用户名: 密码: 验证码:
不同品质类型花生品质形成差异的机理与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生是我国重要的经济作物和油料作物,总产居油料作物之首。花生籽仁在国民经济中的主要用途,一是用于榨油,二是作为食品工业的原料,三是出口创汇。以油用为主的品种要求籽仁含油量尽量高,以食用为主的品种要求籽仁高蛋白、低脂肪,以出口为主的品种要求较高的O/L值。不同品质类型花生产量和品质差异较大,产量与品质之间及不同品质之间存在明显负相关。不同种植方式对不同品质类型花生的产量和品质影响也较大。本研究针对目前花生生产上采用的春播露地栽培和春播覆膜栽培两种种植方式,选用高蛋白品系KB008、高脂肪品种花17和高O/L值品种农大818为试验材料,研究不同品质类型花生生理特性、相关碳氮代谢酶活性、产量和品质的差异,以及不同品质类型花生子叶细胞中蛋白体和脂体的积累差异,明确不同品质类型花生产量和品质形成差异的生理基础、酶学基础和细胞学基础,以及覆膜栽培对不同品质类型花生产量、品质影响的生理基础和酶学基础,不但对弥补花生品质生理研究不足具有重要理论意义,而且对优质专用花生生产具有切实指导意义。针对生产上花生倒伏和早衰的现象,通过研究喷施多效唑和海藻肥对不同品质类型花生产量和品质的影响,明确其调控机理,提出适当的增产和品质改善的调控策略,以期为花生生产提供技术指导。试验于2009-2012年在山东农业大学实验站进行,主要研究结果如下:
     1不同品质类型花生叶片生理特性差异
     1.1不同品质类型花生叶片光合特性差异
     3种品质类型花生的光合速率(Pn)、实际光化学效率(ФPSⅡ)、最大光化学效率(Fv/Fm)均呈单峰曲线。3品种在整个生育期的Pn大小表现为H17>818> KB008,H17和818在花后30d之前的Pn显著高于KB008,而KB008的Pn在花后45d之后高于其它两品种;3品种在花后45d时叶片的ФPSⅡ大小表现为H17>818> KB008;3品种在花后整个生育期的叶绿素含量以H17最高,818次之,KB008的叶绿素含量最低,但KB008在成熟期叶片的叶绿素含量明显高于其它两品种,说明高脂肪品种的光合能力最强,其次是高O/L值品种,高蛋白品种最低。高脂肪品种和高O/L值品种前期较高的光合能力有利于脂肪的快速积累,而高蛋白品种生育后期光合能力较高,这有利于其籽仁蛋白质的形成。
     1.2不同品质类型花生叶片可溶性糖及氮素含量的差异
     3种品质类型花生叶片可溶性糖含量和氮素含量均呈下降趋势。各时期叶片可溶性糖含量大小以KB008最大,其次为H17,818的叶片可溶性糖含量最低。KB008在整个生育期叶片的氮素含量显著高于H17和818。
     1.3不同品质类型花生叶片衰老的差异
     3种品质类型花生叶片的SOD、POD和CAT活性以及可溶性蛋白含量均呈先增大后降低趋势,MDA含量呈逐渐增加的趋势。3品种叶片衰老差异表现在:H17和818叶片POD、CAT活性略高于KB008,而KB008叶片MDA含量显著低于另两者,其叶片SOD活性和可溶性蛋白含量也明显高于另两者,表明高蛋白品种叶片衰老比高脂肪和高O/L值品种缓慢。
     2不同品质类型花生叶片氮、碳代谢酶活性的差异
     2.1不同品质类型花生叶片氮代谢酶活性的差异
     3品种叶片中NR、GPT和GOT活性变化均呈降低的趋势,而GS、GDH和GOGAT活性呈先增加后降低的趋势。KB008在整个生育期的叶片NR、GS、GOGAT、GPT和GOT活性均明显高于H17和818,H17与818的氮代谢酶活性大小差异不大。较高的叶片NR、GS和GOGAT等酶的活性是高蛋白品种较高蛋白质合成和积累的生理基础。
     2.2不同品质类型花生叶片碳代谢酶活性的差异
     3种品质类型花生叶片的SS和SPS活性大小均表现为H17>818> KB008,特别是SPS活性差异较大,H17各时期的活性显著高于KB008,较高的叶片SS、SPS活性有利于花生籽仁脂肪的形成。3品种叶片PEPCase活性大小表现为KB008> H17>818,H17和818的整个生育期的RuBPCase活性均显著高于KB008,这是高脂肪品种和高O/L值品种较大物质生产能力和较高产量的生理基础。
     3不同品质类型花生产量、品质的差异
     3.1不同品质类型花生产量及产量构成因素的差异
     3品种以H17的荚果产量最高,KB008的荚果产量显著低于H17和818,这主要是由其单株结果数较少,荚果较小导致的。KB008的荚果出仁率也显著低于其它两个品种,但其双仁果率却显著高于后两者。
     3.2不同品质类型花生籽仁品质的差异
     在花生籽仁发育过程中,高蛋白品种籽仁蛋白质的积累速率一直高于高脂肪和高O/L值品种,且直到果针入土60d蛋白质仍在积累,而高脂肪品种和高O/L值品种的蛋白质含量后期略微降低,这是高蛋白品种蛋白质含量高的生物学原因;高脂肪品种和高O/L值品种的脂肪积累一直高于高蛋白品种,且直到果针入土60天脂肪仍在积累,而高蛋白品种果针入土后50天脂肪含量达到最大,之后略有降低。3品种籽仁可溶性糖含量大小表现为818> H17> KB008,O/L值大小表现为818> H17> KB008。
     3品种籽仁中的8种氨基酸组分都以KB008的含量最高,其中谷氨酸、赖氨酸、亮氨酸和苯丙氨酸含量差异较大,说明高蛋白品种所含的人体必需氨基酸含量明显高于高脂肪品种和高O/L值品种。KB008成熟期的棕榈酸、硬脂酸、亚油酸、花生酸和山嵛酸相对含量显著高于H17和818,而其油酸和二十四烷酸相对含量明显低于后两者。
     4不同品质类型花生子叶细胞超微结构差异
     3种品质类型花生子叶细胞中蛋白体在果针入土20d到40d时进入快速积累阶段,3品种的蛋白体大小和数量在果针入土30d前差异较小,30d之后差异变大。KB008在后期的蛋白体比H17和818的排列致密,数量增长较快,到60d时数量和大小明显多于和大于后两者,表明高蛋白品种较多的蛋白体的数量和较大的体积是较高蛋白质含量的细胞学基础。KB008脂体大小在果针入土30d时即达到最大值,此前脂体数量增加较快,之后增加缓慢,而H17和818在50d时脂体大小才达到最大,两者的脂体数量在果针入土50d时仍较快增加,表明高脂肪品种和高O/L值品种快速积累脂体的持续时间较高蛋白品种长,其脂体数量远大于高蛋白品种,这是其较高脂肪含量的细胞学依据。
     5覆膜栽培对不同品质类型花生生理特性和产量品质的影响
     5.1覆膜对不同品质类型花生叶片光合特性的影响
     覆膜栽培显著提高了3种品质类型花生在生育前期的叶片叶绿素含量,而降低了生育后期的叶绿素含量;覆膜栽培均提高了3种品质类型花生叶片净光合速率,特别是在花后30d之前提高幅度较大,生育后期略有降低,说明覆膜栽培对花生光合作用的改善主要在结荚期以前。覆膜对高蛋白品种在整个生育期的光合性能提高幅度较大,而对高脂肪和高O/L值品种只在饱果期之前提高幅度较大。
     5.2覆膜对不同品质类型花生叶片衰老的影响
     覆膜栽培显著提高了KB008在饱果期时的叶片SOD、POD和CAT的活性,降低了其MDA的含量;覆膜栽培显著降低了高脂肪品种H17和高O/L值品种818在饱果期时的POD活性,其MDA含量也高于露地栽培。说明覆膜栽培加快了高脂肪品种和高O/L值品种在生育后期叶片早衰,而延缓了高蛋白品种的叶片衰老。
     5.3覆膜对不同品质类型花生叶片氮代谢酶活性的影响
     覆膜栽培均显著提高了3品种结荚期叶片GS、GDH、GOGAT、GOT和GPT活性,这是覆膜栽培提高不同品质类型花生籽仁蛋白质含量的酶学机理。覆膜栽培略微降低了KB008在饱果期时的GS和GOGAT活性,却显著降低了H17和818在饱果期时叶片GS的活性。覆膜栽培显著提高了KB008在饱果期时的GOT和GPT活性,而略微降低了H17和818在饱果期时GOT活性。这说明覆膜栽培对不同品质类型花生叶片氮代谢酶活性影响差异的主要时期是饱果期,覆膜提高高蛋白品种饱果期的氮代谢酶活性有利于其籽仁发育后期蛋白质的继续积累。
     5.4覆膜对不同品质类型花生叶片碳代谢酶活性的影响
     覆膜栽培降低了3种品质类型花生叶片SS和SPS活性,这是覆膜栽培降低不同品质类型花生籽仁脂肪含量的主要原因。覆膜栽培分别降低了3品种在结荚期SS活性的3.78%、2.72%和5.78%,降低SPS活性的8.27%、7.42%和5.01%,分别降低了3品种在饱果期SS活性的0.67%、6.54%和12.68%,降低SPS活性的5.03%、5.14%和12.38%,说明覆膜栽培对818在饱果期的叶片SS、SPS活性降低幅度最大。对高O/L值品种饱果期SS和SPS活性降低幅度较大是覆膜栽培对其籽仁脂肪含量降低幅度较大的原因。
     5.5覆膜对不同品质类型花生产量和品质的影响
     覆膜栽培显著提高了3种品质类型花生的荚果产量,提高幅度以高脂肪品种最大(12.26%),其次是高O/L值品种(9.75%)和高蛋白品种(6.94%)。覆膜栽培均显著提高了3品种的单株果数,对三者的千克果数的影响不显著,略微提高了KB008的双仁果率,而显著提高了H17和818的双仁果率。覆膜栽培提高了H17和818的出仁率。
     覆膜栽培均提高了3种品质类型花生籽仁的蛋白质含量而降低了脂肪含量,对高蛋白品种籽仁蛋白质含量的增加作用最大(0.39%),其次是高O/L值品种(0.23%)和高脂肪品种(0.15%),而对籽仁脂肪含量降低最明显的是高O/L值品种(1.04%),其次是高脂肪品种(0.57%)和高蛋白品种(0.42%)。覆膜栽培均降低了3种品质类型花生籽仁可溶性糖的含量,提高了H17和818的O/L值而降低了KB008的O/L值(H17提高了0.10,818提高了0.04,KB008降低了0.03)。覆膜栽培均提高了KB008和H17的8种氨基酸组分含量,提高了818的蛋氨酸、苏氨酸、缬氨酸、苯丙氨酸和谷氨酸的含量。覆膜栽培提高了KB008亚油酸的含量而降低了其油酸的含量,提高了H17和818的油酸含量而降低了两者的亚油酸含量。
