用户名: 密码: 验证码:
无机氟(氧)化物功能材料的液相合成及物性表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,氟(氧)化物功能材料因其在超导电性、磁性材料、催化以及电发光材料等方面的应用而成为近年来研究的热点。本论文的主要研究目的在于利用液相的化学路线对氟(氧)化物功能材料进行制备。通过对于反应过程的研究,考察制备过程中各种反应条件,实现最优化的目的。对所得氟(氧)化物功能材料的性能进行测试,研究结构、形貌与其物理性质之间的联系,以期制备出的氟(氧)化物具有更好的物化性质。论文的主要内容总结如下::
     1.使用NH4HF为氟源,采用溶剂热合成法对Sr_2CuO_3和NdSr_2Cu_20_(6-δ)等铜氧化合物进行了氟化研究。使用无水乙醇作为溶剂,从而避免了因铜基氧化物对水敏感而导致的失败。通过比较实验,对这类反应总结了一个较为优化的制备条件。结构分析表明,Sr_2CuO_3和NdSr_2Cu_20_(6-δ)经过低温处理后,它们的结构发生了变化,得到了一种亚稳相的铜基氟氧化物。对所得到氟(氧)化物的超导电性通过其在零场冷下表现出的磁性进行了分析,结果表明,Sr_2Cu(O,F)_(4+δ)的转变温度出现在38K,而NdSr_2Cu_2(O,F)_(6+δ)所呈现的是一个顺磁行为。这一铜基氧化物氟化的方法以前未见报道,其结果优于使用NH4HF2做氟源的其他制备方法。
     2.使用多种溶剂,以Ti粉或TiO_2作为原料,在溶剂热的条件下成功制备了K_2TiF_6、K_2TiOF_4、K_3TiOF_5和K_7Ti_4O_4F_7系列氟(氧)化物微晶体。通过研究不同的溶剂在反应中的作用,发现所使用的溶剂对物相的形成具有重要的影响。通过对所制备的系列氟(氧)化物的物性考察显示,四种材料的比表面积非常小;但它们在紫外区多表现了强烈的吸收,尤其是K_2TiOF_4还在可见光区出现较宽的强吸收:对氟(氧)化物进行了光催化性能的初步研究,结果显示,在紫外光照下产物对RhB的光降解表现出优良的催化性能,尤其是K_2TiOF_4的活性最大,并且其在可见光照下降解RhB的能力超过了P25(TiO_2)。
     为了进一步提高K2TiOF4的活性,我们还通过对反应条件的控制,来实现这个材料纳米结构的制备。八面体、球形、棒状及空心球纳米结构的K_2TiOF_4,是在改变了一种反应参数即溶剂得到的。通过实验还研究了体系的酸、碱性对物相形成的影响,适宜的pH值大约是7-8。考察它们的比表面积均有了大幅的提高。同样对空心球纳米结构的光吸收及光催化性能进行研究,结果表明比表面大的空心结构有助于K_2TiOF_4催化活性及发光性能的提高。
     3.使用PEG辅助的水热方法对钙钛矿结构KMnF_3的微结构进行控制合成,在一个可控的条件下成功得到了微晶多面体、微球体和空心球体。通过PEG对产物影响的研究表明PEG的类型是得到不同微结构的关键。再结合PEG的浓度、反应温度、时间等参数,提出了一个Ostwold熟化的形成机理。我们对所得微结构材料的吸收光谱和发光性质进行了表征,结果表明,具有强吸收的KMnF3是一个优良的发光材料。
     通过使用DMF,在溶剂热条件下合成了纳米结构BaF_2,通过对反应时间的考察,研究了形貌的变化情况,从单个纳米粒子成为方形微晶片。测试了BaF_2纳米颗粒的发光性能,通过与块体材料的比较,发现纳米尺寸的BaF_2发射峰表现的更强,并且出现了蓝移和宽化的现象。
Recently, (oxy)fluoride functional materials have aroused extensive research interest due to their potential applications in superconductivity, magnetic material, catalyst, luminescence materials and so on. In this dissertation, the aim is that attentions are paid to the preparation of (oxy)fluorides based on solution synthesis routes. The optimum routes are confirmed through the optimizing the reaction processes and various experimental conditions. The properties of as prepared functional (oxy)fluoride materials are measured. In order to prepare (oxy)fluorides with excellent performance, the relations between the structure, morphology and the physical properties are also investigated. The main contents of the dissertation are as follows:
     1. Using NH_4HF as fluorine source, Sr_2CuO_3 and NdSr_2Cu_2O_(6-δ) have been successfully fluorinated through a solvethermal method. The absolute ethanol as a solvent can avoid the failure caused by the effect that copper-based oxides are sensitive to aqueous solution. An optimized preparation condition was obtained, by performing control experimental conditions. Structure analysis reveals that after low temperature treatment, their structure changed into metastable copper-based oxyfluorides. Magnetic measurement was carried out to investigate the superconductivity transformation temperature of the products. The results reveal that the transformation temperature of Sr_2Cu(O,F)_(4+δ) appears at 38k, while NdSr_2Cu_2(O,F)_(6+δ) exhibits paramagnetic property. It isn't found that the fluoridation of copper-based oxide has been reported by the solvothermal route. The result is better than other methods using NH_4HF as fluorine source.
