小的DNA片段;对291株已经血清学鉴定未发现携带K88粘附素的大肠杆菌用PCR方法进行检验,发现有一株大肠杆菌是ETEC K88,其变异体为K88ac。对武汉及周边地区采集227份哺乳仔猪腹泻粪样进行了PCR检测,发现有23份含有K88菌,占总数的10.1%,且均为K88ac变异体。因此,PCR方法鉴定ETEC K88及其变异体具有快速、特异性强、敏感性和准确性高的优点,适合于ETEC K88及其变异体大规模鉴定和流行病学调查;K88ac是武汉及周边地区腹泻仔猪粪样中ETEC K88变异体最常见的一类。
     2.比较了振荡培养和静止培养两种方式对ETEC K88ac菌体产量和黏附素表达效果的影响。研究了ETEC K88ac黏附素蛋白提取纯化方法和ETEC K88黏附素诱导蛋鸡的免疫应答。确立了卵黄抗体粉适宜加工方式,并对其稳定性和储藏性能进行了初步探讨。结果表明:振荡培养条件下ETEC K88ac的生长量比静止培养多1倍左右,MRHA效价分别为2~6和2~5;60℃加热—磁力搅拌法及等电点沉淀法可以获得较高产量纯化的黏附素蛋白,平均每升菌液可收获1.5毫克,在SDS—PAGE中呈一条带,分子量约为28KDa;用纯化的ETEC K88ac黏附素蛋白免疫蛋鸡在二免1周后卵黄中的抗体明显升高,4周达到高峰(1:2560),并持续到13周后才开始缓慢下降。因此,TSB液体培养基振荡培养有利于K88ac的繁殖及其黏附素的生长,60℃加热—磁力搅拌法及等电点连续沉淀法可以获得较高产量纯化的K88ac黏附素蛋白,适用于实验室及小规模黏附素生产。K88ac黏附素可以诱导蛋鸡长时间,高水平卵黄抗体的产生。喷雾干燥(140℃进气,65℃出气)对卵黄抗体活性无影响,加工前后抗体滴度均为1:1280;卵黄抗体粉在90℃干热条件下处理5分钟后抗体效价下降50%,而90℃湿热条件下处理5分钟抗体效价无明显变化,但处理15分钟后下降75%;经过1小时的干热或湿热处理,抗体均基本失活;4℃和常温下放置半年对卵
    
    预防仔猪腹泻外源抗体一卵黄抗体研究
    黄抗体粉活性无影响;因此,喷雾干燥是加工卵黄抗体粉的适宜加工方式,喷雾千
    燥卵黄抗体粉具有良好的加工和储藏性能
    3.应用细菌体外粘附试验研究了卵黄抗体预防仔猪ETEC感染性腹泻的机制,并
    通过饲养试验研究了卵黄抗体预防断奶仔猪腹泻的效果。结果表明:在体外试验中,
    无抗体的对照组平均每个上皮细胞勃附16.4个K88aC;抗体效价分别为1:640和
    1:1280的卵黄抗体较对照组均极显著抑制了K88ac对肠上皮细胞的勃附作用
     (p<0.01),平均每个上皮细胞分别仅勃附8.5和2.4个细菌,二者之间也存在极显
    著差异(p<0 .01);抗体效价为l:320的抗体组相对对照组有一定抑制细菌粘附作用,
    但差异不显著(p=0.15)。90头30士2日龄断奶仔猪随机分成‘4组,每组分3栏饲
    养,公母各半,采用单因子设计,对照组日粮采用玉米一豆粕典型日粮,在对照组
    日粮中分别添加0.5%、1%、2%的喷雾千燥卵黄粉形成试验一组、试验二组和三
    组的试验日粮。添加卵黄抗体粉虽然对仔猪的平均日增重和采食量均没有显著影响
     (p>0.05),但添加1%卵黄抗体粉显著降低了料肉比和腹泻率(p<0.05),同时对
    仔猪的后期生长有一定促进作用。
It has been well recognized that ETEC was the major pathogenic Escherichia coli that caused piglet diarrheal in pig farm .A polymerse chain reaction (PCR) technology was developed to detect ETEC K88 and its variants (ab, ac, ad). The presence of the K88 and its variants (ab, ac and ad) in some pig farms around Wuhan were investigated by PCR methology, and the K88ac was confirmed the predominant variants in Wuhan area. Through the research of ETEC K88ac cultivation, fimbriae extraction, immune reponse and egg-yolk processing character. An appropriated way of producing anti-K88ac fimbriae egg-yolk antibodies was established. The active mechanism and efficiency of egg yolk antibodies was evaluated by in vivo and in vitro experiments. The results were as follows:
    1. A polymerse chain reaction (PCR) technology to detect ETEC K88 and its variants (ab, ac, ad) was developed to investigate the presence of the K88 and its variants (ab, ac and ad) in some pig farms around Wuhan. K88ab, K88ac and K88ad by PCR with special primers showed target bands. One of 291 E. coli, which were not deteced K88 by slide agglutination, were checked out to be K88 (K88ac) by PCR. 23(10.1%) K88 were found in 227 feces from diarrheic piglets in some pig farms of Wuhan area, and all contained genes for K88ac. The result suggested that the PCR methodology be a quick, sensitive and specific for the detection and epidemiological investigation of ETEC K88 and its variants (ab, ac, ad). K88ac is the predominant K88 variant associate with diarrhea in piglets of Wuhan area.
    2. The effect of shaking cultivation and resting cultivation on the production of ETEC K88ac and its fimbriae was compared. An appropriated method of separating-purifying K88ac fimbrial was developed and the immune response of ETEC K88ac fimbriae to hens was studied. A feasible processing of egg yolk antibodies powders was established and its stability and storage performance were also studied. The result suggested that the output of ETEC K88ac with shaking cultivation be about once more than that of resting cultivation. Fimbrial MRHA titer of shaking cultivation and resting cultivation were 26 and 25 respectively. The extraction of ETEC K88ac fimbriae, separated and purified by 60 ℃-heating-magnetism-stir and isoelectric point deposition was 1.5mg/L. The purified fimbriae showed one band in SDS-PAGE with a molecular mass of about 28 KDa. Titer
    
    
    
    of egg-yolk antibodies rose quickly in a week after the second immune and achieved the top at the 4th week (1:2560), then fell slowly at the 13th week. The results confirmed that shaking cultivation of K88ac with TSB, separating-purifying fimbriae 60℃-heating-magnetism-stir and isoelectric point deposition was a suitable way for the extration of ETEC K88ac fimbriae in the laboratory or on the small scale. Activity of egg-yolk antibodies was not inflenced by spray drying. liter of egg-yolk antibodies did not change with the treatment of 90℃ wet-hot for 5 minutes, but declined 75% for 15 minutes and 50% with the treatment of 90℃ hot-air for 5 minutes; 90℃ wet-hot or hot-air treatment for 1 hour would inactive the antibodies. The antibodies would not be destroyed under the 4℃ and normal atmospheric temperature in half a year. The results suggested that the spray drying be a suitable processing for egg yolk antibodies powders. The egg yolk antibodies powders had good processing stability and storage performance.
