用户名: 密码: 验证码:
花生浓缩蛋白的制备、凝胶形成机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷榨制油同步制取的花生蛋白粉虽然变性程度低,但是蛋白质含量相对较低(含量为50-55%),溶解度有限,凝胶性质不好,添加于肉制品中成型性很差,极易散开。针对以上问题,本论文以脱脂花生粉为原料,通过醇提技术、改性技术制备了功能性的花生浓缩蛋白,同时研究了它们的胶凝性和凝胶形成机理,初步探讨了它们在肉制品中的应用,旨在为进一步探讨改性蛋白结构与功能特性之间的关系奠定理论基础,为功能性花生浓缩蛋白在肉制品中的应用提供理论依据。
     比较了不同制备方法对花生浓缩蛋白(PPC)功能性质的影响,确定出了一种蛋白含量高、功能性质好的浓缩蛋白制备方法-乙醇浸提方法。通过醇提单因素实验和二次正交旋转组合实验对醇提工艺参数进行优化,确定醇提工艺为:料液比为1:9.3,乙醇浓度为67.35%,浸提温度为36.85℃。验证实验结果表明,在此工艺参数下可以生产出蛋白含量% >70%的PPC。
     以自制PPC为原料,采用热处理、高速搅拌处理、超声处理、微波处理和添加还原剂-1和还原剂-2等方法改善原始PPC的速凝性质。在物理改性中,热处理、高速搅拌处理和超声辐射处理对蛋白中的游离巯基和二硫键含量影响极显著(P<0.01),其中又以超声辐射处理的影响最大。在超声辐射处理下,蛋白中的游离巯基含量达到11.44μmol/g,二硫键含量降为21.06μmol/g,此时表面疏水性指数So为12.14。在化学改性中,还原剂-1的处理效果要优于还原剂-2的,还原剂-1处理后的蛋白游离巯基含量达到15.25μmol/g,So值也达到最大,为15.34。
     通过研究改性、原始PPC在不同pH和离子强度条件下的动态流变学性质、质构性质和热变性温度等变化,确定了在pH7.0时,PPC、超声处理PPC和还原剂-1处理PPC的最低凝胶点为16%,14-16%和12%(gpro./ml);当溶剂为0.1mol/LNaCl溶液时,原始PPC的最低凝胶点在自然pH6.73和7.0时为14%, pH3.0时为12%;揭示了改性、原始PPC溶解过程的复杂性及流变学性质与质构特性之间具有相关性,即在pH3.0时,盐离子的加入有利于蛋白形成强的凝胶,而pH7.0时,盐离子的加入不利于蛋白形成凝胶,但随Na盐离子浓度的增加,蛋白的热变性温度和吸收焓显著增加;蛋白的复合模量(G*)、贮能模量(G’)与蛋白的凝胶硬度呈极显著正相关,且流变性质中的G*和G’及质构性质中的粘结力值是六个指标中最具代表样品胶凝性的指标,它们累计贡献率达到90.9023%。
     通过分析不同溶剂溶解改性、原始PPC分子间的作用力、采用红外光谱分析改性、原始PPC二级结构、氨基酸组成分析和显微结构观察等方法,初步推测原始PPC蛋白中主要是以二硫键、非共价键、分子间次级键和共价键为主要分子间作用键;经超声处理后,蛋白中的疏水键以及疏水区域内的静电和氢键作用成为分子间主要的作用键;经还原剂-1处理后,蛋白中以二硫键结合的蛋白含量很低,但是仍存在很多分子间次级键和非共价键等。蛋白经改性处理后,蛋白依旧是由大分子蛋白结构,虽然变松散,但仍是有序的结构而不是随意伸展的肽链。
     采用荧光光谱扫描、荧光淬灭和紫外光谱扫描等方法测定改性、原始PPC三级结构结果可知,改性处理后有更多的Trp暴露于蛋白质分子表面;采用流变仪测定蛋白溶液的表观粘度变化结果可知,改性后蛋白的低剪切粘度要大于原始蛋白的表观粘度,且对剪切速率的依赖性也较低。改性、原始PPC受NaCl浓度影响不相同,由此推断在溶液中,原始PPC蛋白分子间的相互作用力是除静电相互作用外的其他共价键和次级键作用力,改性蛋白分子间的相互作用力是由静电相互作用占主导的,且蛋白质中含有较高比例的非极性区域。二价盐离子(Ca2+)充当了“盐桥”的作用,使蛋白质-盐-蛋白质形成了大分子的聚集体,蛋白分子间发生交联,促进了胶凝作用。
     研究了改性、原始PPC的乳化能力,乳化油稳定性和乳化型碎肉制品(ECMP)稳定性及不同的添加量对ECMP得率、质构特性和感官评价的影响,结果表明:原始PPC的乳化能力较差,而改性处理PPC与大豆分离蛋白的乳化能力相当;不同蛋白ECMP的相应质构性质优劣依次顺序为:还原剂-1处理PPC≈大豆分离蛋白>超声处理PPC>PPC;改性、原始PPC不同的添加量对ECMP得率和质构特性的影响趋势基本一致,即随添加量的增加,ECMP得率和质构特性呈下降趋势;改性、原始PPC的添加量与ECMP产品得率呈显著负相关,产品凝胶弹性与质构评价总评分、凝胶粘结力呈显著正相关;而还原剂-1处理PPC ECMP产品凝胶质构性质的各指标之间存在显著的正相关关系,而且各指标与质构评价之间存在显著的正相关。
Preparing peanut oil by direct cold pressing could produce the defatted peanut flour synchronously. Although protein in flour remained nature properties, but the protein content was relatively low (only contented 50-55%), the solubility was limited, the gelatin properties was not good, the formability was very bad when adding to the meat product, extremely easy to disperse. In view of above questions, the present paper toke defatted peanut flour as a raw material, prepared the functional peanut protein concentrate by alcohol extraction and modification technology, studied their gelatin properties and gel-forming mechanism simultaneously, then initially discussed their applications in the meat product, which were for the purpose of laying a foundation for further discussing the relations between the modified protein structure and the functional properties, provided the theory basis for the application of functional peanut protein concentrate in meat product.