     2. K_2TiF_6、K_2TiOF_4、K_3TiOF_5 and K_7Ti_4O_4F_7 micro-crystals have been successfully synthesized through solvethermal routes, using Ti or TiO_2 as starting materials. Through investigating the effects of different solvents in the synthesis, it is found that the solvents are key role to the formation of these phases. The characterizations of as prepared samples reveal that the BET surface areas of these products are very small and they possess strong absorption in UV range. Especially, K_2TiOF_4 K_2TiOF_4 additionally shows a strong absorption around visible region. The photocatalytic activities of these products were studied. The results reveal that these products show excellent photocataytic performance for degradation of RhB under UV light irradiation. It should be noted that K_2TiOF_4 has the best photocatalytic activities and its ability to degrade RhB exceeds P25(TiO_2).
     To further improve the photocatalytic activities of K_2TiOF_4, nanostructures of K_2TiOF_4 have been prepared. The octahedrons, spheres, rods and hollow spheres of K_2HOF_4 were obtained by controlling the experimental parameters. The effects of pH value on the formation of the product have been also investigated. The optimal pH value is 7-8. The BET areas of nanostructural products increase obviously. The results of photocatalytic experiments reveal that K_2TiOF_4 hollow structure with higher surface area exhibit better photocatalytic performance.
     3. Shape-controlled synthesis of perovskite KMnF_3 has been carried out through a PEG-assisted hydrothermal method. Polyhedron microcrystal, microsphere, hollow sphere of the product have been obtained by changing the reaction conditions. An Ostwald process has been proposed to explain the formation mechanism of the Polyhedron microcrystal, microsphere and hollow sphere by the reaction temperature, time, the concentration and type of PEG, which is a key role to form three micro-structures. Studies of the photophysical properties of the polyhedral microcrystals, micro-spheres and hollow spheres reveal that they are excellent luminescence materials with an excellent absorption.
     Nanostructure of BaF_2 has been solvothermally prepared using DMF as a solvent. The morphology evolution is from the individual nanoparticals aggregating the quadrate microflakes, v/hich was investigated through the reaction time. Photoluminescence of the nanoparticles has been compared with that of BaF_2 block, and it is a better performance for the former. The blue-shift and broadening effect are all presented in the absorption spectrum for the nanoparticles of BaF_2
引文
[1] J.H席孟斯 氟化学(卷一)科学出版社1961.
    [2] F. Gingl, Z. Anorg. Allg. Chem., 1997,623,705.
    [3] A. Abaouz, A. Taoudi, J.P. Laval, J. Solid State Chem.,1997,130,277.
    [4] N. Dupont, et al. Eur. J. Solid State Inorg. Chem, 1998,35, 39.
    [5] S. Kyung-Soo, J. Senegas, J. Solid State Chem., 1991,93,469.
    [6] G. Denes, Y.H. Yu, et al. J. Solid State Chem., 1991,91,1.
    [7]P.Laborde.J.M.Reau,J.Solid State Chem.1988,72,225.
    [8]A.H6mon-Ribaud,et al.J.Fluorine Chem,1994,68,155.
    [9]M.Leblanc,I.Collin-F6vre,et al.J.Magn.Magn.Mat.,1997,167,71.
    [10]B.Zemva,K.Lutar,et al.J.Am.Chem.Soc.,1991,113,4192.
    [11]B B Mandelbrot,New York:W H Freeman and Company,1977,238.
    [12]J Feder Fractals,New York:Plenum,1988
    [13]G N Greaves J.Non-Cryst.Solids.1985,71,203.
    [14]F C Guinhos,P C Nobrega,et al.J.Alloys Compd.2001,323,324.
    [15]W Pannhorst J.Non-Cryst.Solids.1997,219,198.
    [16]TTomikiT.Miyata,Phys.Soc.J Pn,1969.27,658,
    [17]F.Langlais,GDemazeau,et al.Solid state Commun,1979,29,473.
    [18]PA Tick,N F Borelli,et al.J.Appl.Phys.1995,78,6367.
    [19]Fujihara,M Tada,T Kimura Thin Solid Films,1997,304,252.
    [20]M Tada,S Fujihara,T Kimura J.Mater.Res.1999,14,1610.
    [21]L Domange Ann.Chim.(Paris) 1937,7,225.
    [22]P A Tick Opt.Lett.1998,23,1904.
    [23]P A Tick,et al.Opt.Mater.(Amsterdam).2000,15,81.