    3. The active mechanism and efficiency of egg yolk antibodies was evaluated by in vivo and vitro experiments. The results suggested that the average numbers of adherent bacterial cells per enteroepithelial cell for control without antibodies was 16.4, the egg-yolk anti-K88ac fimbrial antibodies with liter 1:640 (8.5 bacterial cells per epithelial cell) and 1:1280 (2.4 bacterial cells per epithelial cell) could significantly inhabited the adhesion of ETEC K88ac to piglet epithelial cell (p<0.01) ; Antibodies with titer 1:320 had no significant effect on the adhesion of ETEC K88ac (p>0.05) .90 28-32-days-old piglets
引文
1.王红宁等.规模化猪场仔猪黄、白痢的防治研究.中国预防兽医学报,1999,21(4):264—267
    2.王永红等.肠毒素大肠杆菌菌毛抗原987P和F41的提纯及部分特性分析.中国畜禽传染病,1988,40(3):56—58
    3.王炯,龚春梅.鸡卵黄抗体理化特性的研究.中国生物制品学杂志,1997,10(3):140-143
    4.龙中儿,钟青萍,刘活林等.卵黄免疫球蛋白的稳定性研究,中国生物制品学杂志,1997,10(4):218—220
    5.李学伍.仔猪大肠杆菌多价卵黄抗体粉的特性及应用,中国兽医杂志,2000,26(10):56-57
    6.李春晖,郭立君,于洪涛等.胃蛋白酶对抗轮状病毒IgY活性的影响,中国生物制品学杂志,2002,15(1):45—46
    7.李毅.抗大肠埃希氏菌K88粘附素单克隆抗体在仔猪黄痢治疗中的初步应用,中国畜禽传染病,1989,(5):34—35
    8.杨正时.动物病原性大肠杆菌与大肠杆菌病,中国兽医科技,1987,(6):25—29
    9.祁明慧等.产肠毒素大肠杆菌987P抗原的纯化,中国兽医杂志,1987,13(2):49—50
    10.肖驰,周淑兰.大肠埃希氏杆菌卵黄抗体的研制与应用,中国兽医科技,1998,28(4):21-23
    11.周壁君等.仔猪腹泻源大肠杆菌贵州株K88菌毛研究,中国预防兽医学报,2000,22(4):291—296
    12.周德庆.微生物教程.北京:高等教育出版社,1993,183—203
    13.范龙彬,杨曜中,俞建瑛等.卵黄抗体的诱导,生物制品学杂志,2000,13(2):79-81
    14.范节才等.大肠杆菌987P抗原的提纯及部分特性鉴定,中国畜禽传染病,1987,35(4):53—56
    15.房海.大肠埃希氏菌.河北:科学技术出版社,1997,409—429
    16.胡子信.鸡抗猪大肠杆菌卵黄抗体的研制,中国畜禽传染病,1994,2:26-27
    17.徐香.肠毒素大肠杆菌菌毛的快速检测方法,中国人兽共患病杂志,1987,3(3):40—42
    
    
    18.施启顺.猪肠毒性大肠杆菌(ETEC)病抗病育种研究,国外畜牧科技,1999,26(4):51-54
    19.郭立君,李春晖,赵锋等.抗轮状病毒IgY的研制,中国生物制品学杂志,2001,14(1):24—26
    20. Alexander T J L. Neonatal diarrhea in pigs. In: Gyles. C. L(ed), Escherichia coil in domestic animals and humans. CAB International Wallingford UK pp. 1994,1:51-170
    21. Arriaga Y L, et al. Contribution of individual disulfide bonds to biological action of Escherichia coil heat-stable enterotoxin B. Infect. Immune. 1995,63:4715-4720
    22. Baker D R, et al. Distribution of K88 Escherichia coil-adhesion and nonadhesive phenotypes among pigs of four breeds, Vet Microbiol, 1997,54:123-132
    23. Bertschinger H U. 猪病学.赵德明 张中秋 沈建忠译 北京:中国农业大学出版社, 2000, 455—469
    24. Bijlsma I G W, et al. The prevalence of different porcine phenotype in the Netherlands concerning adhesion of K88-positive Escherichia coil to intestinal epithelium. Vet Q 1985, 7: 246-248
    25. Bijlsma I G W, et al. Different pig phenotypes affect adherence of Escherichia coil to jejunal brush borders by K88ac, K88ad and K88abantigens. Infect. Immune, 1997, 37: 891-894
    26.20. Blomberg L, Conway P L. An in vitro study of ileal colonization resistance to Escherichia coil strain Bd 1107/7508 (K88) in relation to indigenous squamous gastric colonization in piglets of varying ages. Micro Ecol Health Dis, 1989, 2: 285-291
    27. Boscato L M and Stuart. M.C. Heterophilic antibodies, a problem for all immunoassays. Clinical Chemistry, 1988,34:27-33
    28. Bretschinger H U, et al. Adhesive produced in vive by Escherichia coil 0139:K12(B): H1 associated with enterotoxaemia in pigs. Vet Microbiol. 1990,25:267-281
    29. Changsun C and Chanhee C. Genotypic prevalence of F4 Variants (ab, ac and ad) in Escherichia coil isolated from diarrheic piglets in Korea. Veterinary Microbiology 1999,67:307-310
    30. Chao K L and L A Dreyfus. Interaction of Escherichia coil heat-stable
    