     The effect of different preparation methods on the functional properties of peanut protein concentrate (PPC) was compared, one preparation method- ethyl alcohol extraction method was determined, by which could produce environment-friendly PPC with high protein content and good functional properties. Through single factor experiment and orthogonal circumrotation experiment to optimize the technological parameter, the results were: solid and solvent ratio was 1:9.3, ethyl alcohol concentrate was 67.35%, extraction temperature was 36.85℃. The confirmation experiment result indicated that PPC (protein content>70% on dry basis) could be produced under this parameter.
     Take self-made PPC as raw material, the gelatin property of PPC was improved by using the heat treatment, high speed agitation processing, ultrasonic processing, microwave processing and adding reducing agent-1 and the reducing agent-2. In the physical modification, the heat treatment, high speed agitation processing and the ultrasonic radiation processing were extremely remarkable to influence in the–SH/SS- content in protein (P<0.01), in which was also the highest by the ultrasonic radiation processing. Under the ultrasonic radiation processing, -SH content reached to 11.44μmol/g, -SS- content reduced to 21.06μmol/g, superficial hydrophobic index was 12.14. In chemistry modification, the reducing agent-1 processing had better effect than that of the reducing agent-2,–SH content achieved 15.25μmol/g, superficial hydrophobic index also achieved highest, was 15.344in protein when treated by reducing agent-1.
     Through research on the vary of dynamic rheology , texture profile properties and thermotropy temperature in the modification/primitive PPC under different pH and ion intensity condition, the lowest gelatin spot of PPC, ultrasonic processes PPC and the reducing agent-1 processes PPC had been determined as 16%,14-16% and 12% (gpro. /ml) when pH 7.0, respectively. When the solvent was the 0.1mol/LNaCl solution, the lowest gelatin spot of primitive PPC was 14% and 12% under nature pH and pH3.0; the complexity dissolution process of the modified/primitive PPC and the relevance between rheology properties and texture profile properties were shown that the salty ion addition was advantageous to form the strong gelatin in the protein when pH value was 3.0, the salty ion joins did not favor the protein to form the gelatin when pH value was 7.0, but protein thermotropy temperature and absorption enthalpy were remarkably increased along with Na salt ion concentration increased; protein compound module (G*), the stored energy module (G') had extremely positive correlation with protein gelatin hardness, also the G* and G' in rheology properties and cohesiveness in texture profile properties were the mostly representational targets in six targets which could represent the target of sample gelatin, their contribution achieved 90.9023%.
     Different solvent dissolution of modification/primitive PPC, the secondary structure of modification / primitive PPC by FT-IR, amino acid composition and microstructure observation were used to analysis the vary structure of modification/primitive PPC. The results were that the–SS–, the non-covalent bond, the intermolecular secondary bond and the covalent bond were surmised as the main intermolecular action bond of primitive PPC. Hydrophobia bond along with static interaction in hydrophobia region and the hydrogen bond became the main intermolecular action bond after ultrasonic processing. There still had many intermolecular secondary bond and the non-covalent bond in the protein though the–SS– content was low after reducing agent-1 processing. The protein was still conformed by the macro-molecule protein structure after modified processing, although tight structure became loose, but still was the order structure, not the peptide chain which extended at will. The tertrary structure of a protein was determined by using fluorescence spectrum scanning, fluorescence quenching and ultra-violet spectrograph scanning. The results showed that more Trp were exposed in the protein molecule surface after modified processing. The apparent viscosity changes were determined by using rheometer, the result showed that shear viscosity of protein after the modification under low rate was bigger than that of primitive protein, which also had low dependence on shear rate. The NaCl density had different effects on modified/primitive PPC, from which we can deduce that in the solution, intermolecular mutual action of primitive PPC was other covalent bonds and the secondary bond action besides the electrostatic interaction. Intermolecular mutual action of modified protein was mainly occupied by the electrostatic interaction, also modified protein included high proportion of non-polar region. Bivalence salt ion (Ca2+) acted as“salt bridge”, caused the protein-salt-protein to form the macro-molecule aggregate, then the protein was cross-linked which promoted protein to form as gel.