    [24]S Tanabe,H Hayashi,et al.Opt.Mater.(Amsterdam 2002,19 343
    [25]F Goutaland,P Jander,et al.D Goujun OptMater.(Amsterdam) 2003,22,383.
    [26]R S Meltzer,H Zheng,M J Dejneka J.Lumin.2004.107,166.
    [27]M J Dejneka J.Non-Cryst.Solids 1998,239,149.
    [28]M En,Z Hu,Y Wang,F Bao J.Lumin.2005,118,131.
    [29]S Tanabe,H Hayashi,T Hanada J.Am.Ceram.Soc.2002,85,839
    [30]W Glass,J Toulouse,P A Tick J.Non-Cryst.Solids 1997,222,258.
    [31]M Beggiora,I M Reaney,et al.J.Non-Cryst.Solids 2003,326,327.
    [32]J J Maier J.Phys.Chem.Solidsl985,46,309.
    [33]S Fujihara,H Naito,T Kimura Thin Solid Films 2001,389,227.
    [34]M Tromel Z.Kristallogr.1988,183,15.
    [35]Yu D Tretyakov Neorg.Mater.1985,21,693.
    [36]P P Fedorov Kondens.Sredy Mezhfaz.Granitsy 2002,4,346.
    [38]N Sata,N Y Jin-Phillipp,et al.Solid State Ionics,2002,154,497.
    [39]H Naito,S Fujihara,J.Sol-Gel Sci.Technol.2003,26,1997.
    [40]J J Maier Angew.Chem.,Int.Ed.Engl.1993,32,313.
    [41]A B Yaroslavtsev Russ.J.Inorg.Chem.1986,45(Suppl.3) S249.
    [42]R S Meltzer,W M Yen,H Zheng,et al.Phys.Rev.B 2002,66,224202.
    [43]S P Feofilov,Doctoral Thesis,in Physicomathematical Sciences,Ioffe Physico-Technicai Institute,St Petersburg,2004.
    [44]A Bednarkewicz,A Mech,M Karbowiak J.Lumin.2005,114,247.
    [45]V Sudarsan,F C J M van Veggel,et al.J.Mater.Chem.2005,15,1332.
    [46]V Sudarsan,S Sivakumar,Chem.Mater.2005,17,4736.
    [47]M Karbowiak,A Mech,et al.J.Alloys Compd.2004,380.321.
    [48]E Kemnitz,U Gross,Angew.Chem.,Int.Ed.2003,42,4251.
    [49]S Sivakuma,F C J M van Veggel J.Am.Chem.Soc.2005,127,12464.
    [50]L Anselm,G H Frischat J.Non-Cryst.Solids 1997,213,214.
    [51]T M Turkina,Candidate Thesis in Physical and Mathematical Sciences,Institute of Crystallography,Academy of Sciences,Moscow,1990
    [52]B P Sobolev,A M Golubev,P Errero Kristallografiya 2003,48,148.
    [53]P P Fedorov Russ.J.Inorg.Chem.2002,45(Suppl.3) S268.
    [54]V V Osiko Lazemye Materialy.Izbrannye Trudy(Laser Materials.Selected Works)(Moscow:Nauka,2002).
    [55]A M Prokhorov,V V Osiko,in Problemy Sovremennoi Kristallografii (The Problems of Current Crystallography)(Moscow:Nauka,1975) p.280.
    [56]P P Fedorov Bull.Soc.Cat.Cien.1991,12,349.
    [57]E A Sul'yanova,A P Shcherbakov,V N Molchanov,et al.2005,50,235.
    [58]O Greis,J M Haschke,in Handbook on the Physics andChemistry of Rare Earth Vol.5.(EdsK A Gscheidner,L Eyring)(Amsterdam,New York,Oxford:Elsevier,1982) p.387.
    [59]S A Kazanskii,in Spektroskopiya Kristallov(Spectroscopy ofCrystals)(Leningrad:Nauka,1989) p.110.
    [60]M Svantner,E Mariani,P P Fedorov,B P Sobolev Cryst.Res.Technol.1981,16,617.
    [61]A K Ivanov-Shits,N I Sorokiri,P P Fedorov,B P Sobolev Solid State Ionics 1989,31,253.
    [62] M Tromel Z. Kristallogr. 1988, 183, 15.
    [63] Yu D Tretyakov Neorg. Mater. 1985,21, 693 f.
    [64] P P Fedorov Kondens. Sredy Mezhfaz. Granitsy 2002,4, 346.
    [65] B Chalmers Teoriya Zatverdevaniya (The Theory of Freezing) (Moscow: Metallurgiya, 1968.
    [66] S Fujihara, Y Kadota,et al. J. Sol-Gel Sci. Technol. 2002, 24,147.
    [1] A Tressaud, B Chevallier, et al. J. Solid State Inorg. Chem. 1990,27, 309
    [2] BMTissue, KMCirillo, et al. Solid State Comm. et al. 1988, 65, 51.