     6多效唑对不同品质类型花生生理特性的影响
     6.1多效唑对不同品质类型花生叶片光合特性的影响
     PBZ处理对3种品质类型花生在处理后40d(8月20日)之前的净光合速率提高效果显著,而对处理后55d(成熟期)的效果不大甚至有所降低。喷施PBZ均显著提高了3种品质类型花生叶片实际光化学效率。喷施PBZ对高脂肪品种的叶片净光合速率和实际光化学效率提高幅度最大,其次是高O/L值品种,对高蛋白品种提高幅度最小。PBZ处理均提高了3种品质类型花生在饱果期时(8月20日)的叶绿素a和叶绿素的含量,但对不同品种提高幅度不同,对高蛋白品种提高幅度最大,对高O/L值品种提高幅度最小。
     6.2多效唑对不同品质类型花生根系活力的影响
     喷施PBZ均显著提高了3种品质类型花生在饱果期时的根系活力。PBZ处理对H17饱果期根系活力提高幅度最大,818次之,对KB008的根系活力提高幅度最小。喷施PBZ对3品种根系活力的显著提高促进了根系对矿质元素和水分的吸收,是其显著提高花生荚果产量的主要原因之一。
     6.3多效唑对不同品质类型花生叶片衰老的影响
     喷施PBZ对不同品质类型花生叶片衰老的影响不同,提高了H17和818在成熟期时(9月5日)的SOD、POD和CAT活性,降低了其MDA含量,降低了KB008的3种保护酶活性,提高了其MDA含量。说明PBZ处理有利于延缓高脂肪和高O/L值品种生育后期叶片的衰老,而促进了高蛋白品种生育后期叶片的衰老。
     6.4多效唑对不同品质类型花生氮代谢酶活性的影响
     喷施PBZ均降低了3种品质类型花生结荚期GS和GDH活性,降低了饱果期的GS、GDH和GOGAT活性,均降低了3品种在结荚期和饱果期叶片的GOT和GPT活性。说明PBZ降低了不同品质类型花生结荚期和饱果期叶片GS、GDH、GOGAT、GPT和GOT活性是PBZ降低花生籽仁蛋白质含量的生理原因。PBZ处理对KB008在结荚期和818在饱果期的GS活性降低幅度最大,对818结荚期GDH活性降低最大,而对H17和KB008降低幅度次之,对KB008的GPT和GOT活性降低幅度最大。说明PBZ处理显著降低高O/L值品种在结荚期的GDH活性和饱果期的GS活性是PBZ显著降低高O/L值品种籽仁中蛋白质含量的主要原因。
     6.5多效唑对不同品质类型花生碳代谢酶活性的影响
     PBZ处理均显著提高了3种品质类型花生在结荚期和饱果期叶片SS和SPS活性。喷施PBZ对818叶片SS和SPS活性提高幅度最大,对H17提高幅度次之,而对KB008提高较小。说明喷施PBZ对不同品质类型花生的叶片SS和SPS活性提高幅度不同是PBZ处理对其籽仁脂肪含量提高幅度差异(对818和H17脂肪含量提高较大)的原因。PBZ处理均提高了KB008叶片的PEPCase和RuBPCase活性,而对H17和818两种酶活性的提高主要在结荚期,说明喷施PBZ提高3种品质类型花生叶片的PEPCase和RuBPCase活性是增加物质生产能力的生理基础。
     7多效唑、海藻肥对不同品质类型花生产量、品质的影响
     7.1多效唑、海藻肥对不同品质类型花生产量及产量构成因素的影响
     喷施PBZ、SM6以及PBZ+SM6处理均提高了3种品质类型花生的荚果产量。对3种品质类型花生荚果产量调控措施最好的是喷施PBZ+SM6处理,增产效果最好,其次是喷施PBZ增产效果也很明显。PBZ和PBZ+SM6两种处理对H17和818单株结果数增加最多,单独喷施SM6对这两品种的单株结果数影响不大,SM6处理对KB008的结果数增加最多。PBZ处理降低了KB008和H17的出仁率,而略微提高了818的出仁率,喷施SM6均明显提高了3种品质类型花生的出仁率。
     7.2多效唑、海藻肥对不同品质类型花生籽仁品质的影响
     喷施PBZ、SM6及PBZ+SM6均降低了3种品质类型花生的籽仁蛋白质含量,提高了脂肪含量。PBZ对818籽仁蛋白质含量降低幅度较大,而SM6对H17降低幅度较大。喷施SM6对3种品质类型花生籽仁脂肪含量提高幅度最大,单独喷施PBZ对脂肪含量提高幅度最小。喷施PBZ均显著提高了3种品质类型花生籽仁可溶性糖含量,而喷施SM6均显著降低了其可溶性糖含量。PBZ略微提高了KB008和H17籽仁O/L值,而显著降低了818的O/L值,SM6处理均提高了3品种籽仁的O/L值,对H17和818的O/L值提高幅度较大。PBZ处理均降低了KB008和H17籽仁中8种氨基酸组分的含量。SM6均明显提高了3品种的油酸含量而降低了其亚油酸含量。
As an important economic crops and oil crops in China, the production of peanuts ishighest in all oil crops. One of the main application of peanut seed in the national economy isfor the oil expression, the other is as raw materials for the food industry and the third is forexport. The varieties mainly used for oil expression require the oil content as higher aspossible, the varieties mainly used for edible require higher protein and lower fat in seed, thevarieties mainly for export require O/L as higher as possible. There are great differences inyield and quality of different quality types of peanut,and there is a significant negativecorrelation between yield and quality in different quality traits. The different planting patternsalso have influence on the yield and quality of different quality types of peanut. In this study,two planting methods (plastic film mulching system of spring seeded and open cultivationsystem of spring seeded) have been used in large area of the peanut production. Threecultivars (high-protein cultivar KB008, high-fat cultivar Hua17and high O/L cultivarNongda818) were selected and used as materials. The differences of physiologicalcharacteristics, carbon and nitrogen metabolism enzyme activities, yield and quality, and thedifferences of protein body and lipid body accumulation in cotyledon cell of different qualitytypes of peanut were studied. The physiological basis, enzymology basis and cytological basisof the differences in forming yield and quality of different quality types of peanuts, thephysiological basis and enzymology basis of effects of film mulching on yield and qualitywere definitude. It not only had the important theoretical significance to making up for thedeficiency of quality physiology study of peanut, but also had practical guiding significancefor the production of high-quality peanuts. Aiming at lodging and premature senescence in thepeanut production, the effects of spraying paclobutrazol and seaweed fertilizer on yield andquality of different quality types of peanuts were studied, to detect the regulation mechanismand put forward proper control strategy of production increasing and quality improvement, inorder to provide technical guidance for the production of peanut. Experiments were carried out from2009to2012in experimental station of Shandong Agricultural University, and themain results are as follows.