    enterotoxin B with cultured human intestinal epithelial cells. Infect Immune 1997,65:3209-3217
    31. Conway P L, Welin A, Cohen P S. Presence of K88-specific receptors in porcine ileal mucus is age dependent. Infect. Immune, 1990, 58: 3178-3182
    32. Cox E Houvenaghel A. The prevalence of in vitro adhesion of K88-positive Escherichia coil to villi of just-weaned piglets in a Belgian piggery. Vlaams. Diergen. Tijds, 1988,57:90-96
    33. Cox E Houvenaghel. A. Comparison of the in vitro adhesion of K88, K99, F41 and 987P positive Escherichia coil to intestinal villi of 4 to 5-week-old pigs. Vet Miccrobiol, 1993, 34: 7-18
    34. Crans J K, et al. Regulation of intestinal guanylate cyclase by the heat-stable enterotoxin of Escherichia coil (Sta) and protein kinase C. Infect Immune 1992, 60: 5004-5012
    35. Dean-Nystrom E A and Samuel J E. Age-related resistance to 987P fimbria-mediated colonization correlates with specific glycolipid receptors in intestinal mucus in swine. Infect Immun, 1994,62:4789-4794
    36. Dreyfus L A, et al, Calcium influx mediated by the Escherichia coil heat-stable enterotoxin B (STB). Proc Natl. Acad Sci. USA 1993, 90: 3202-3206
    37. Erhard M H, et al. Prophylactic effect of specific egg yolk antibodies in diarrhea of weaned piglets caused by Escherichia coils K88. J Vet Med A, 1996,43:217-223
    38.32. Erickson A K et. al. A three-receptor model for the interaction of the K88 fimbrial adhesion variants of Escherichia coil with porcine intestinal epithelial cells. Adv Exp Med Biol, 1997,412:167-173
    39.Fairbrother J M.猪病学.赵德明 张中秋 沈建忠译.北京:中国农业大学出版社,2000,447-455
    40. Field M, et al. Effect of cholera toxin on ion transport across isolated ileal mucosa J Clin Invest, 1972,51:796-804
    41. Fujii Y, et al. Involvement of prostaglandin E2 synthesis in the intestinal secretory action of Escherichia coils heat-stable enterotoxin Ⅱ. FEMS Microbiol Lett, 1995,130:259-266
    
    
    42. Futuka S J, et al. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coil heat-labile enterotoxin LTh-Ⅰ, LT-Ⅱa, and LT-Iib. Infect Immun, 1988, 56: 1748-1753
    43. Gaastra W and de Graaf F K. Host-specific fimbrial adhesions of noninvasive enterotoxigenic Escherichia coil strains. Microbiol Rev, 1982,46: 129-161
    44. Gibbons R A, et al. Inheritance of resistance to neonatal E, coli diarrhoea in the pig: examination of the genetic system. Theor Appl Genet, 1977,51:65-70
    45. Graff F K and Roorda I. Production, purification and characterization of the fimbrial adhesive antigen F41 isolated from the calf enteropathogenic Escherichia coil strain B41M. Infect Immun, 1982,36:751-758
    46. Graff F K and Gaastra W. Fimbriae of enterotoxigenic Escherichla coil. In: Klem P(ed) Fimbriae: adhesion. Genetics Biogenesis and Vaccines. CRC Press, Boca Raton. 1994,57-88
    47. Grange P A, et al. Identification of an intestinal neutral glycosphingolipid as a phenotype-specific receptor for K88ad fimbrial adhesin of Escherichia coil. Infect Immune, 1999,67:165-172
    48. Guinee P A M, et al. Behavior of Escherichla coil K antigen K88ab, K88ac, and K88ad in immunoeletrophoresis, double diffusion, and hemagglutination. Infect Immun, 1979,23:700-705
    49. Guss B, et al. Structure of IgG-binding regions of strepcoccal protein G. EMBO Journal 1997,5:1567-1575