    [3] Y T Wang, A M Hermann. Physica C. 1995,254,1
    [4] S Adachi, X-J Wu, T Tamura,et al. K Tanabe Physica C. 1995,291 59.
    [5] Kistenmacher Phys. Rev. B 1987,36, 7197.
    [6]. G Van Tendeloo, O I Lebedev, et al. J. Electron Microsc.1997,1,23.
    [7] KMCirillo, J C Wright, et al.Solid State Commun. 1988, 66,1237.
    [8] J R LaGraff, E C Behrman, et al. Phys. Rev. B 1989,39, 347.
    [9] B Chevallier, ATressaud, et al. J Etourneau Physica C. 1990,167,97.
    [10] MH Tuilier, B Chevalier, et al.J Etourneau Physica C. 1992,200,113,)
    [11] A Tressaud, B Chevalier, et al. J. Fluorine Chem. 1995,72 165 (1995)
    [12] AMAbakumov, J Hadermann, et al. Russ. Chem. Rev. 2002,71,383.
    [13] C Chaillout, S W Cheong, Z Fisk, et al. Physica C. 1989,158,183.
    [14] A M Abakumov, J Hadermann,et al.J. Solid State Chem. 2000,149,189.
    [15] V Bhat, J M Honig Mater. Res. Bull. 1995,30,1253.
    [16] L Er Rakho, C Michel, J. Solid State Chem. 1988. 73. 514.
    [17] MCassart, E Grivei, J-P Issi, et al.A Tressaud Physica C. 1993,213,327.
    [18] F Well, B Chevallier,M Chambon, J. Solid State Chem. 1993,109, 5.
    [19] K Otzschi, Y Ueda J. Solid Stale Chem. 1993,107,149.
    [20] S Adachi, T Tatsuki, T Tamura, K Tanabe Chem. Mater. 1998,10 2860.
    [21] J Hadermann, G Van Tendeloo, J. Solid State Chem. 2001,157. 56.
    [22] F Well, B Chevallier, Eur. J. Solid State Inorg. Chem. 1993, 30,1095.
    [24] J. yang, J. hui, et al. J Mater Chem. 1999,11,192.
    [25] Jiao X L, et al. J Mater Chen 1998, 8 2831.
    [26] 仲维卓,华素坤.上海化工,1995,11,25.
    [27] Hagenmuller P, Inorganic Solid Fluorides Chemistry, Inc.Orlando. Florida: Acadimic Press. 1985,P17.
    [28] C. Zhao, S. Feng, Z. Chao, Chem. Commun. 1996,1641-1642.
    [29] X. Xun, S. Feng, J. Wang, R. Xu, Chem. Mater. 1997,9, 2966.
    [30] 谢德民,石春山.分子科学学报,2003,19,127
    [31] M. Al-Mamouri, P.P. Edwards, C. Greaves, et al. Nature 1994, 369, 82.
    [32] Slater PR, Edwards PP, Greaves C,et al. Physica C. 1995,241,151.
    [33]S.Fujihara,Y.Masuda,J.-S.Jin,eta al.Physica C.1997,290,63.
    [34]B.N.Wani,L.L.Miller,B.J.Suh,F.Borsa,Physica C.1996,272,187.
    [35]E.I.Ardashnikova,S.V.et al.Physica C.1995,253,259.
    [36]P.R.Slater,J.P.Hodges,eta al.Physica C.1995,253,16.
    [37]E.I.Ardashnikova,eta al.Physica C.1995,253,259.
    [38]E V Antipov,A M Abakumov,Physica B.1998,241,773
    [39]B.N.Wani,S.J.Patwe,eta al.Appl.Superconduct.1995,3,321-325.
    [40]Y Cao,Q Xiong,Y Y Xue,C W Chu Phys.Rev.B 1995,52,6854,
    [41].S N Putilin,E V Antipov,eta al.Physica C 2000,338,52.
    [42]E.I.Ardashnikova S.V.Lubarsky,et al.Physica C.1995,253,259.
    [43]B.N.Wani,L.L.Miller,B.J.Suh,F.Borsa,Physica C 272(1996) 187.
    [1] A. Fujishima, K. Kohayakawa, K. Honda, J. Electrochem.Soc. 1975,122, 1487.
    [2] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 1995,95,69-96.
    [3] M. Anpo, M. Takeuchi, J. Catal. 2003,216, 505-516.
    [4] A. Fihri, V. Artero, M. Razavet, C Baffert, W Leibl, M, Fontecave, Angew. Chem. Int. Ed.2008, 47, 564-567.
    [5] I. Salem, Catal. Rev. Sci. Eng. 2003,45,205-296.
    [6] A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 1995,95, 735-758.
    [7] Burda C, Lou Y, Chen X, et al, Nano. Lett. 2003,39(8), 1049.
    [8] Sato S, Chem. Phys. Lett, 1986,123,126.