     1Differences of physiological characteristics in leaves of different quality types of peanut
     1.1Differences of photosynthetic characteristics of different quality types of peanut
     The photosynthetic rate, actual photochemical efficiency and maximal photochemicalefficiency of different quality types of peanut showed a single peak curve. The Pn of threecultivars was ranked as H17>818> KB008. The Pn of H17and818was significantly higherthan KB008before30d after anthesis, but the Pn of KB008was higher than H17and818after45d after anthesis. The ФPSⅡof KB008at15d after anthesis was significantly higherthan that of H17and818, and the ФPSⅡof three cultivars was ranked as H17>818> KB008at45d after anthesis. The Fv/Fm of three cultivars was ranked as818> H17> KB008at podsetting stage, but was ranked in the order of KB008> H17>818at mature stage.
     The content of chlorophyll of three quality peanut varieties was ranked in the order ofH17>818> KB008during the whole growth period, but the content of chlorophyll of KB008was significantly higher than the other two varieties after pod filling stage.
     1.2Differences of soluble sugar and nitrogen content in leaves of different quality types ofpeanut
     The content of soluble sugar in leaves of KB008was the largest, followed by H17and818. The content of nitrogen in leaves of KB008was significantly larger than that of H17and818.
     1.3Differences of leaf senescence in different quality types of peanut
     The activities of POD and CAT in leaves of H17and818was little higher than that ofKB008. MDA content of KB008was significantly lower than that of H17and818, while theactivity of SOD and content of soluble protein were higher than those of the other twovarieties, which caused the high protein variety slower senescence.2Differences of carbon and nitrogen metabolism enzyme activities in leaves of differentquality types of peanut
     2.1Differences of nitrogen metabolism enzyme activities of different quality types of peanut
     The activities of NR, GS, GOGAT, GPT and GOT in leaves of KB008were apparentlyhigher than those of H17and818, the activity of nitrogen metabolism enzyme between H17 and818had little difference. That was the enzymology fundamentals of high protein varietyto accumulating higher protein content of seeds.
     2.2Differences of carbon metabolism enzyme activities of different quality types of peanut
     The activities of SS and SPS in leaves of three varieties were ranked in the order ofH17>818> KB008, especially the activity of SPS had a greater difference. The activity ofPEPCase in leaves of three varieties was ranked in the order of KB008>818> H17. Theactivity of RuBPCase in leaves of three varieties was ranked in the order of H17>818>KB008during the whole growth period.
     3Differences of yield and quality of different quality types of peanut
     3.1Differences of yield and yield components of different quality types of peanut
     The pod yield of H17was highest, while the yield of KB008was significantly lower thanthat of H17and818, which was mainly caused by less pods of per plant and smaller pod. Thepod kernel rate of KB008was significantly lower than the other two varieties, but the doublekernel rate was significantly higher than H17and818.
     3.2Differences of seed quality of different quality types of peanut
     The protein accumulation rate was faster than the fat accumulation of KB008at maturestage, while the fat accumulation rate was greater than the protein accumulation of H17and818. This behaved that the high protein variety continue to increase protein content but fatcontent is slightly lower at mature stage, while the fat content continue to increase and theprotein content decrease slightly of high fat and high O/L variety.
     All kinds of amino acid content in KB008were the highest, especially glutamic acid,lysine, leucine and phenylalanine content. This showed the content of essential amino acidsfor human body in high protein variety was obviously higher than that of high fat and highO/L varieties. The relative content of palmitic acid, stearic acid, linoleic acid, arachidonic acidand behenic acid of KB008was significantly higher, while the relative content of oleic acidand lignoceric acid was significantly lower, compared with those of H17and818at maturestage.
     4Differences of cotyledon cell ultrastructure in different quality types of peanut under filmmulching cultivation
     The protein bodies in cotyledon cells of three varieties entered the fast accumulationstage from20days the pegs struck into the soil to40days. The difference of the size andnumber of protein bodies in three varieties were smaller and less before30days the pegsstruck into the soil but became larger and more after30days. The size and number of proteinbodies of KB008was significantly greater than that of H17and818, which illustrated that thebigger size and number of protein bodies was the cytological basis of KB008have higherprotein content.The size of lipid bodies of KB008was maximizing at30d after the pegs struckinto the soil, while the size of lipid bodies of H17and818was maximizing at50d. Thenumber of lipid bodies of H17and818was still increased rapidly at50d after the pegs struckinto the soil, which showed the duration of rapid accumulation of lipid bodies of H17and818was longer than that of KB008and the number of lipid bodies is more than KB008. That wasthe cytological basis of this two varieties have higher fat content.
     5Effects of film mulching cultivation on physiological characteristics, yield and quality ofdifferent quality types of peanut
     5.1Effects of film mulching cultivation on photosynthetic characteristics of different qualitytypes of peanut
     Film mulching cultivation significantly increased Pn of three varieties, especially before30d after anthesis, this showed that film mulching cultivation significantly increased the leafphotosynthesis rate mainly before the pod filling stage. The Pn of KB008under filmmulching cultivation was significantly higher than that under open field cultivation before60dafter anthesis, and the Pn of H17under two different cultivation at60d after anthesis wasbasically the same, while the Pn of818under two different cultivation was basically the sameat45d after anthesis, later the Pn under film mulching cultivation was significantly lower thanthat under open field cultivation. Film mulching cultivation significantly increased the contentof chlorophyll of three varieties, especially before45d after anthesis, this was the basis reasonwhy the film mulching cultivation significantly increased the photosynthetic rate. The rapiddecline of chlorophyll content was the main reason leading to the decrease of photosyntheticrate after pod filling stage.
     5.2Effects of film mulching cultivation on leaf senescence of different quality types of peanut
     Film mulching cultivation increased the activities of SOD, POD and CAT in leaves ofKB008, while reduced the content of MDA at pod filling stage. Film mulching cultivationreduced the activities of SOD and POD, increased the content of MDA, this showed thatdifferent quality types of peanut under film mulching cultivation were confronted with obvioussenescence.
     5.3Effects of film mulching cultivation on nitrogen metabolism enzyme activities of differentquality types of peanut
     Film mulching cultivation increased the activities of GS, GOGAT and GDH of threevarieties at pod setting stage. Film mulching cultivation slightly reduced GS and GOGATactivities of KB008at pod filling stage, significantly reduced GS activity of H17and818.Plastic film mulching significantly increased the activities of GOT and GPT of3varieties atpod setting stage, significantly increased the activities of two enzymes of KB008at podfilling period, while slightly decreased GOT activity of H17and818at pod filling stage.
     5.4Effects of film mulching cultivation on carbon metabolism enzyme activities of differentquality types of peanut
     Film mulching cultivation significantly reduced the activities of SS and SPS, this was theenzymatic reason why the film mulching cultivation could reduce the content of fat andsoluble sugar in kernels of three varieties of peanut. The SPS activity of818at pod fillingstage was decreased biggest by plastic film mulching cultivation. Film mulching cultivationslightly raised the PEPCase activity of3varieties at pod setting and filling stage, significantlyincreased the RuBPCase activity of KB008and H17at pod setting and filling stage, butslightly decreased RuBPCase activity of818at pod filling stage.
     5.5Effects of film mulching cultivation on yield and quality of different quality types ofpeanut
     Film mulching cultivation significantly increased the pod yield of three varieties ofpeanut, increased the pod yield by6.94%of KB008,12.26%of H17, increased by9.75%of818. The ways of film mulching cultivation increasing the pod yield were different: filmmulching cultivation increased yield of high protein variety significantly because of theincrease of pod number of per plant; the main reason of increasing yield of high fat varietyand high O/L variety was the significantly increasing of pods per plant and double kernel rate. Film mulching cultivation increased pod kernel rate of high fat variety and high O/L varietybut reduced that of high protein variety.