     The emulsified ability, emulsified oil stability, the ECMP stability of modified/primitive PPC and the effect of different protein addition on ECMP yield, texture profile properties and the sense organ appraises were studied. The results indicated that the emulsified ability of primitive PPC was bad, but the modified PPC had quite the same emulsified ability as that of soybean protein separate. The quality order of corresponding texture profile properties of ECMP with different proteins was in turn: the reducing agent-1 processing PPC≈soybean protein separate > ultrasonic processes PPC>PPC. The effect tendency of different protein addition on ECMP yield, texture profile properties was the same, thus ECMP yield and texture profile properties assumed the drop tendency when the addition increased, the addition of modified/ primitive PPC assumed the remarkable negative correlation with ECMP yield, the gelatin elasticity, the sense organ appraisal and gelatin cohesiveness of product had been positive connected, and various targets of texture profile properties in ECMP with reducing agent-1 processes PPC had the remarkable correlation, moreover there was a remarkable correlation between various targets and the sense organ appraisal.
引文
[1]贝惠玲.花生蛋白粉生产工艺.粮油加工与食品机械,2001,8:46~47
    [2]陈复生,李里特,辰已英三.分子力对大豆蛋白透明凝胶作用机理研究.郑州工程学院学报,2001,22(2):11~16
    [3]陈复生.大豆蛋白凝胶光学性质及其应用的研究[博士学位论文].北京:中国农业大学,2002,p98
    [4]董贝森,朱海涛,于跃芹.花生蛋白粉溶液流变学特性及功能性的研究.农业工程学报,1999,15(1):251~252
    [5]樊云霞,阴景喜,闫开明,等.花生脱脂蛋白粉制取新工艺.粮油食品科技,2000 ,8(1):26~27.
    [6] GB5511~85附录A.大豆水溶性蛋白测定方法
    [7]高焕春,李文英,吕晓玲.花生蛋白质稳定性及加工品工艺条件的研究.中外技术情报,1995,12:39~40
    [8]郭兴凤,张艳红,陆慧等.大豆分离蛋白凝胶制备和凝胶质构特性研究.中国粮油学报,2005,20(6):68~70,75
    [9]韩志慧,郭富常,陈锦屏.不同热处理对花生蛋白主要功能性质的影响.食品工业科技,2000,21(6):37~38
    [10]鸿巢章二,桥本周久。水产利用化学.北京:中国农业出版社,1994.
    [11]胡坤,赵谋明,林伟锋,等.物理作用力对大豆分离蛋白凝胶质构特性的影响.食品科学,2005,26(6):69~73
    [12]胡晓军,姜延程.花生分离蛋白质基础研究.郑州粮食学院学报,1998,19(1):13~18
    [13]胡子槐.花生“水溶法”取油和蛋白新工艺探讨.中国油脂,1992(S1):57~62
    [14]华欲飞,顾玉兴.功能性大豆浓缩蛋白的性能及应用研究.中国油脂,1997,22(1):22~24
    [15]华欲飞.醇法大豆浓缩蛋白的物理改性[博士学位论文].江苏:无锡轻工学院,1993.
    [16]华欲飞.大豆分离蛋白性能优化关键技术.中国油脂,2001,26(6):79~81
    [17]黄国平.玉米醇溶蛋白的超声波提取、改性与释药性能的研究[博士学位论文].广州:华南理工大学,2004,p38
    [18]焦剑,雷渭媛.高聚物结构性能与测试.北京:化学工业出版社,2003
    [19]李里特,陈复生,辰已英三.蛋白质凝胶光学性质的研究进展,粮食加工新技术-中日食品新技术研讨会论文集,北京:中国轻工业出版社,2000年10月
    [20]李里特著,食品物性学,中国农业出版社,1998年2月
    [21]李明姝,姚开,贾冬英等.碱提酸沉法制取花生分离蛋白的优化条件.中国油脂,2004, 29(11):21~23
    [22]李明珠,姚开,贾冬英,等.碱提酸沉法制取花生分离蛋白的优化条件.中国油脂,2004,29(11):21~23.李娜.我国花生产业的现状与发展前景.粮油食品科技,2008,16(6):38~39
    [23]李迎秋,陈正行.高压脉冲电场对大豆分离蛋白功能性质的影响.农业工程学报,2006,22(8):194~198.
    [24]李云,华欲飞,李向红.大豆蛋白预先热聚集对其凝胶性质的影响.食品科技,2007,2:29~32
    [25]林勉,刘通讯.内肽酶和端解酶水解花生籽蛋白的研究.食品科学,2000,16(1):22~25
    [26]刘大川,胡小泓,张维农.花生粉、花生浓缩蛋白制备工艺及功能特性的研究.中国油脂,1996, 21(3):5~7.
    [27]刘大川,张维农,胡小泓.花生蛋白制备工艺和功能特性的研究.武汉工业学院学报,2001 ,4:1~3
    [28]刘大川,张维农,胡小泓.超滤膜法花生分离蛋白的制备及功能特性研究.中国油脂,1998(23)1:14~16
    [29]刘志强,何昭青.水酶法花生蛋白质提取及制油研究.中国粮油学报,1999,14(1):36~39
    [30]刘志强,曾云龙,刘擎.水酶法提油工艺对花生蛋白功能特性的影响.食品工业科技,2004,25(1):63~64
    [31]刘志同.中国植物油料蛋白生产现状与发展趋势.中国油脂,2004, 29(10):5~1
    [32]卢寅泉,肖红媚,郑宗坤.花生蛋白加工功能性改善的研究.食品科学,1995,16(6):9~14
    [33]陆晓彬,刘秀河,刘先华,等.低变性花生蛋白粉生产工艺研究.粮食与油脂,2003,6:8~9
    [34]牟德海.OPA柱前衍生反相高效液相色谱法测定氨基酸含量.色谱,1997,15(4):319~321
    [35]潘秋琴,沈蓓英,程霜.花生蛋白质的磷酸化改性.中国油脂,1997,22(1):25~27
    [36]屈宝香,罗其有,张晴,等.中国花生产业发展与食用植物油供给安全保障分析.中国食物与营养,2008,11:13~15
    [37]沈忱.酸酶水解脱脂花生粉制取持水剂的研究.中国粮油学报,2001,16(5):36~39
    [38]沈同,王镜岩.生物化学(上),二版.北京:高等教育出版社,1990
    [39]陶慰孙,李惟,姜涌明主编.蛋白质分子基础.第二版.北京:高等教育出版社,1995,p247~254,260~263
    [40]万书波.中国花生栽培学.上海:上海科学技术出版社,2003,12:1
    [41]王飞镝,崔英德,周智鹏.乙醇、氯化钙对大豆蛋白凝胶性影响的研究.食品工业科技,2005,26(4):95~97
    [42]王凤翼,钱方.大豆蛋白质生产与应用.北京:中国轻工业出版社.2004.