    [9] Kasahara A, Nukurnizu K, Taka(?)a T, et al. J. Phys. Chem. B, 2003,107, 791.
    [10] Kasahara A, Nukurnizu K, Hitcki G, et al. J. Phys. Chem. B, 2002,106,6750.
    [11] Iraha T, Ando M, Sugihara S, photocatalysis. 2001,5,19.
    [12] Umchayashi T, Yamaki T, Itoh H, et al. appl. Phys. Lett. 2002, 81(3), 451.
    [13] Ohono T, Mitsui T, Matsumura. M, Chem. Letter. 2003,32(4), 364.
    [14] Luo H, Takata T, Lee Y, et al. Chem. Mater. 2004,16(5), 846.
    [15]Yu J C, Yu J, Ho W, et al. Chem. Mater. 2002,11,3808
    [16] A. Hattori, H. Tada, J. Sol-Gel Sci. Technol. 2001,22, 47.
    [17] J.C. Yu, J.G. Yu, W. Ho, Z. Jiang and L. Zhang, Chem. Mater. 2002,14,3808.
    [18] J.S. Wang, S. Yin, Q.W. Zhang, F. Saito and T. Sato, J. Mater. Chem. 2003,13,2348.
    [19]J.C.Yu,J.Yu,W.Ho,Z.Jiang,L.Zhang,Chem.Mater.2002,14,3808.
    [20]G.L.Huang,Y.F.Zhu,J.Phys.Chem.C.2007,111,11952.
    [21]M.Al-Mamouri,P.P.Edwards,C.Greaves,Nature.1994,369,382.
    [22]A.M.Abakumov,M.G.Rozova,E.I.Ardashnikova,E.V.Antipov,Russ.Chem.Rev.2002,71,383.
    [23]M.G.Francesconi,P.R.Slater,J.P.Hodges,C.Greaves,et al.J.Solid State Chem.1998,135,17.
    [24]B.M.Tissue,K.M.Cirillo,J.C.Wright,M.Daeumling,et al.Solid State Comm.1988,65,51.
    [25]J.S.Wang,S.Yin,T.Sato,Mater.Sci.Eng.B.2006,131,248.
    [26]G.Guan,T.Kida,T.Harada,M.Isayama and A.Yoshida,Appl.Catal.A:Gen.2003,249,11.
    [27]M.Kohno,S.Ogura,K.Sato,Y.Inoue,Stud.surf.sci.catal.1996,101,143.
    [28]P.M.Perillo,O.Ares and J.Botbol,Annales De chimie-Science Des Materiaux.1992,17,261.
    [29]G.Pausewang,W.Rudorff,et al.Z.Anorg.Allg.Chem.1969,364,69.
    [30]G.Pausewang,R.S.Tubingen,et al.Z.Anorg.Allg.Chem.1985,523,213.
    [31]M.M.Godneva,Russ.J.Inorg.Chem[Engl.Transl.]1989,34,827.
    [32]M.S.Lee,P.Grieveson,,Mater.Sci & Tech.2003,19,769.
    [33]N.E.Mahallawy,M.A.Taha,et al.J.Alloys Comp.1999,292,221.
    [34]R.F.Williamson,W.O.J.Boo,,Inorg.Chem.1977,16,646.
    [35]P.Y.Chiang,T.W.Lin,J.H.Dai,B.C.Chang,K.H.Lii,et al.Inorg.Chem.2007,46,3619.
    [36]J.Lee,H.Shin,J.Lee,H.Chung,Q.Zhang,F.Saito,Mater.Trans.2003,44,1457.
    [37]L.N.Demiamets,,Prog.Cryst.Growth Charact.1990,21,299.
    [38]J.Kohler,J.H.Chang,M.H.Whangbo,Ions,J.Am.Chem.Soc.2005,127,2277.
    [39]Y.P.Du,Y.W.Zhang,L.D Sun,C.H.Yan,J.Phys.Chem.C.2008,112,405.
    [40]R.L.Brutchey,E.S.Yoo,D.E.Morse,J.Am.Chem.Soc.2006,128,10288.
    [41]S.Feng,R.Xu,New materials in hydrothermal synthesis,Ace.Chem.Res.2001,34,239.
    [42]C.Li,J.Yang,Z.W.Quan,P.P.Yang,J.Lin,et al.Chem.Mater.2007,19,4933.
    [43]G.Corbela,E.Suardb,J.Voiron,M.Leblanca,J.Magn.Magn.Mater.2001,234,423.
    [44]T.Berrocal,J.L.Mesa,J.L.Pizarro,M.K.Urtiaga,et al.J solid state chem.2006,179,1659.
    [45]R.Yu,D.Wang,N.Kumada,N.Kinomura,et al.Chem.Mater.2000,12,3527.
    [46].Vayssieres L,Keis K,Lindquist S.E,etc.J.Phys.Chem.B.2001,105,3350.