     Film mulching cultivation increased the protein content but reduced the fat and solublesugar content of different quality types of peanut. Film mulching cultivation increased theO/L rate of high fat variety and high O/L variety but decreased the O/L rate of high proteinvariety. Film mulching cultivation increased the content of8kinds of essential amino acidcomponents in KB008and H17, increased the content of methionine, threonine, valine,phenylalanine and glutamic acid of818. Plastic film mulching cultivation decreased therelative content of palmitic acid and arachidonic acid, and increased the relative content ofstearic acid, arachidic acid and lignoceric acid of3varieties of peanut. Film mulchingcultivation increased linoleic acid content, but reduced the oleic acid content of KB008, whileincreased oleic acid content but reduced linoleic acid content of H17and818.
     6Effects of spraying PBZ on physiological characteristics of different quality types of peanut
     6.1Effects of spraying PBZ on photosynthetic characteristics of different quality types ofpeanut
     PBZ treatment significantly increased the photosynthetic rate of three varieties beforepod filling stage but increased it little after this stage even decreased it at mature stage. PBZtreatment increased the actual photochemical efficiency at whole stage and the content ofchlorophyll a and a+b of three varieties at pod filling stage. PBZ treatment increased thecontent of chlorophyll of KB008significantly, but didn’t increase it significantly of H17and818.
     6.2Effects of spraying PBZ on root vigour of different quality types of peanut
     PBZ treatment significantly increased the root vigour of different quality types of peanutat pod filling stage. The increment of root vigour was ranked in the order of H17>818>KB008at pod filling stage by spraying PBZ. The root vigour significantly increased byspraying PBZ was one of the prime reasons of PBZ treatment which significantly increasedthe pod yield.
     6.3Effects of spraying PBZ on leaf senescence of different quality types of peanut
     PBZ treatment significantly increased the activities of SOD, POD and CAT anddecreased the content of MDA of H17and818at mature stage, while reduced the activities of this three kinds of protective enzymes but increased MDA content of KB008. This showedthat spraying PBZ could delay the process of senescence in high fat and high O/L varieties,but the leaves of high protein variety had the tendency of senescence intensifies at maturestage.
     6.4Effects of spraying PBZ on nitrogen metabolism enzyme activities of different qualitytypes of peanut
     PBZ treatment increased the activity of GOGAT but significantly reduced the activitiesof GS and GDH of three varieties at pod setting stage. The activities of this three kindsenzyme was all reduced by spraying PBZ at pod filling stage. PBZ treatment reduced theactivities of GOT and GPT of three varieties at pod setting and filling stage. Spraying PBZreduced the activities of GS, GDH, GOGAT, GPT and GOT of three varieties at pod settingstage and pod filling stage was the enzymatic reason of PBZ treatment which reduced thecontent of protein.
     6.5Effects of spraying PBZ on carbon metabolism enzyme activities of different quality typesof peanut
     PBZ treatment significantly increased the activities of SS and SPS of three varieties atpod setting and filling stage. The increment of activities of SS and SPS was ranked in theorder of818> H17> KB008by spraying PBZ, which was the reason of the difference of thefat content in different quality types of peanut by spraying PBZ. PBZ treatment increased theactivities of PEPCase and RuBPCase of KB008, but increased this two enzyme activities ofH17and818major at pod setting stage, which had a decline at pod filling stage. SprayingPBZ increased the activities of PEPCase and RuBPCase of three quality types of peanut wasthe enzymatic basis of PBZ treatment which increased the pod yield.
     7Effects of spraying PBZ and SM6on yield and quality of different quality types of peanut
     7.1Effects of spraying PBZ and SM6on yield and yield components of different quality typesof peanut
     Spraying PBZ, SM6and PBZ+SM6all increased the pod yield of three quality types ofpeanut. PBZ+SM6treatment was the best control measure, increased yield maximally, thesecond was PBZ. The number of pods per plant of H17and818increased the mostsignificantly by PBZ and PBZ+SM6treatments, while separate spraying SM6had little effects on this two varieties. Spraying SM6increased the number of pods per plant of KB008most. PBZ treatment reduced the kernel rate of KB008and H17but slightly increased it of818. Spraying SM6significantly improved the kernel rate of three varieties.
     7.2Effects of spraying PBZ and SM6on seed quality of different quality types of peanut
     Spraying PBZ, SM6and PBZ+SM6all increased the content of fat and reduced thecontent of protein of three quality types of peanut. The effects of spraying PBZ, SM6andPBZ+SM6on protein content of KB008were not significant, but decrement of proteincontent of818was greater by sprayed PBZ, while decrement of protein content of H17wasgreater by spraying SM6. The fat content of three varieties by spraying SM6was increasedmost significantly, while separate spraying PBZ increased minimum. PBZ treatmentsignificantly increased the content of soluble sugar of three quality types of peanut but SM6significantly reduced the content of it. SM6treatment improved the rate of O/L of threequality types of peanut. PBZ treatment reduced the contents of8kinds amino acidcomposition of KB008and H17. SM6treatment significantly improved the content of oleicacid but reduced the content of linoleic acid of three varieties. PBZ treatment reduced thecontent of oleic acid but improved the content of linoleic acid of818.
引文
曹翠玲,李生秀,张占平.氮素形态对小麦生长中后期保护酶等生理特性的影响[J].土壤通报,2003,34(4):295-298.
    曹卫星,何杰升,丁艳锋.作物学通论[M].北京:高等教育出版社,2001:142-147.
    曹仪植,宋占午.植物生理学[M].兰州:兰州大学出版社,1998.
    陈德华,聂安全,杨长琴,陈源,吴云康. Bt棉毒蛋白表达特征与氮代谢关系及其化学调节的研究[J].中国棉花,2003,30(7):10-12.
    陈海浪,陈喜文,陈德富. NAD+-依赖型异柠檬酸脱氢酶的结构和功能研究进展[J].生物技术通讯,2003,04:304-311.
    陈剑洪,陈永水,庄明川.福建春花生覆膜栽培生育特性研究[J].花生学报,2001,30(3):35-39.
    陈敏,苗以农,唐树延,徐豹.大豆子叶细胞超微结构的比较[J].大豆科学,1989,8(2):153-158.
    陈喜文,陈德富,陈海浪. NAD-IDH亚基1基因在油菜花粉与种子发育过程中的表达规律[J].作物学报,2005,31(7):838-843.
    陈玉珍,张高英. PP333对花生生长发育和产量结构的影响[J].西北农业学报,2003,12(2):83-88.
    程增书,徐桂真,王延兵,李玉荣.播期和密度对花生产量和品质的影响[J].中国农学通报,2006,22(7):190-193.
    崔光军,刘风珍,万勇善.花生荚果干物质积累与蔗糖代谢的相关性研究[J].中国农业科学,2010,43(19):3965-3973.
    杜社妮,白岗栓.玉米地膜覆盖的土壤环境效应[J].干旱地区农业研究,2007,25(5):56-59.
    段乃雄,姜慧芳,胡瑞红.花生主要营养品质的改良潜力[J].中国油料,1995,17(1):5-8.
    段咏新,宋松泉,傅家瑞.钙对延缓杂交水稻叶片衰老的作用机理[J].杂交水稻,1997,12(6):23-25.
    范晖.花生脂肪酸快速测定法的研究[J].山东农业大学学报,1991,22(4):413-415.
    范晓.海藻中的功能活性物质研究现状及其开发利用前景[J].海洋科学集刊,1999,(40):102-106.
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141.
    封海胜,张思苏,万书波.氮、磷、钾肥配施对花生产量和品质的影响[J].花生科技,1992,(4):12-14.
    高修吾,杨浩然,吴艳霞,吕桂芬.粮食、油料检验粗脂肪测定法.中华人民共和国国家标准. GB5512-1985. UDC(633.1+633.85).001.4
    郭蔼光.基础生物化学[M].北京:高等教育出版社,2001,223-232.
    郭峰,万书波,王才斌,李新国,孟静静,成波.宽幅麦田套种田间小气候效应及对花生生长发育的影响[J].中国农业气象,2008,29(3):285-289.
    郭峰,万书波,王才斌,李新国,孟静静,徐平丽.麦套花生氮素代谢及相关酶活性变化研究[J].植物营养与肥料学报,2009,15(2):416-421.
    郭延奎,邵宗泽,喻子牛.苏云金芽孢杆菌工程菌芽孢形态发生的特征[J].电子显微学报,2003,22(4):271-274.
    韩丽君.海藻植物生长调节剂中的活性组分[J].海洋科学,1999,5:20-21.
    何萍,金继运.氮钾营养对春玉米叶片衰老过程中激素变化与活性氧代谢的影响[J].植物营养与肥料学报,1999,5(4):289-296.