    50. Guth E, et al. Variation in chemical properties and antigenic determinants among type Ⅱ heat-labile enterotoxins of Escherichia coil. Infect Immune, 1986, 54:529-536
    51. Hampson, et al. Postweaning Escherichia coil diarrhea in pigs In: Gyles C L(ed), Escherichia coil in domestic animals and humans. CAB. International Wallingford UK. 1994,171-191
    52. Harel J, et al. Detection of genes for fimbrial antigens and enterotoxins associated with Escherichia coil serogroups from pigs with diarrhed. J Clin Microbiol, 1991,29:745-752
    53. Hitotsubashi S, et al. Some properties of purified Escherichia coil
    
    heat-stable enterotoxin Ⅱ. Infect Immune, 1992,60:4468-4474
    54. Htta H, et al. Oral passive immunization effect of anti-human rotavirus IgY and its behavior against proteolytic enzymes. Biosci Biotech Biochem, 1993,57:1077-1081
    55. Hu Z L, et al. Studies in swine on inheritance and variation in expression of small intestinal receptors mediating adhesion of the K88 enteropathogenic Escherichia coil variants, J Hered, 1993, 84: 157-165
    56. Imberechts H, et al. Prevalence of F107 fimbriae on Escherichia coil isolated from pigs with oedeam disease or postweaning diarrhoea. Vet Microbiol, 1994, 40: 219-230
    57. Imberechts H. chicken egg yolk antibodies against F18ab fimbriae of Escherichia coil inhibit shedding of F18 positive E. coli by experimentally infected pigs. Vet Eicrobiol, 1997, 54: 329-341
    58. Isaacson R E. Vaccines against Escherichoia coil diseases. In: Gyles C L(ed), Escherichia coil in domestic animals and humans. CAB. International Wallingford UK. 1994, 629-647
    59. Jin L Z, et al. In vitro inhibition of adhesion of enterotoxigenic Escherichia coli K_(88) to piglet intestinal mucus by egg-yolk antibodies. FEES Immunology and Medical Microbiology, 1998,21(4):313-321
    60. Jukes T H, et al. The transmission of diphtheria antitoxin from hen to egg. J Immunol, 1934,26:353-360
    61. Kapyaho K, et al. Effect of complement binding on a solid-phase immunometric TSH assay. Scandinavian Journal of Clinical Laboratory Investigation, 1989,49:211-215
    62. King T P, et al. In vitro adherence of K88 and K99 enterotoxigenic Escherichia coil to intestinal villi of neonatal pig. Inproceedigs of the 6th International Symposium on Digestive Physiology in pigs, Bad Doberan. Germany. EAAP 1994, 80: 290-293
    63. Larsson A and Holmdahl R. A microELISA for determination of protein A-binding monoclonal antibodies. Hybridoma, 1990, 9: 289-294
    64. Lasson A, et al. Chicken antibodies: taking advantage of evolution. Poultry. Science, 1993, 72: 1807-1812
    65. Leslie G A and Clem L W. Phylogeny of immunolobulin structure and function of Immunolobulins of the chicken, J. Exp. Med
    
    1969,130:1337-1352
    66. Lindahl M and Carlstedt I. Binding of K99 fimbriae of enterotoxigenic Escherichia coil to pig small intestinal mucin glycopeptides J Gen Microbio, 1990,136:1609-1614
    67. Lindmark R, er al. Binding of immunoglobulin to protein A and immunoglobulin level in mammalian sera. Journal of Immunological Methods, 1983, 62: 1-13
    68. Lindmark R, et al. Studies of fibrinogen binding to platelets by flow cytometry: an improved method for detection of platelet activation. Thrombosis and Haemostasis. 1992,68:221-225
    69. Marquardt R R, et al. Passive protective effect of egg-yolk antibodies against enterotoxigenic Escherichia coli K88 infection in neonatal and early-weaned piglets. FEMS. Immunology and Medical Microbiology, 1999, 23: 282-288