    [47].Chun-Hua Ge,Xiang-Dong Zhang,Wei Guan,Qi-Tao Liu,J.Chem.Crystallog.2006,36,459.
    [48].You,ZL,Zeitschrift fur Anorganische und Allgemeine Chemie.2006,632,4.
    [49]B.L.Chamberland,Academic Press.Inc Inorganic Solid Fluorides,1985,P205,
    [50]R.A.Nyquist,R.O.Kagel,Infrared Spectra of Inorganic Compounds,Academic Press,New York and London,1971.
    [51]N.M.Laptash,I.G.Maslennikova,T.A.Kaidalova,J.fluorine chem.1999,99,133.
    [52].Pu ZF,Cao MH,Yang J,etc.Nanotechnology.2006,17,799.
    [53].Li SZ,Zhang H,Wu JB,etc.Cryst.Growth.Des.2006,6,351.
    [54].Zhong LS,Hu JS,Liang,HP,etc.Adv.Mater.2006,18,2426.
    [55].Cao MH,Liu TF,Gao S,etc.Angew.Chem.Int.Ed.2005,44,4197
    [56].Zhu LP,Xiao HM,Liu XM,etc.J.Mater.Chem.2006,16,1794.
    [57].Zhang YP,Chu Y,Dong LH,Nanotechnology.2007,18,435608.
    [58].Ozaki M,Kratohvil S,Matijevic E.J.Colloid Interf.Sci.1984,102,146.
    [59].Sugimoto T,Wang Y,Itoh H,etc.Colloids Surfaces A:Physicochem.Eng.Aspects 1998,134,265.
    [60].(a) Matijevic E,Sheiner P.I.Colloid.Interface.Sci.1980,74,405.(b) Sapieszko R.S,Matijevic E.J.Colloid.Interface.Sci.1980,74,405.c) Hamada S,Matijevic E.J.Colloid.Interface.Sci.1981,84,274.
    [61].Dousma J,Den Ottelander D,De Bruyn,P.L.J.Inorg.Nucl.Chem.1979,41,1565.
    [62]Shen GZ,Bando Y,Lee CJ.J.Phys.Chem.B.2005,109,10578.
    [63]Zhang HJ,Qi HM.Nanotechnology.2006,17,3984.
    [64]Cao AM,Hu JS,Liang HP,etc.Angew.Chem.,Int.Ed.2005,44,4391.
    [65]Shen GZ,Bando Y,Lee CJ.J.Phys.Chem.B.2005,109,10779;
    [66]Chen AC,Peng XS,Koczkur K,etc.Chem.Commu.2004,1964
    [67]Zhong LS,Hu JS,Liang HP,etc.Adv.Mater.2006,18,2426.
    [68]Narayanaswamy A,Xu HF,Pradhan N,etc.J.Am.Chem.Soc.2006,128,10310.
    [69]Chen J,Xu LN,Li WY.Adv.Mater.2005,17,582.
    [70]Xiong Y,Li Z,Li X,etc.Inorg.Chem.2004,43,6540.
    [71].Hu JT,Odom TW,Lieber CM.J.Am.Chem.Soc.1999,32,435.
    [72].Law M,Goldberg J,Yang PD.Annu.Rev.Mater.Res.2004,34,83.
    [73].Yuan JK,Li WN,Gomez S,etc.J.Am.Chem.Soc.2005,127,14184.
    [74].Liu B,Zeng HC.J.Am.Chem.Soc.2004,126,8124.
    [75].CSlfen H,Antonietti M.Angew.Chem.Int.Ed.2005,44,5576.
    [76]Tang ZY,Kotov NA.Adv.Mater.2005,17,951.
    [77].Zhang GQ,Lu XL,WangW,etc.Chem.Mater.2007,19,5207.
    [78].Dong LF,Gushtyuk T,Jiao J.J.Phys.Chem.B.2004,108 1617.
    [79].Leontidis E,Orphanou M,Kyprianidou-Leodidou T,etc.Nano Lett.2003,3,569.
    [80].Li YB,Bando Y,Golberg D.Appl.Phys.Lett.2003,82,1962
    [81].Ewers TD,Sra AK,Norris BC,etc.Chem.Mater.2005,17,514.
    [82].Whitesides GM,Boncheva M.Proc.Natl.Acad.Sci.USA 2002,99,4769.
    [83].Corma A,Rey F,Rius J,etc.Nature.2004,431,287.
    [84].Lu WG,Gao PX,Jian WB,etc.J.Am.Chem.Soc.2004,126,14816.
    [85].Shen GZ,Bando Y,Golberg D.Appl.Phys.Lett.2006,88,123107.
    [86].(a) Breen TL,Tien J,Oliver SRJ,etc.Science.1999,284,948.
    [87]Ni XM,Zhao QB,Zhang DE,etc.J.Phys.Chem.C.2007,111,601
    [88].Faust BC,Hoffmann MR,Bahnemann DW.J.Phys.Chem.1989,93,6371.