    贺立红,宾金华.花生黄曲霉防治的研究进展[J].种子,2004,23(12):39-45.
    胡文广,邱庆树,李正超,吴兰荣,董杰.花生品质的影响因素研究Ⅱ栽培因素[J].花生学报,2002,31(4):14-18.
    华东师范大学编.植物生理学实验指导[M].上海:人民教育出版社,1980.
    黄上志,傅家瑞.花生种子的发育与贮藏蛋白质的合成和积累[J].植物生理学报,1992,18(2):142-150.
    纪明候.海藻化学[M].北京:科学出版社,1997,684-685.
    焦进安.植物磷酸烯醇式丙酮羧化酶的多种生理功能[J].植物生理学通讯,1987,23(1):40-43.
    焦念元,宁堂原,赵春,王芸,史忠强,侯连涛,付国占,江晓东,李增嘉.玉米花生间作复合体系光合特性的研究[J].作物学报,2006,32(6):917-923.
    康树立,詹海燕,金焱.覆膜栽培对抗氧化花生的影响研究[J].杂粮作物,2006,26(3):229-231
    黎茵,黄上志,傅家瑞.不同品种花生种子蛋白质的电泳分析[J].植物学报,1998,(6):534-541.
    李安妮,刘敏敏,庾翠梅,徐妙颜.用蒽酮法测定花生荚果和植株可溶性糖和淀粉[J].中国油料作物学报,1983,(3):50-52.
    李凤民,鄢王旬,王俊,李世清,王同朝.地膜覆盖导致春小麦产量下降的机理[J].中国农业科学,2001,34(3):330-333.
    李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000,7:119-120.
    李建敏,王振林,高荣岐,李圣福,蔡瑞国,闫素辉,于安玲,尹燕枰.强、弱筋小麦籽粒形成期蔗糖、淀粉合成相关酶活性及其与氮代谢的关系[J].作物学报,2008,34(6):1019-1026.
    李尚霞,万书波,封海胜.花生品质及改良途径浅析[J].花生学报,2003,32(2):29-32.
    李书琴,王孝举.海藻肥液体肥的研究[J].海洋科学,1995,(3):4-6.
    李向东,费胜学,王宏岳,甄志荣,高德平.多效哇对麦套夏花生产量及其构成因素的影响[J].中国油料作物学报,1992,2:55-57.
    李向东,费胜学.多效哇对麦套夏花生产量及其构成因素的影响[J].中国油料,1992,2:57-59.
    李向东,王晓云,余松烈,张高英,万勇善,李军.花生叶片衰老过程中光合性能及细胞微结构变化[J].中国农业科学,2002,35(4):384-389.
    李向东,王晓云,张高英,万勇善,徐守国.生长调节物质对花生叶片衰老调控的初步研究[J].中国油料作物学报,1998,20(4):52-60.
    李向东,王晓云,张高英.花生衰老进程的研究[J].西北植物报,2001,21(6):1169-1175.
    李向东,吴爱荣,万勇善,张高英,马晓东.夏花生覆膜对根瘤中固氮酶和叶片硝酸还原酶活性影响的研究[J].作物学报,1996,22(1):96-100.
    李晓丹,曹应龙,胡亚平,肖玲,武玉花,吴刚,卢长明.花生种子发育过程中脂肪酸累积模式研究[J].中国油料作物学报,2009,31(2):157-162.
    李正超,邱庆树,苗华荣,申馥玉,王传堂,胡文广,郑亚萍,郑吉青.收获期对出口花生品种的产量和品质影响的研究[J].花生科技,1997,3:9-12.
    梁鸿秋,安静,吴显荣.食用豆类种子蛋白研究初报[J].作物学报,1988,14(2):117-123
    廖斌,卢春斌,王蕾,李华光,黄上志.花生种子发育和萌发过程中贮藏蛋白的合成和降解[J].植物生理与分子生物学学报,2004,30(1):115-118.
    林金虎.花生种子蛋白质含量与主要数量性状的相关及通径分析[J].江西农业学报,2006,(4):38-39.
    林英杰,李向东,周录英,李宝龙,赵华建,高芳,张佳蕾.花生不同种植方式对田间土壤微环境和产量的影响[J].水土保持学报,2010,24(3):131-135.
    林植芳,李双顺,林桂珠,孙谷畴,郭俊彦.水稻叶片的衰老与超氧化物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615.
    林植芳,彭长连,林桂珠.活性氧对苋菜磷酸烯醇式丙酮酸羧化酶活性的影响[J].植物生理学报,2000,26(1):27-32.
    刘传飞.多效唑提高水稻净光合速率和延缓衰老效应的研究[J].江西农业大学学报,1992,14(1):40-43.
    刘桂梅,梁泽萍.我国花生种质资源主要品质性状鉴定[J].中国油料,1993,(1):18-21.
    刘红艳,赵应忠.芝麻花期叶绿素含量变化及其与产量性状的相关分析[J].中国油料作物学报,2007,29(3):443-447.
    刘淑云,董树亭,赵秉强.长期施肥对夏玉米叶片氮代谢关键酶活性的影响[J].作物学报,2007,33(2):278-283.
    罗广华,王爱国,邵从本.高浓度氧对水稻幼苗的伤害与活性氧的防御[A].中国科学院华南植物研究所集刊[C].第4集,北京:科学出版社,1989:169-176.
    聂呈荣,凌菱生.花生不同密度群体施用植物生长调节剂对生长发育和氮素代谢的影响[J].中国油料作物学报,1998,20(4):47-51.
    牛俊义,李兴涛,盖玥,王鹤龄.地膜覆盖栽培对春小麦叶片衰老特性的影响[J].麦类作物学报,2005,25(5):92-95.
    牛一川,姚天明,安建平,杨秀兰,张慧敏.地膜覆盖栽培对冬小麦衰老进程的影响[J].麦类作物学报,2004,24(3):90-92.
    彭时尧,庄伟建,刘利华,林木山.花生荚果发育过程中子叶细胞内脂肪、蛋白质的积累及其与ATP酶活性的关系[J].福建农林大学学报,1993,22(3):361-365.
    祁倩倩,罗奥,刘志生.大豆氮代谢酶作用机理及锰水平对其影响研究进展[J].黑龙江八一农垦大学学报,2008,20(6):12-15.
    秦青,张文举,张涛.海藻有机肥的研究进展[J].中国农学通报,2001,17(1):46-49.
    邱庆树,李正超,段淑芬.花生品质的影响因素研究Ⅰ花生品种因素[J].花生学报,2001,30(3):21-26.
    邱庆树,李正超,申馥玉,苗华荣,胡文广,王传堂.影响花生籽仁品质的几个因素[J].作物杂志,1998,2.
    阮英,刘开朗,申琳.番茄果实成熟衰老过程中果肉和种子活性氧代谢的变化[J].园艺学报,2006,33(1):63-67.
    上海植物生理学会.植物生理学实验手册[M].上海:上海科学技术出版社,1999:1115-1501
    施教耐,吴敏贤,查静娟.植物磷酸烯醇式丙酮羧化酶的研究[J].植物生理学报,1979,5(3):225-235.
    史可琳,薛晓萍,宋景义,贾学彬.花生品质气象条件初探[J].花生科技,1994,1:5-7.
    苏秋芹.不同株型花生品质性状与主要数量性状的相关分析[J].中国农学通报,2006,(6):192-194.
    隋益虎,朱世东,张子学,胡德平,舒英杰.环境因子对苋菜碳、氮代谢关键酶及抗氧化酶活性的影响[J].生态学杂志,2005,24(8):925-929.
    孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999:237-240.
    孙敏,郭文善,孙陶芳.氮素形态对两个不同氮效率小麦品种籽粒蛋白质的影响[J].麦类作物学报,2006,26(6):70-74.
    唐湘如,官春云.几种酶活性与油菜油分和蛋白质及产量的关系[J].湖南农业大学学报,2000,26(1):37-40.
    唐湘如,官春云.施钾对油菜酶活性的影响及其与产量品质的关系[J].中国农学通报,2001,17(3):4-7.
    唐湘如,余铁桥.磷钾肥对饲用稻产量和蛋白质含量的影响及其机理研究[J].中国农业科学,2002,35(4):372-377.
    陶龙红,王友好,房传胜.新型海藻叶面肥在作物上的应用效果[J].安徽农业科学,2006,34(15):3755-3756.
    万书波,封海胜,张建成.打造强势花生产业,参与国际竞争[J].花生学报,2003,32(2):5-10.
    万书波.花生品质学[M].北京:中国农业科学技术出版社,2007.