    70. Mezoff A G, et al. Escherichia coil enterotoxin (Sta) binds to receptors, stimulates guanylate cyclase, and impairs absorption in rat colon. Gastroenterology, 1992,102:816-822
    71. Moon H W. Colonization factor antigens of enterotoxigenic E. coli in animals. Curr. Top. Microbiol. Immunol. 1990, 151: 147-165
    72. Morris J A and W J sojka. Escherichia coll as a pathogen in animals, In: Sussman M(ed), The Virulence of Escherichia coil. Academic Press, New York, 1985, 44-77
    73. Mouricout M A and Julien R A. Pilus-mediated binding of bovine enterotoxigenic Escherichia coil to calf intestinal mucins. Infection and Immunity, 1987, 55: 1216-1223
    74. Nagy B, et al. Phenotype and genotype of E. coli isolated from pigs with postweaning diarrhea in Hungary. J Clin Microbiol, 1990,28:651-653
    75. Nzegwu H C, and R J Neill. Neurally maintained hypersecretion in undernourished rat intestine activated by E. coli Sta enterotoxin and cyclic nucleotides in vitro, J Physiol, 1994,479:159-169
    76. Nzegwu H C and R J Neill. Luminal capsaicin inhibits fluid secretion induced by enterotoxin E-coli Sta, but no by carbachol, in vivo in rat small and large intestine. Exp. Physiol 1996,81:313-215
    77. Orskov I, et al. Simultaneous occurrence of E. coli B and L antigens
    
    in strains from disease swine. Acta Pathologica et Microbiologica Scandinavica Sect B, 1961, 62: 439-447
    78. Osek J and Ann-Mari Svennerholm. Determination of K88 antigens and enterotoxins of Escherichia coil strains isolated from Polish piglets with diarrhea by the use of enzyme-linked immunosorbent assays. Veterinary Microbiology. 1991,29:299-307
    79. Osek J. 1999 Prevalence of virulence factor of Escherichia coil strains isolated from diarrheic and healthy piglets after weaning. Vet Micro. 1999, 68: 209-217
    80. Osek J. Clonal analysis of Escherichia coil strains isolated from pigs with post-weaning diarrhea by pulsed-field gel electrophoresis. FEMS Microbiology Letters, 2000,186:327-331
    81. Payne D. The K88 fimbrial adhesion of enterotoxigenic Escherichia coil binds to β1-linked galactosyl residues in glycosphingolipids. Infect Immun, 1993, 61: 3673-3677
    82. Rapacz J and Hasler-Rapacz. Polymorphism and inheritance of swine small intestinal receptors mediating adhesions of three serological variants of Escherichia coil producing K88 plus antigen. Anim Gen, 1986, 17: 305-321
    83. Rippinger P, et al. Designations F18ab and F18ac for the related fimbrial types F107 2134P and 8813 of Escherichia coil isolated from porcine postweaning diarrhoea and from oedema disease. Vet Microbiol 1995,45:281-295
    84. Rasheed J K, et al. Two precursors of the heat-stable enterotoxin of Escherichia coil evidence of extracellular processing. Mol. Microbiol, 1990, 4: 265~273
    85. Rutter J M, et al. A genetic basis for resistance to enteric disease caused by E coli. Nature, 1975,257:135-136
    86. Salajka E. Colonization factor different from K88, K99, F41 and 987P in enterotoxigenic Escherichia coil strains isolated from posyweaning diarrhoed in pigs. Vet Mcro, 1992, 32: 163-175
    87. Savarino S J, et al. Enteroaggregative Escherichia coil elaborate a heat-stable enterotoxin demonstrable in an in vitro rabbit intestinal model J Clin Invest, 1991,87:1450-1455
    
    
    88. Schnaar. Glycosphingolipids in cell surface recognition. Glycobiology 1991, 1: 477-485