    [89].Han JS,Bredow T,Davey DE,etc.Sens.Actuators B.2001,75,18.
    [90].Chen J,Xu L,Li W,etc.Adv.Mater.2005,17,582.
    [91].(a) Matijevic E,Scheiner P.J.Colloid.Interf.Sci.1976,61,24.(b) Hamada S,Matijevi(?) E,J.Chem.Soc,Faraday Trans I.1982,78,2147.(c) Ozaki M,Kratohvil S,Matijevi(?) E.J.Colloid Interf.Sci.1984,102,146.(d) Ozaki M,Ookoshi N,Matijevic E.J.Colloid Interf.Sci.1990,137 546.(e) Sugimoto T,Khan M,Muramatsu A.Colloids Surf.A:Physicochem.Eng.Aspects.1993,70,167.
    [92].Wen XG,Wen SH,Dong Y,etc.J.Phys.Chem.B.2005,109,215.
    [93].Zhao YM,Li YH,Ma RZ,etc.Small.2006.2.422.
    [94].Chen J,Xu LN,Li WY,etc.Adv.Mater.2005,17,582.
    [95].Lin Y,Sun FQ,Yuan XY,etc.Appl.Phys.A 2004.78,1197.
    [96].Cao MH,Liu TF,Gao S,etc.Angew.Chem.Int.Ed.2005,44,4197
    [97].Zhu LP,Xiao HM,Liu XM,etc.J.Mater.Chem.2006,16,1794.
    [98].(a) Li SZ,Zhang H,Wu JB,etc.Cryst.Growth.Des.2006,6,351.
    [99]Zhong LS,Hu JS,Liang,HP,etc.Adv.Mater.2006,18,2426.
    [100]Sondi I,Matijevic E.Chem.Mater.2003,15,1322.
    [102]Si R,Zhang YW,Li SJ,etc.J.Phys.Chem.B.2004,108,12 481.
    [103]Hirano M,Morikawa H.Chem.Mater.2003,15,2561.
    [1] Z.L. Wang, Adv. Mater. 1998,10,13.
    [2] Z.L. Wang, Z. Dai, S. Sun, Adv. Mater. 2000,12,1944.
    [3] N.R. Jana, Angew. Chem. Int. Ed. 2004,43,1536.
    [4] A. Mohraz, D.B. Moler, R.M. Ziff, M.J. Solomon, Phys. Rev. Lett. 2004,92,155503(1-4).
    [5] R. Narayanan, M.A. El-Sayed, Nano. Lett. 2004,4,1343..
    [6] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, et al. Adv. Mater. 2003,15353.
    [7] X. Peng, J. Thessing, Struct. Bonding. 2005,118,79.
    [8] H.X. Li, Z.F. Bian, J. Zhu, D.Q. Zhang, et al. J. Am. Chem. Soc. 2007,129, 8406.
    [9] S.H. Yu, B. Liu, M.S. Mo, J.H. Huang, et al. Adv. Funct. Mater. 2003,13,639.
    [10] N. Pinna, K. Weiss, J. Urban, M.P. Pileni, Adv. Mater. 2001,13, 261.
    [11] X.Wang, X.M. Sun, D. Yu, B.S. Zou, Y. Li, Adv. Mater. 2003, 15, 1442.
    [12]D.Seo,J.C.Park,and H.Song,J.Am.Chem.Soc.2006,128,14863.
    [13]CM.Bender,J.M.Burlitch,D.Barber,C.Pollock,Chem.Mater.2000,12,1969.
    [14]M.Takashima,S.Yonezawa,J-h.Kim,J.Alloys Comp.2006,408-412,468-473.
    [15]G.N'enert,J.Phys.:Condens.Matter.2008,20,335229(6pp).
    [16]B-C.Hong,K.Kawano,J.Alloys Comp.2006,408,838.
    [17]D.Dambournet,A.Demourgues,C.Martineau,S,et al.Chem.Mater.2008,20,1459,
    [18]Z.Mazej,J.Fluorine Chem.2004,125,1723.
    [19]Hagenmuller P.Inorg.Solid Fluoride Chem.and Phys,New York Academy press Inc.1985.
    [20]Joubert M F,Linares C,Jacquier B.J Lumin,1992,51,175.
    [21]Tan Y,Shi C,J Solid State Chem,2000,150,178.
    [22]Yamaga M,Imai T,Shimamura K,et al.J.Phys Condens Matter,2000,12,3431.
    [23]Kuck S.Appl Phys.B.2001,72,515.
    [24]古谷圭一,菊地正,小西达也,平野笃志.[J].希土类,1991,18,164.
    [25]Su H,Jia Z,Shi C.Chem.Mater,2002,14,310.
    [26]Beecroft L L,Ober C K.Chem.Mater.1997,9,1302.