    万勇善,李向东,范晖.花生油酸/亚油酸比率与播种期及温度的关系[J].山东农业科学,1995,2:6-8.
    万勇善,谭忠,刘凤珍.花生油脂油酸/亚油酸比率的遗传分析[J].西北植物学报,1998,18(5):118-121.
    王爱国,罗广华,邵从本,吴淑君,郭俊彦.大豆种子超氧化物歧化酶的研究[J].植物生理学,1983,9(1):77-83.
    王才斌,孙彦浩,陶寿祥.小麦花生两熟制不同种植方式花生产量构成因素分析及高产途径[J].花生科技,1994,(3):24-26.
    王才斌,吴正锋,成波,郑亚萍,万书波,郭峰,陈殿绪.连作对花生光合特性和活性氧代谢的影响[J].作物学报,2007,33(8):1304-1309.
    王才斌,吴正锋,刘俊华,杨伟强,卢俊玲,郭峰,成波,郑亚萍,陈殿绪.不同供N水平对花生硝酸盐累积与分布的影响[J].植物营养与肥料学报,2007,13(5):915-919.
    王计平,史华平,李润植.植物种子油合成的调控与遗传修饰[J].植物遗传资源学报,2006,7(4):488-493.
    王丽丽,李向东,周录英,汤笑,吴复学,孔维侦.改变源库比对花生叶片和根系衰老的影响[J].花生学报,2005,34(3):1-5.
    王丽妍,徐宝慧,杨成林,高志新,徐惠风.北方地区不同花生品种光合生理特性的比较[J].华南农业大学学报,2010,31(4):12-15.
    王强,石伟勇.海藻肥对番茄生长的影响及其机理研究[J].浙江农业科学,2003,(2):67-70.
    王若兰,白栋强.脂肪氧化酶缺失稻谷新品种储藏品质研究[J].中国粮油学报,2006,(20):115-121.
    王维,张建华,杨建昌,朱庆森.水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响[J].作物学报,2004,30(3):196-204.
    王小纯,马新明,常思敏,汤丰收.不同花生品种荚果发育及有机物积累动态研究[J].中国油料作物学报,2003,25(1):37-44.
    王小纯,熊淑萍,马新明,张娟娟,王志强.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋自质含量的影响[J].生态学报,2005,25(4):802-807.
    王晓林,甄志高,段莹,崔向华.花生叶面积指数消长与产量的关系[J].安徽农业科学,2003,31(6):940-941.
    王晓云,马池珠,李向东.多效唑对花生叶片多胺含量及衰老的调节作用[J].西北植物学报,2001,21(2):323-328.
    王旭东,于振文,王东.钾对小麦茎和叶鞘碳水化合物含量及籽粒淀粉积累的影响[J].植物营养与肥料学报,2003,9(1):57-62.
    王旭东,于振文,王东.钾对小麦旗叶蔗糖和籽粒淀粉积累的影响[J].植物生态学报,2003,27(2):196-201.
    王亚琴,梁承邺,黄江康.植物叶片衰老的特性、基因表达及调控[J].华南农业大学学报:自然科学版,2002,23(3):87-90.
    王正航,武仙山,昌小平,李润植,景蕊莲.小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析[J].作物学报,2010,36(2):217227.
    吴兰荣,李正超,苗华荣(译).栽培条件对花生品质和口味的影响[J].作物杂志,1997,37-39.
    吴良欢,蒋式洪,陶勤南.植物转氨酶(GOT和GPT)活度比色测定方法及其应用[J].土壤通报,1998,29(3):136-138.
    吴文新,陈家驹,周恩生,林汉章,林群,游雪芸.钙硼对花生生长产量和品质的影响[J].亚热带植物科学,2001,30(2):20-23.
    吴永沛,吴光斌,李少波,叶庆荣,魏雪英.海藻液体肥对蔬菜产量及品质的影响[J].北方园艺,2006(5):16-18.
    谢甫绨,郭小红,包雪艳,张惠君,敖雪,王海英.多效唑对大豆不同叶型近等位基因系产量和品质的影响[J].大豆科学,2010,29(6):948-952.
    徐宜民,甘信民,曹玉良,顾淑媛,刘法生.花生主要营养品质性状和农艺性状配合力的研究[J].中国农业科学,1995,28(2):15-23.
    严红,李文雄,郭亚芬,刘大森.硼对小麦体内碳水化合物同化与运输的影响[J].土壤学报,2003,40(3):440-445.
    阳小虎,韩文斌.花生几个品质性状与农艺性状的相关研究[J].中国油料,1994,16(1):57-59.
    杨静.我国花生产业的发展现状及建议[J].中国食物与营养,2009,1:17-19.
    鱼欢,冯佰利,张英,刘鹏涛,何永艳,代惠萍,李生秀.不同栽培模式下冬小麦叶片衰老与活性氧代谢研究[J].作物学报,2007,33(10):1729-1732.
    张佳蕾,高芳,林英杰,王媛媛,杨传婷,张凤,李艳红,李向东.不同品质类型花生品质性状及相关酶活性差异[J].应用生态学报,2013,24(2):481-487.
    张吉民,苗华荣,吴兰荣,许婷婷,李伟芳,张威,崔凤高.不同类型土壤和肥料对花生品质性状的影响[J].花生学报,2003,32(增刊):372-374.
    张立军,杜冬梅,王楫,林双立,王慧英,冯建坤,井维华.花生覆膜栽培增产效果研究[J].现代农业科技,2010,13:44-45.
    张明才,何钟佩,田晓莉,段留生,王保民,翟志席,董学会,李召虎. SHK-6对干旱胁迫下大豆叶片生理功能的作用[J].作物学报,2005,31(9):1215-1220.
    张翔,焦有,孙春河,孟祥峰,郭中义,刘志强.不同施肥结构对花生产量和品质的影响[J].土壤肥料,2003,(2):30-32.
    张瑛,吴先山,吴敬德,杨世祥,童继平,郑乐娅,佘德红,吴跃进.稻谷储藏过程中理化特性变化的研究[J].中国粮油学报,2003,18(6):20–24.
    张智猛,万书波,戴良香,宁堂原,宋文武.施氮水平对不同花生品种氮代谢及相关酶活性的影响[J].中国农业科学,2011,44(2):280-290.
    张智猛,万书波,宁堂原,戴良香.不同花生品种氮代谢相关酶活性的研究[J].植物营养与肥料学报,2007,13(4):707-713.
    张智猛,万书波,宁堂原,戴良香.氮素水平对花生氮素代谢及相关酶活性的影响[J].植物生态学报,2008,32(6):1407-1416.
    张智猛,张威,胡文广,矫岩林,王磊,李伟芳.高产花生氮素代谢相关酶活性变化的研究[J].花生学报,2006,35(1):8-12.
    赵辉,荆奇,戴廷波.花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响[J].作物学报,2007,33(12):2021-2027.
    赵会杰,薛延丰,董中东,李国现,常瑞霞.密度及追氮时期对大穗型小麦旗叶及籽粒碳水化合物代谢的影响[J].河南农业大学学报,2004,38(1):1-4.
    赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002:90-93.
    甄志高,段莹,王晓林,赵晓环.长期定位施肥对花生产量和品质的影响[J].土壤通报,2006,37(2):323-325.
    甄志高,王晓林,段莹,赵晓环.气象条件对花生蛋白质和脂肪含量的影响[J].花生学报,2004,33(3):22-24.
    郑明辉.3种植物生长调节剂在花生生产上的应用[J].亚热带农业研究,2008,4(4):258-260.
    郑亚萍,王才斌.试论花生的高产潜力和途径[J].花生科技,1998,(4):5-9.
    郑亚萍,吴兰荣,吴正锋.不同施肥处理对花生产量、品质及衰老的影响[J].作物杂志,2011,2:45-48.
    周可金,徐志灵,吴奇志,许承保.不同果型花生品种的生理生态基础研究[J].花生学报,2005,34(1):15-19.
    周录英,李向东,汤笑,林英杰,李宗奉,李宝龙.氮、磷、钾肥配施对花生生理特性及产量、品质的影响[J].生态学报,2008,28(6):2707-2714.
    周录英,李向东,王丽丽.氮、磷、钾、钙肥不同用量对花生光合性能及产量品质的影响[J].花生学报,2006,35(2):11-16.
    周卫,孙庆杰,张楚富.不同耐盐性水稻幼苗根氨同化酶对盐胁迫的反应[J].植物学报,2004,46(8):921-927.
    周志勇,万勇善,刘凤珍.改变源库比对花生光合特性及产量的影响[J].华北农学报,2004,19(1):75-78.