    [43]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究[博士学位论文].广州:华南理工大学,2007,p73
    [44]王延华,邹晓莉主编.蛋白质理论与技术.北京:科学出版社,2004
    [45]王瑛瑶,王璋.水酶法从花生中提取蛋白质与油—碱提取工艺研究.食品科技,2002 ,7:6~8.
    [46]王瑛瑶,王璋.水酶法从花生中提取蛋白质与油—酶解工艺参数.无锡轻工大学学报,2003 ,22(4) :60~64.
    [47]王璋等译.食品化学,中国轻工业出版社,1991
    [48]韦一能,陈元发,陈全斌等.花生蛋白的主要种类和等电点的研究.广西科学,1995,2(4):1~5
    [49]温世谦.食用脱脂花生粉的制取与应用.中国粮油学报,1988,2:17~22
    [50]吴海文,王强,马铁铮,任嘉嘉.转谷氨酰胺酶催化花生浓缩蛋白对凝胶硬度和弹性的影响.中国油脂,2009,53(6):
    [51]吴海文,王强,周素梅.花生蛋白及其功能性研究进展.中国油脂,2007, 32(9):7~11.
    [52]项秀兰,李楠.花生蛋白的提取与利用.江西教育学院学报(自然科学),1996,17(6):48~49
    [53]谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究.高等学校化学学报.2003,24(2):226~231
    [54]熊健,叶君,梁文芷.超声方法对纤维素超分子结构的影响.声学学报,1999,24:65~70
    [55]许永录.脱脂大豆粉的功能性质及其在食品工业中的应用.中国油脂, 1995, 20 (5) : 36
    [56]杨晓泉,陈中,赵谋明.花生蛋白的分离及部分性质研究.中国粮油学报,2001,16(5):25~28
    [57]仪凯,周瑞宝.中性蛋白酶水解花生粕的研究.中国油脂,2005,30(7):71~73
    [58]张伟,徐志宏,孙智达,等.花生粕提取蛋白质工艺的优化研究.食品工业科技,2006,27(1):125~127,131
    [59]张世宏.低变性花生蛋白粉生产工艺的研究.武汉工业学院学报,2003,22(2):10~11,18
    [60]张涛,江波,王璋.鹰嘴豆分离蛋白的胶凝性.食品科学,2006,27(8):108~113
    [61]张涛.鹰嘴豆分离蛋白的制备及其功能性质研究[博士学位论文].无锡:江南大学,2006,79
    [62]张昕蕾,倪德培,江志炜.花生及花生蛋白的制取技术进展.中国油脂,1998,23(4):3~5
    [63]张秀青,刘珉.中国花生产业国际竞争力实证研究.河南农业科学,2008,11:42~46
    [64]张毅方.功能性大豆浓缩蛋白改性机理与加工技术.大豆通报,2002,4:21~22
    [65]张宇昊,王强,周素梅,马良.分步酶解制备花生短肽的研究.农业工程学报,2008,24(5):275~279
    [66]周瑞宝.花生加工技术.北京:化学工业出版社,2003.
    [67] Abberrahim A, Al-Bastaki N.Modeling of an RO water desalination unit using neural networks. Chemical Engineering Journal, 2005, 114:139~143
    [68] Adebowale K.O., Lawal O.S. Foaming, gelation and electrophoretic characteristics of mucuna bean (Mucuna pruriens) protein concentrates. Food Chem., 2003, 83: 237~246
    [69] Aguilera J. M. Gelation of whey proteins. Food Technol., 1995, 49: 83~89
    [70] Ahmedna M., Pronyawiwatkul W., Rao R M. Solubilized wheat protein isolate: functional properties and potential food applications. Journal of Agricultural and Food Chemistry, 1999, 47 (4):1340~1345.
    [71] Alonso R., Orue E., Zabalza M. J., et al. Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins. Journal of Science Food Agriculture, 2000, 80(2):397-403
    [72] Aminlari M., Ferrier L.K., Nelson A.I. Protein dispersibility of spray-dried whole soybean milk base: effect of processing variables, 1977, 42: 985~988
    [73] Ana Paula Batista, Carla A M. Portugal, Isabel Sousa, et al. Accessing gelling ability of vegetable proteins using rheological and fluorescence techniques. International Journal of Biological Macromolecules, 2005, 36:135~143.