    89. Sears C L, et al. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol Rev, 1996, 60: 167-215
    90. Sellwood R and Kearns M J. Inherited resistance to Escherichia coil diarrhoea in pigs: the genetics and nature of the intestinal receptor. In: Janowita H D, Sachar D B(ed). Proc. Int. Colloq. Frontiers of Knowledge in the Diarrhoeal diseases. Projects in Health. Inc Upper Montclair. New Jersey 1979, p742-766
    91. Sellwood R. The interaction of the K88 antigens with porcine intestinal epithelial cell brush borders. Biochim Biophys Acta, 1980, 632: 326-335
    92. Shimizu M, et al. Molecular stability of chicken and rabbit immuoglobulin G. Biosci Biotech Biochem 1992, 56: 270-274
    93. Shimizu M, et al. Comparative studies on molecular stability of immuoglobulin G from different species. Comp Biochem Physiol. 1993, 106: 255-261
    94. Sixma t k, et al. Refined structure of Escherichia coil heat-labile enterotoxin, a close relative of cholera toxin, J Mol Biol, 1992, 230: 890-918
    95. Smith H W and Halls S. The production of oedema disease and diarrhea in weaned pigs by oral administration of Escherichia coil: factors that influence the course of the experimental disease. J Med Microbiol, 1968, 1: 45-59
    96. Soderlind O, et al. Virulence factors in Escherichia coil strains isolated from Swedish pigs with diarrhea. J Clin Microbiol, 1988, 26: 879-884
    97. Spanger B D. Structure and function of cholera toxin and the related Escherichia coil heat-labile enterotoxin, Microbiol Rev, 1992,56:622-647
    98. Wanke R, et al. Freundsches komplettes Adjuvans beim Huhn: effiziente Immunostimulation bei gravierender lokaler inflammatorischer Reaktion. Journal of Veterinary Medicine 1996,43:243-253
    99. Warr G M, et al, IgY: clues to the origins of modern antibodies. Immunology. Today 1995,16:392-398
    
    
    100. Water J R and R sellwood. Aspects of genetic resistance to K88 E. coli in pigs. In: 2nd World Congress on Genetics Applied to Livestock Production. Madrid 1982,362-369
    101. Weiser M M. Intestinal. epithelial cell surface memberance glycoprotein synthesis, J boil chem., 1973, 248: 2536-2541
    102. Wilson R A and D H Francis. Fimbriae and enteritoxins associated with Escherichia coil serogroups isolated from pigs with colibacillosis. Am J Vet Res 1986,2:213-217
    103. Wijeratne W V S, et al. Evidence of sire effect on piglet mortality. Br Vet J, 1970, 126: 94-9
    104. Willemsen P T J. de Graaf F K. Age and serotype dependent binding of K88 fimbriae to porcine intestinal receptors. Microbiol Pathol 1992, 12: 367-375
    105. Witting W, et al. Prevalence of the fimbrial antigens F18 and K88 enterotoxins and verotoxins Among E. coli isolated from weaned pigs. Zbl Bakt, 1995, 283: 95-104
    106. Yokoyama, et al. Passive protective effect of chicken egg-yolk immunoglobulins against experimental enterotoxigenic Escherichia coil infection in neonatal pigs Infect Immun, 1992,60:998-100
    107. Yuyama Y, et al. Postnatal change of pig intestinal ganglioside bound by Escherichia coil with K99 fimbriae. J Biochem, 1993, 113: 488-292
    108. Zuniga A, et al. Reduced intestinal colonization with F18-positive Escherichia coil in weaned pigs fed chicken egg antibody against the fimbriae. FEMS. Immunology. and Medical Microbiology, 1997, 18: 153-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700