    庄伟建,官德义,蔡来龙.福建春播覆膜花生生长发育特性及栽培技术[J].花生学报,2001,30(4):23-27.
    庄伟建,彭时尧,林木山.花生荚果发育过程中子叶贮藏细胞的形态变化及其与油分和蛋白质积累的关系[J].中国农业科学,1991,24(3):8-13.
    庄伟建,彭时尧,张明来.花生荚果发育过程中子叶细胞的超微结构和脂酶活性的研究[J].植物学报,1992,34(5):333-338.
    左元梅,刘永秀,张福锁.玉米/花生混作改善花生铁营养对花生根瘤碳氮代谢及固氮的影响[J].生态学报,2004,11:2584-2590.
    Adamsen-F J. Mineral composition of peanut tissueas influenced by irrigation water qualityand irrigation method [J]. Communicationin Soil Science and Plant Analysis,1993,(24):525-538.
    Aldana A B, Fites R C. Changes in nucleic acids, protein and ribonucleic activity duringmaturation of peanut seeds [J]. Plant and Cell Physiol,1976,13(3):515-521.
    Alloush G A, Le Bot J, Sanders F E, Kirkby E A. Mineral nutrition of chickpea plantssupplied with NO3or NH4-Nionic balance in relation to irons tress [J]. Journal of PlantNutrition,1990,13:1575-1590.
    Alvarez-Villafane E, Soler J, del Valle P, Busto F, de Arriaga D. Two NAD+-isocitratedehydrogenase forms in Phycomyces blakesleeanus induction in response to acetategrowth and characterization, kinetics, and regulation of both enzyme forms [J].Biochemistry,1996,35(15):4741-4752.
    Ananyeva N D, Demkina T S, Jones W J. Microbial biomass in soils of Russia underlong-term management practices [J]. Biology and Fertility of Soil,1999,29:291-299.
    Andersen P C, Hill K, Gorbet D W. Fatty acid and amino acid profiles of selected peanutcultivars and breeding lines [J]. Journal of Food Composition and Analysis,1998,11(2):100-111.
    Anderson SL, Minard K I, McAlister-Henn L. Allosteric inhibition of NAD+-specificisocitrate dehydrogenase by a mitochondrial mRNA [J]. Biochemistry,2000,39(19):5623-5629.
    Andrade A, Wolf D W, Fereres E. Leaf expansion, photosynthesis and water relations ofsunflower plants growth on compacted soil [J]. Plant and Soil,1993,149:175-184.
    Andrew C S. Legume sand Acid Soils [M]. New York: Plenum Press,1978:135-160.
    Arnon D I. Copper enzymes in isolated chloroplast, polyphenoloxidase in Beta vulgari [J].Plant Physiol,1949,24:1-5.
    Arvidsson J. Nutrient uptake and growth of barley as affected by soil compaction [J]. Plantand Soil,1999,208(1):9-19.
    Becker T W, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenaseisoforms in maize leaves: localization, relative proportion and their role in ammoniumassimilation or nitrogen transport [J]. Planta,2000,211:800-806.
    Bhagsari W S, Brown R H. Photosynthesis in peanut genotypes [J]. Peanut Science,1976,3:1-5.
    Bland J M, A R Lax. Isolation and characterization of a peanut maturity-associated protein [J].Agricultural Food Chemical,2000,48(8):3275-3279.
    Blankenship P D, Cole R J, Sanders T H. Comparative susceptibility of four experimentalpeanut lines and cultivar Florunner to preharvest aflatoxin contamination [J]. PeanutScience,1985,12:70-72.
    Blunden G. Enhanced leaf chlorophyll levels in plant treated with seaweed extract [J].Journal of Applied Physiology,1997,8(6):535-543.
    Bolton H, Elliott L F, Papendick R I. Soil microbialbiomass and selected soil enzymeactivities: Effect of fertilization and cropping practices [J]. Soil Biol. Biochem.,1985,17:297-320.
    Buttery B R, Tan C C, Drury C F. The effects soil compaction, soil moisture and soil type ongrowth and nodulation of soybean and common bean [J]. Canadian Journal of PlantScience,1998,78:571-576.
    Chiou R Y Y, Liu C P, Hou C J. Comparison of fatty acid composition and oxidative stabilityof peanut oils prepared from spring and fall crops of peanuts [J]. Agric.Food Chem.,1995,43(3):676-679.
    Chuan Chi Lin, Ching Huei Kao. Disturbed ammonium assimilation is associated with growthinhibition of roots in rice seedlings caused by NaCl [J]. Plant Growth Regulation,1996,18:233-238.
    Cren M, Hirel B. Glutamine synthetase in higher plant: regulation of gene and proteinexpression from theorgan to the cell [J]. Plant Cell Physiol.,1999,40:1187-1193.
    Crouch I J, Van Staten J. Effect of seaweed concentrate on the establishment and yield ofgreenhouse tomato plant [J]. J Appl Phycol,1992,4(1):291-296.
    Davidson J I, Hill R A, Cole R J. Field performance of two peanut cultivars relative toAflatoxin contamination [J]. Peanut Science,1983,10(1):43-47.
    Dwivedi S L, Nigam S N, Rao R C N. Photoperiod effects on seed quality traits in peanut [J].Crop Science,2000,40(5):1223-1227.
    Elkan G H. Biological nitrogen fixation in: Lederberg (ed.) Encyclopedia of Microbiology[M]. San Diego: Academic Press,1992,(1):285-296.
    Elsaeid N B. Growth temperature to lerance and Survival of peanut rhizobia in plantinoculants [J]. Turralba,1990,(40):287-291.
    Fisher H M. The pleiotropic nature of symbiotic regulatory mutants: A gene is involved incontrol of nif gene expression and formation of determinate symbiosis [J]. Gen. Genet.,1986,209:621-626.
    Funderburk J E, Gorbet D W, Teare I D. Thrips injury can reduce peanut yield and qualityunder conditions of multiple stress [J]. Agron. J.,1998,90(4):563-566.
    Garcia C, Hemandez, T., Costa, F. Microbial activity in soil under Mediterraneanenvironmental conditions [J]. Soil Biology and Biochemistry,1994,26:1185-1191.
    Garren K H. Drought, irrigation, and field infection of peanuts andcorn by Aspergillus inVirginia1980[J]. Proceedings of the American Peanut Research and Education Society,1981,13(1):60.
    Geiger D. R., Servaites J. C. Diurnal regulation of photosynthetic carbon metabolism in C3plant [J]. Annu. Rev. Plant Physiol. Mol. Biol,1994,45:235-256.
    Giannopolitis C N, Ries S K. Superoxide dismutaseⅡ. Purification and quantitativerelationship with water soluble protein in seedlings [J]. Plant Physiol,1977,59:315-318.
    Gonzalez M C, Osuna L, Echevarria C. Expression and localization of phosphoenolpyruvatecarboxylase in developing and germinating wheat grains [J]. Plant Physiology,1998,116:1249-1258.
    Gowda C L L, Nigam S N, Johanson C. Achieving high groundnut yields [C]. Patancheru,India: ICRISAT,1996,147-155.
    Griffith T W, Koehler N J, Coker S G. Race comparisons of Heterodera glycines usingcrossed immunoelestrophoresis [J]. Journal of Nematology,1982,14(4):598-599.
    Guerinot M L, Chelm B K. Bacterial γ-aminol evulinic acid syn-thase activity is not essentialfor leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis [J].Proc. Natl. Acad. Sci. USA.,1986,83:1837-1841.
    Ito O, Matsunaga R, Tobita S. Spatial distribution of root activity and nitrogen fixation insorghum/pigeonpea intercropping [J]. Plant and Soil,1993,155:341-344.
    Jacobs W P, Kathy Falkensier, Roberi H Hamilton. Nature and amount of auxin in algae: IAAfrom extracts of Caulerpa paspaloides (Siphomales)[J]. Plant Physiol,1985,78:844-848.
    Job C, Laugel S, Duval M. Biochemical characterization of atypical biotinylation domains inseed proteins [J]. Seed Science Research,2001,11(2):149-161.
    Kaiser WM. The effect of hydrogen peroxidide on CO2fixation of isolated intact chloroplasts[J]. Biochem Biophys Acta,1976,400:476-482
    Kalinski A R, Huettel N. DNA restriction fragment length polymorphism in races of thesoybean cyst nematode, Heterodera glycines [J]. Journal of Nematology,1988,20(4):532-538.
    Kishinevshy B D. Effect of high root temperature on Bradyrhizobium peanut symbiosis [J].Plant Soil,1992,(43):275-282.