    [74] Arnfield S.D., Murray E.D., Ismond M. A. H. Effect of salt on the thermal stability of storage proteins from fababean(Vicia Faba). Journal of Food Science, 1986, 51:371~377
    [75] Arnfiled S.D., Murray E. D., Ismond M. A. H. Dependence of thermal properties as well as network microstructure and rheology on protein concentration for ovalbumin and vicilin. Journal of Texture Studies, 1990a, 21:191~212
    [76] Arnfiled S.D., Murray E. D., Ismond M. A. H. Influence of salts on the microstructural and rheological properties of heat-induced protein networks from ovalbumin and vicilin. Journal of Agricultural and Food Chemistry, 1990b, 38:1335~1343
    [77] Babajimopoulos M., Damodaran S., Rizvi S. S., et al. Effects of various anions on the rheological and gelling behavior of soy proteins: thermodynamic observations. J. Agric. Food Chem., 1983, 31(6): 1270~1276
    [78] Batal A. N. Dale, Cafe M. Nutrient Composition of Peanut Meal. J. Appl. Poult. Res., 2005, 14:254~257
    [79] Benjakul S., Visessanguan W., Srivillai C. Porcine plasma protein as proteinase inhibitor in bigeye sannpper (Priacanthus tayenus)muscle and surimi. Journal of the Science of Food and Agriculture, 2001a, 81(5):1039~1046
    [80] Benjakul S., Visessanguan W., Ishizaki S., & Tanaka M. Difference in gelation characteristics of natural actomyosin from two species of Bigeye snapper, Priacanthus tayenus and Priacanthus macranthus. Journal of Food Science, 2001b, 66(9):1311~1318.
    [81] Beuchat L R. Functional and electrophoretic characteristics of succinylated peanut flour proteins. Journal of Agricultural and Food Chemistry, 1977, 25(2):258~261.
    [82] Beveridge T., Toma S. J., Nakai S. D. Determination of SH- and SS-groups in some food proteins using Ellman’s reagent. Journal of Food Science, 1974, 39:49~51
    [83] Bourne M C. Texture profile Analysis. Food Technology, 1978, 32: 62~72
    [84] Bourne Y., Roussel A., Frey M., et al. Three-dimensional structure of complexes of Lathyrus ochrus isolection I with glucose and mannoe; fine specificity of the monosaccharide-bindingsite. Proteins, 1990, 8:365~376
    [85] Bulcke V.D., Bogdanov B.N., Rooze D. Structure and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000, 1:31~38
    [86] Byler DM, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 1986 , 25(3): 469~487
    [87] Chakraborty P. Coconut Protein Isolate by ultrafiltration[A]. In: LeMeguer M, Jelen P, Editors, Food Engineering and Process Applications Vol.2. New York: Elsevier Applied Science Publishers, 1986:308~315
    [88] Cheftel J C., Cuq J L., Lorient D. Food Chemistry: Amino Acids, Peptides and Proteins. Fenema O R Ed. Acribis, Zaragoza, Spain:1993
    [89] Chen Y.U., Liao M.L., Dunstan D. E. The rheology of K+-λ-carrageenan as a weak gel. Carbohydr. Polym, 2002, 50:109~116
    [90] Chronakis I. S. Network formation and viscoelastic properties of commercial soy protein dispersions: effect of heat treatment, pH and calcium ions. Food Res. Int.,1996, 29:123~134
    [91] Creighton T. E. Proteins: Structures and Molecular Properties. New York: W. H. Freeman and Company, 1984.
    [92] Reddy D.V. R. K. Thirumala-Devi. Peanuts, Virus and virus-like diseases of major crops in developing countries, 2003, p.397~422
    [93] Dabji F., Jerome P. V. Effect of physical and chemical processing factors on the redispersibility of dried soy milk proteins. Cereal Chem., 1970, 47: 571~578
    [94] Daubert C.R., Foegeding E.A. Rheological principles for food analysis. In Chemical analysis of foods.(S.S. Nielsen, ed.). Jones and Bartlett, Boston, 1998
    [95] David Oakenfull, John Pearce, and Ra1Ph W. Burley. Protein gelation. Food Proteins And Their Applications, SDAP Press, France, 1997, pp 111~142.
    [96] Dubis M.Colorimetric method for determination of sugar and related substances. Anal Chem., 1956, 28:349~352
    [97] Duh P.D., Yen G.C.Antioxidant efficacy of methanolic extracts from peanut hulls.Journal of the American oil chemists’society, 1993, 70(4):383~385
    [98] Eliane D., Laetitia P., Stéphanie R., et al. High pressure–low temperature processing of food proteins. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics, 2006, 1764(3): 599~618
    [99] Enders J. G., Monagle C. W. Nonmeat Protein Additives in, Advances in Meat Research, 1976, 3: 331
    [100] Ferry J. Protein gels. Advance in Protein Chem, 1984, 4:1~78
    [101] Friedman M., Grosjean O. K., Zahnley J. C. Inactivation of soya bean trysin inhibitors by thiols. Journal of Science of Food and Agriculture, 1982, 33: 165~172
    [102] Fuhrmeister, Meuser H., Fuhrmeister F. M. Impact of processing on functional properties of protein products from wrinkled peas. Journal Food Engineering, 2003, 56(4):119~129.