    [27]Jeong,U.;Kim,J.;Xia,Y.N.Nano Lett.2005,5.
    [28]Xie,Y;Huang,L.F.;Feng,C.Q.Inorg.Chem.2006,45,6404.(c)
    [29]Liu,B.;Zeng,H.C.Small 2005,1,566.
    [30]Z.Mazej,J.Fluorine Chem.2004,125,1723.
    [31]M.A.Laguna,M.L.Sanjuan,V.M.Orera,et al.J.Phys.:Condens.Matter.1993,5,283
    [32]O.Pilla,P.T.C.Freire,V.Lemos,Phys.Rev.B.1995,52,177.
    [33]C.Zhao,S.Feng,R.Xu,C.Shi,J.Ni,Chem.Comm.1997,10,945.
    [34]J.Kapusta,P.Daniel,A.Ratuszna,Phase Iran.2000,7,2165.
    [35]F.Agnoli,W.L.Zhou,C.J.OConnor,Adv.Mater.2001,13,1697.
    [36]Q.Tang,J.M.Shen,W.J.Zhou,Inorg.Chem.Comm.2004,7,283.
    [37]L.H.Lu,H.S.Wang,H.J.Zhang,J.Collod.Interface.Sci.266(2003) 115-119.
    [38]S.Feng,R.Xu,Acc.Chem.Res.2001,34,239.
    [39]Singh,R.;Sinha,S.;Chou,P.;Hsu,N.J.;Radpour,F.J.Appl.Phys.1989,66,6179.
    [40]Quan,Z.W.;Yang,D.M.;Yang,P.P.;Zhang,X.M.;et al.J.Inorg.Chem.2008,47,9509.
    [41]Moon,H.J.;Kim,K.N.;Kim,K.M.,et al.J.Biomed.Mater.Res.,Part A 2005,4,
    [42]Kumar,G A.;Chen,C.W;Riman,R.;et al.J.Appl.Phys.Lett.2005,86,241105.
    [43]Pilvi,T.;Arstila,K.;Leskela,M.;Ritala,M.Chem.Mater.2007,19,3387.
    [44]Feldmann,C;Roming,M.;Trampert,K.Small 2006,2,1248.
    [45]Zhang,X.M.;Quan,Z.W;Yang,J.;Yang,P.P.;et al.J.Nanotechnology 2008,19,075603.
    [46] Sun, X. M.; Li, Y. D.Chem. Commun. 2003,1768.
    [47] Moon, H. J.; Kim, K. N.; Kim, K. M., et al. J. Biomed.Mater. Res., Part A 2005,4,
    [48] Kumar, G A.; Chen, C. W.; Riman, R.; et al. J. Appl. Phys. Lett. 2005, 86,241105.
    [49] Pilvi, T.;Arstila, K.; Leskela, M.; Ritala, M. Chem. Mater. 2007,19,3387.
    [50] Feldmann, C; Roming, M.; Trimpert, K. Small 2006,2,1248.
    [51] Zhang, X. M.; Quan, Z. W.; Yang, J.; Yang, P. P.;et al. J. Nanotechnology 2008,19,075603.
    [52] Sun, X. M.; Li, Y. D.Chem. Commun. 2003,1768.
    [53] Mao, Y. B.; Zhang, F.; Wong, S. S.Adv. Mater. 2006,18,1895.
    [54] Wang, W. S.; Xu, C. Y.; Zhen, L.; Yang, L.; Shao, W. Z. Chem.Lett. 2006,35, 268.
    [55] Wang, W. S.; Zhen, L.; Xu, C. Y.; Zhang, B. Y; J. Phys. Chem. B 2006, 110, 23154.
    [56] Wang,W. S.; Zhen, L.; Xu, C. Y.; Zhang, B. Y; J. Nanosci.Nanotechnol. 2008, 8,1288.
    [57] Wang, W. S.; Zhen, L.; Xu, C. Y.; Yang, L.; Shao, W. Z. Crystal Growth Des. 2008, 8,1734.
    [58] Jia, B. P.; Gao, L. J. Phys. Chem. C 2007,112,666.
    [59] Sun, Y. G; Wiley, B.; Li, Z. Y.; Xia, Y. N. J. Am. Chem. Soc. 2004,126,9399.
    [60] Chen YC, Zhang YG, Solid Stale Phenomena(1-2). 2007,121, P 441
    [61] Hua R N, Lei B F, Xie D M, et al. J Solid State Chem, 2003,175,284.
    [62] 朱国贤,连洪州,莫凤珊等,高等学校化学学报,2006,27,215.
    [63] 黄世华.激光光谱学原理和方法[M].长春:吉林大学出版社,2001.
    [64] 朱国贤,闫景辉,莫凤珊等,高等学校化学学报,2006,27,401.
    [65] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [66] Wang W S, Zhen L, Xu C Y, et al. ACS Appl. Mater. Interfaces, 2009, 1, 780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700