    Kraus TE, Fletcher RA. Paclobutrazol protects wheat seedlings from heat and paraquat injury[J]. Plant and Cell Physiology,1994,35:45-52.
    Kvien C K, Ozias-Akins P. Lack of monocarpic senescence in Florunner Peanut [J]. PeanutScience,1991,18(2):86-90.
    Lam H M, Coschigano K T, Oliveira I C. The Molecular-Genetics of Nitrogen Assimilationinto Amino Acids in Higher Plants [J]. Annu Rev Plant Physiol Plant Mol Biol.,1996,47:569-593.
    Lancien M, Ferrario-Mēry S, Roux Y, BismuthE, Masclaux C, Hirel B, Gadal P, Hodges M.Simultaneous expression of NAD-dependent isocitrate dehydrogenase and other krebscycle genes after nitrate resupply to short-term nitrogen-starved tobacco[J]. PlantPhysiol,1999,120(3):717-726.
    Lea P J, Blackwell R D, Joy K W. Ammonia assimilation in higher plants [A].In: Meng K andPilbeam D J (eds.), Nitrogen Melabotism of Plant [C]. Oxford University Press, NewYork,1992,153-186.
    Lea P J, Miflin B J. Alternative route for nitrogen in higher plants [J]. Nature,1974,251:614-616.
    Lea P J, Miflin B J. Glutamate synthase and the synthesis of glutamate in plants [J]. PlantPhysiol Biochem,2003,41:555-564.
    Leopold A C. Senescence in plant development [J]. Science,1961,134:1727-1732.
    Lopez Y, Smith O D, Senseman S A. Genetic factors influencing high oleic acid content inSpanish market-type peanut cultivars [J]. Crop Science,2001,41(1):51-56.
    Lowry O H, Rosebrough N J, Earr A L. Protein measurement with the follin phenol reagent[J]. J. Biol. Chem.,1951,193:265-275.
    Marcelle R D. Relationship between mineral content, lipoxygenase activity, levels of1-aminocyclopropane carboxylic acid and ethylene emission in apple fruit flesh disks(cv.Jonagold) during storage [J]. Postharvest Biology and Tech-nology,1991,1:101-109.
    Melo-oliveira R, Oliveira I C, Coruzzi G M. Arabidopsis mutant analysis and gene regulationdefine a nonredundant role for glutamate dehydrogenase in nitrogen assimilation [J].Proc. Natl. Acad. Sci. USA,1996,93:4718-4723.
    Miflin B J, Lea P J. Ammonia assimilation. In: Miflin B J ed. The Biochemistry of Plants [M].New York: Academic Press,1980,5:169-202.
    Moore K M, Knauft D A. The inheritance of high oleic acid in peanut [J]. J Hered,1989,80:252-253.
    Moore L N, Moore K M, Sims C A. Characterization of high oleic acid peanut [J]. Inst FoodTech,1989,50:193.
    Nadian H, Smith S E, Alston A M. Effects of soil compaction on plant growth, phosphorusuptake and morphological characteristics of vesicular-arbuscular mycorrhizalcolonization of trifolium subterraneum [J]. New Phytologist,1997,135(2):303-311.
    Nambiar P T C. Factors influencing nitrogenase activity (Acetylene reduction) by rootnodules of ground-nut [J]. Arachis hypogaeaL. Peanut SCT,1983,(10):26-29.
    Narayanan A, Chand L K. The nature of leaf senescence in groudnut (Arachis hypogaeaL.)genotypes [J]. Indian Journal of Plant Physiology,1986,29(2):125-132.
    Nelson W R. The effect of seaweed concentrate on wheat culms [J]. J Plant Physiol,1984,415:433-437.
    O′Keefe S F, Wiley V A, Knauft D A. Comparison of oxidative stability of high and normaloleic peanut oils [J]. J Amer Oil Chem Soc,1993,70:489-492.
    Ohta H, Shirano Y, Tanaka K. cDNA cloning of rice lipoxygenase L-2and characterizationusing an active enzyme expressed from the cDNA in Escherichia coli. Eur [J]. Biochern,1992,206:331-336.
    Peng Y L, Shirano Y, Ohta H. A novel lipoxygenase fromrice, primary structure and specificexpression upon incompatible infection with rice blast fungus [J]. Biol Chem,1994,269(5):3755-3761.
    Powlson D S. Measurement of soil microbial biomass provides an early indication of changesin total soil organic matter due to incorporation [J]. Soil Biology and Biochemistry,1987,19:159-164.
    Qusji G O, Madu W C. Ammonium ion salvage by glutamate dehyrogenase during defenceresponse in maize [J]. Phyto-chemistry,1996,42:1491-1498.
    Randall J W, Keith M P, Furukawa T L. Developmental profile of diacylgly cerolacyltranferase in maturing seeds of oilseed rape and safflower and microspove derivedcultures of oilseed rate [J]. Plant Physiol,1993,102:565-571.
    Refouvelet E, Daguin F. Polymorphic glutamate dehydrogenase inlilac vitroplants as revealedby combined preparative IEF and native PAGE: Effect of ammonium deprivation;darkness and atmospheric CO2enrichment upon isomerization [J]. Physiol. Plant,1999,105:199-206.
    Sahrawat K L, Rao J K, Burford J R. Elemental composition of groundnut leaves as affectedby age and iron chlorosis [J]. Journal of Plant Nutrition,1987,10:1041-1049.
    Saito G Y, Y C Chang, L L Walling. Chloroplast development and nuclear gene expression incotyledons of soybean seedlings [J]. New Physiol,1990,144:547-554.
    Sanders T H, Blankenship P D, Cole R J. Effect of soil temperature and drought on peanutpod and stem temperatures relative to Aspergillus flavus invasion and aflatoxincontamination [J]. Mycopathologia,1984,86:51-54.
    Sanders T H, Cole R J, Blankenship P D. Drought and soil temperature range for aflatoxinproduction in preharvest peanuts [J]. Proceedings of the American Peanut Research andEducation Society,1983,15(1):90.
    Sawada S, Usuda H, Hasegawa Y. Regulation of Rubisco activity in response to changes ofthe source/sink balance in single-rooted soybean leaves [J]. Plant Cell Physiology,1990,31:697-704.
    Shangguan Z P, Shao M A. Effect of nitrogen nutrition and water deficiton net photosyntheticrate and chlorophyll fluorescence in winter wheat [J]. Plant Physiol,2000,56:46-51.
    Siedow J N. Plant lipoxygenases: structure and function [J]. Annu Rev Plant Physiol PlantMol Biol.,1991,42:145-188.
    Styer C, Cole R J, Hill R A. Inoculation and infection of peanut flowers by Aspergillus flavus[J]. Proceeding of the American Peanut Research and Education Society,1983,15:91.
    Suzuki Y, Matsukura U. Lipoxygenase activity in maturing and germination rice seeds withand without lipoxygenase23in mature seeds [J]. Plant Science,1997,125:119-126.
    Thomas H, Smart C M. Crops that stay green [J]. Ann. Appl. Biol.,1993,123:193-219.
    Tombs, M P. Protein bodies of soybean [J]. Plant Physiol,1967,42:797-813.
    Trachtenberg C H, McCloud D E. Net photosynthesis of peanut leaves at varying lightintensities and leaf ages [J]. Soil Crop Sci. Soc. Florida Proc.,1976,35:54-55.
    Treffry.T., S. Klein, M. Abrahamsen. Studies of fine structuraland biochemical changes incotyledons of germinating soybeans [J]. Biol. Sci.,1967,20:859-868.
    Upadhyaya H D, S N Nigam. Detection of epistasis for protein and oil contents and oil qualityparameters in peanur [J]. Crop Science.,1999,39(1):115-118.
    Van de Loo F J, Fox B G, Somerville C. Unusual fatty acids. In JT S Moore, ed. LipidMetabolism in Plants [C]. CRC Press, Boca Raton.1993,91-126.
    Wilson J. Photosynthesis and energy conversion. In: Wareing P F, Cooper J P eds. PotentialCrop Production Educational Books [C], London: Heinemann Educational Books,1971,43-75.
    Wu Lan rong. Oil quality of Shandong export groundnut as affected by early harvest [J].International Arachis News letter,1999,19:65-66.
    Xu Y C, Zhao B L. The main origin of endogenous NO in higher non-leguminous plants [J].Plant Physiol Biochem,2003,41:833-838.
    Yamazak M, Watanabe A, Sugiyama T. Nitrogen-Regulated accumulation of mRNA andprotein for photosynthetic carbon assimilating enzymes in maize [J]. Plant Cell Physiol,1986,27(3):343-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700