    [103] FumitoTani et al. Heat-induced transparent gel from hen egg lysozyme by a two-step heating method. Biosci Biotech. Biochem., 1993, 57(2)209~214
    [104] Gregory A. Gharst. Biochemical and Rheological Characterization of Peanut Proteins Crosslinked with Microbical Transglutaminase.North Carolina State University, 2007
    [105] Gurpreet K. C., Sogi D. S. Functional properties of rice bran protein concentrates. Journal of food Engineering, 2007, 79(2):592~597
    [106] Haiwen Wu, Qiang Wang, Tiezheng Ma, Jiajia Ren.Comparative studies on the functional properties of various protein concentrate preparations of peanut protein. Food Research International, 2009, 42:343~348
    [107] Heertje I. Structure and function of food products: a review. Food Structure. 1993, 12:343~364.
    [108] Hermannsson, A.M. Aggregation and denaturation involved in gel formation, In functionality and protein structure, A. pour-EI(Ed.), p.81, American Chemical Society Washington. DC, 1979
    [109] Heymnn, E. The sol-gel transformation. Hermann et Cie, Paris, 1936
    [110] Jackson M. Mantsch H H. The use and misuse of FT-IR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol., 1995, 30:95~120
    [111] Jacoba M S, Renkema. The effect of pH on heat denaturation and gel forming properties of soy proteins. Journal of Biotechnology, 2000, 79:223~230
    [112] James F., Steffe P. E. Rheological methods in food process engineering second ed. Freeman Press. Use. 1996
    [113] Jeng Yune Li, An I Yeh, Kang Lin Fan. Gelation characteristics and morphology of corn starch/soy protein concentrate composites during heating. Journal of Food Engineering, 2007, 78 (4):1240~1247
    [114] Jimenez C. F., Fernsndez P., Carballo J., et al. Frozen storage of Bologna sausages as a function of fat content and of levels of added starch and egg white. J Food Sci, 1998, 63(4): 656~6591
    [115] Justine Mouécoucou, Christian Villaume, Christian Sanchez, et al. Effects of gum arabic, low methoxy pectin and xylan on in vitro digestibility of peanut protein. Food Research International, 2004, 37(8):777~783
    [116] Karren G., Carrasquillo Mirada. Structure-guided encapsulation of model proteins into biocompatible polymers. Dissertation of university of Puerto Rico, 2001
    [117] Kato A., Nakai S. Hydrophobicity determined by fluorescence probe method and its correlation with surface properties of proteins. Biochemica et Biophysica Acta, 1980, 624(1):13~20
    [118] Kella N. K. D., Poola I. Sugars decrease the thermal denaturation and aggregation of arachin. Journal of Peptide and Protein Research, 1985, 26: 390~399.
    [119] Kella N. K. D., Rao M. S. N. Effect of cetyl trimethyl ammonium bromide on the heat-induced denaturation and protein-protein interactions of arachin at pH 3.6. International Journal of Peptide and Protein Research ,1985, 26(2): 79~186.
    [120] Kinsella J. E. Functional properties of soy proteins. Journal of American Oil Chemist Society, 1979, 56(3):242~258.
    [121] Krause J. P. Krause. Comparison of the effect of acylation and phosphorylation on surface pressure, surface potential and foaming properties of protein isolates from rapeseed (Brassica napus).Industrial Crops and Products, 2002, 15(3):221~228.
    [122] Krimm S., Bandekar J. Vibrational analysis of peptides polypeptides, and proteins. V. Normal vibrations of beta -turns. Biopolymers , 1980 , 19 (1):1~3
    [123] Kumar K. D. N., P. Nandi, Rao M. S. N. Reversible gelation of arachin. International journal of peptide protein research, 1980, 15: 67~72
    [124] Lakemond C.M.M., Harmen H. J. Gelation of soy glycinin: influence of pH and ionic strength on network structure in relation to protein conformation. Food Hydrocolloids, 2003,17:365~377
    [125] Lau B. K., Wang Q. Q., Sun W., Li L. Micellization to gelation of a triblock copolymer in water: thermoreversibility and scaling. J. Polym. Sci. Part B: Polym. Phys, 2004, 42: 2014~2025
    [126] Lawal O.S. Functionality of African locust bean(Parkia biglobssa) protein isolate: Effects of pH, ionic strength and various protein concentration. Food Chemistry, 2004, 86(4):345~355.
    [127] Lawhon J. T., Manak L. J., Rhee K. C. Production of Oil and Protein Food Products from Raw Peanuts by Aqueous Extraction and Ultrafiltration. Presented at the 40th Annual Meeting of the Institute of Food Technologists, New Orleans, La., 1980, 6: 8~11,
    [128] Lee C. M. Mechanisms of fat dispersion in comminutde meat protein matrices, in Engineering and Food, Vo l. 1M c Kenna, B Ed, Elsevier N. Y. 1984: 403
    [129] Linares E, Larre C, Lemeste M, et al. Emulsifying and foaming properties of gluten hydrolysates with an increasing degree of hydrolysis: Role of soluble and insoluble fractions. Cereal Chemistry, 2000, 77(4):414~420.
    [130] Liompart M. P., Lorenzo R.A., Cela R., et al. Evaluation of supercritical fluid extraction, microwave~assisted extraction and sonication in the determination of some phenolic compounds fron various soil matrices. Journal of Chromatography A, 2007, 74(1-2): 243~251
    [131] Liu Y. M., Lin T. S., Lanier T. C. Thermal denaturation and aggregation of actomyosin from Atlantic croaker. Journal of Food Science, 1982, 59(3):101~105
    [132] Lucassen Reynders E. H. Interfacial viscoelasticity in emulsions and foams. Food Stru. formulas, J. Agric. Food Chem., 1997, 45:4635~4638
    [133] Ma C. Y., Holme J. Effect of chemical modifications on some physicochemical properties and heat coagulation of egg albumen. Food Sci, 1982, 47:1454~1459
    [134] MacRitchie F. Mechanical degradation of gluten proteins during high speed mixing of doughs. Journal of Polymer Science Symposium, 1975, 49:85~90
    [135] Makri E., Papalamprou E., Doxastakis G. Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocolloids, 2005, 19(3):583~594
    [136] Marin G. Rheological Measurements(.A.A.Collyer and D. W. Clegg. Eds) Elserier. London.1998,p297
    [137] Mason T. J. L., Paniwnyk J. P. The uses of ultrasound in food technology. Ultrasound Sonochemistry, 1996, 3:253~260
    [138] Matsumura Y., Mori T. Gelation. In: Methods of Testing Protein Functionality (ed. G. M. Hall), Blackie Academic and Professional, 1996, pp, 76~109Matulis R. J., Mc Keith F. K., et al. Sensory characteristic of frankfurters as affected by salt, fat, soy protein, and carrageenan. Food Sci, 1995, 60(1): 48~541
    [139] Mecham D.K. Changes in flour protein during mixing. Cereal Science Today, 1968,13: 371~373
    [140] Meng G. T., Ma C. Y. Thermal properties of Phaseolus angularis (red bean) globulin. Food Chemistry, 2001, 73: 453~460
    [141] Meng G. T., Ma C.Y. Thermal gelation of globulin from Phaseolus angularis (red bean). Food Res. Int., 2002, 35: 377~385
    [142] Michon C., Cuvelier G., Launaya B., Parke A. Viscoelastic properties ofι-carrageenan /gelatin mixtures. Carbohydrate polymers, 1996, 331:161~169
    [143] Mori T., Nakamura T., Utsumi S. Behavior of intermolecular bond formation in the late stage of heat induced gelation of glycinin. J. Agric. Food Chem., 1986, 34:33~36
    [144] Murphy P.A., Song T., Buseman G., et al. Isoflavones in soy-based infant formulas. J. Agric. Food Chem., 1997, 45:4635~4638
    [145] Nakai, S & Li Chan, E Hydrophobic Interact ions in Food Systems CRC Press, 1988: 87~104
    [146] Ng P. K. W., Xu C., Bushuk W. Model of glutenin structure based on farinograph and electrophoretic results. Cereal Chemistry, 1992, 68:321~322
    [147] Nishinari K., Kohyama K., Zhang Y., et al. Rheological study on the effect of the A5 subunit on the gelation characteristics of soybean proteins. Agri. Biol. Chem.,1991, 55:351~355
    [148] Nystrǒm B., Walderhaug H. Dynamic Viscoelasticity of an Aqueous System of a Poly (ethyelene oxide)-Poly (propylene oxide)-Poly(ethylene oxide) Triblock Copolymer during Gelation. J. Phys. Chem., 1996, 100: 5433~5439
    [149] Olsen.H.S., Alder N. J. Industrial production and applications of a soluble enzymatic by drolgzate of soy protein.Process Biochem,1979,14(7):6~11
    [150] Opstvedt J., Miller R., Hardy R. W. Heat induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo Gairdneri). Journal of agricultural and Food Chemistry, 1984, 32: 929~935
    [151] Ould Eleya M., Turgeon S. L. Rheology ofκ-carrageenan andβ-lactoglobulin mixed gels. Food Hydrocolloids, 2000, 14:29~40
    [152] Owusu Apenten, R. K. Food Protein Analysis: Quantitative Effects on Processing. New York: Marcel Dekker, Inc., 2002
    [153] Pearce K. N., Kinsella J. E. Emulsifying properties of proteins: evaluation of turbidimentric technique. Journal of Agricultural and Food Chemistry, 1978, 26(3):716~723
    [154] Penny M., Kris E., Thomas A. P., et al. High-monounsaturated fatty acid diets lower both plasmacholesterol and triacylglycerol concentration. J. Am J Ntr , 1999 ,70:1009~1015
    [155] Petmccelli S., Anon M. C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates(2)Surface Properties. J. Agric. Food Chem, 1994, 42(10):2170~2176
    [156] Pinterits A., Arntfield S. D. Improvement of canola protein gelation properties through enzymatic modification with transglutaminase. L W T-Food Science and Technology, 2008, 41(1):128~138.
    [157] Plietz, P., Drescher B., Damaschun G. Relationship between the amino acid sequence and the domain structure of the subunits of the 11S seed globulins. International Journal of Biological Macromolecules, 1987, 9(6): 161~165.
    [158] Puppo M. C, Anon M. C. Rheological properties of acidic soybean protein gels: salt addition effect. Food hydrocolloids, 1999, 13:167~176
    [159] Relkin P. Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters ofβ-lactoglobulin: their role in heat-induced sol-gel state transition. International journal of biological macromolecules, 1998, 22(3):59~66
    [160] Sánchez A. C., Burgos J. Factors affecting the gelation properties of hydrolyzed sunflower proteins. J. Food Sci., 1997, 62 (2): 284~288
    [161] Schmidt R. H., B. L., Illingworth E. M. Ahmes. Heat-induced gelation of peanut protein/whey protein blends. Journal of Food Science, 1978, 43:613~621
    [162] Schmidt R. H., Mendelsohn P. H. Heat stability of peanut/milk protein blends. Journal of Food Processing and Preservation , 1977, 1: 263~270.
    [163] Shahidi,Wanasundara, F. Shahidi, etc. Effect of acylation on flax protein functionality. American Chemical Society, 1998, 4:96~120.
    [164] Shand P. J., Ya H., Pietrasik Z., et al. Physicochemical and textural properties of heat-induced pea protein isolate gels. Food Chemistry, 2007, 102(4):1119~1130.
    [165] Sharma V., Srinivas V. R. Surolia A. Cloning and sequencing of winged bean (Psophocarpus tetragonotobus) basic agglutinin(WBA I): presence of second glycosylation site and its implications in quaternary structure. FEBS Letters, 1996, 389:289~292.
    [166] Shchipunov Yu A., Hoffmann H. Thinning and thickening effects induced by shearing in lecithin solutions of polymer-like micelles. Rheol Acta, 2000, 39:542~553
    [167] Shimada K., Matsushita S. Relationship between thermo-coagulation of proteins and amino acid composition. J. Agric. Food Chem., 1980, 28:413~417
    [168] Singh H., MacRitchie F. Use of sonication to probe wheat gluten structure. Cereal Chemistry, 2001, 78(5):526~529
    [169] Singh N.K., Donovan G. R., Batey I. L., et al. Use of sonication and size-exclusion HPLC in the study of wheat flour protein. I. Dissolution of total protein in unreduced form. Cereal Chemistry. 1990, 67: 150~161
    [170] Singh R. K., Sarker B.C., Kumbhar B.K.,et al. Response surface analysis of enzyme assisted oil extraction factors for sesame, groundnut and sunflower seeds. J. Food Sci. and Technol., India,1999,36:511~514
    [171] Sosulski F., Fleming S. E. Chemical functional and nutritional properties of sunflower protein products. Journal of American Oil Chemist Society, 1977, 54(2):100~104.
    [172] Sugarman, N. Process for simultaneously extracting oil and protein from oleaginous meterials. U.S. Patent, 1956, 2762~2820.
    [173] Susi H., Byler D.M. Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol, 1986 , 130 : 290~311.
    [174] Suslick K S. Sonochemistry. Science, 1990, 247:1439~1455
    [175] Tanaka K., Bushuk W. Changes in flour protein during dough mixing.ⅢAnalytical results and mechanisms. Cereal Chemistry, 1973, 50:605~612
    [176] Sen C.C. Effect of oxidizing and reducing agents on changes of flour protein during mixing. Cereal Chemistry, 1969, 46: 435~442
    [177] Umeya J., Yamauchi F., Shibasaki K. Hardening and softening properties of soybean protein-water suspending systems. Agric. Biol. Chem., 1980, 44:1321~1326.
    [178] Van Den Bulcke A. I., Bogdanov B., De Rooze N., et al. Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules, 2000, 1:31~38
    [179] Van Kleef. Thermally induced protein gelation: gelation and rheological characterization of highly concentrated ovalbumin and soy protein gels. Biopolymers, 1986, 25:31~59.
    [180] Walther P., Müller M. Double-layer coating for field-emission cryo-scanning electron microscopy-Present state and applications. Scanning, 1997, 19: 343~348
    [181] Wang C. H. Damidarab S. Thermal destruction of cystein and cystein residues of soy protein under conditions of gelation. J. Food Sci., 1990, 55(4):1077~1080.
    [182] Wang C. H., Damodaran S. Thermal gelation of globular proteins: influence of protein conformation on gel strength. J. Agric. Food Chem., 1991, 39:433~438
    [183] Wang Q. Q., Li L., Jiang S. P. Effects of PPO-PEO-PPO triblock copolymer on micellization and gelation of a PEO-PPO-PEO triblock copolymer in aqueous solution. Langmuir, 2005, 21:9068~9075
    [184]
    [185] Yu J M, Ahmedna M, Goktepe I. Peanut protein concentrate: Production and functional properties as affected by processing. Food Chemistry, 2007, 103(1):121~129.
    [186] Yumiko Y. S., Yoshiko W., Michael S., et al. Functional and bioactive properties of rapeseed protein concentrates and sensory analysis of food application with rapeseed protein concentrates. LWT-Food Science and Technology, 2006, 39(5):503~512.
    [187] Zhang, T., Jiang, B., Wang, Z. Gelation properties of chickpea protein isolates. Food Hydrocolloids, 2007, 21(2): 280–286.
    [188] Zheng B., Matsumura Y., Mori T. Relationship between the thermal denaturation and gelling properties of legumin from broad beans .Bioscience, Biotechnology, Biochemistry, 1993, 57:1087~1090
    [189] Zhou H.Y., Liu C. Z. Microwave-assisted extraction of solanesol from tobacco leaves. Journal ofChromatography A, 2006, 1129(3):135~139
    [190] Zledward D.A. Gelation of gelation. In functional properties of food macromolecules: Mitchell J R, Ledward D a. Eds: Elsevier applied science publishers: London, 1986, Chapter 4, 171~201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700