用户名: 密码: 验证码:
磁悬浮直线运动系统的设计与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮直线运动是运用电磁力实现运动体无机械接触地稳定悬浮于直线导轨上方指定位置,同时利用电磁直线驱动技术驱动运动体沿导轨做直线运动。磁悬浮直线运动具有无摩擦、无磨损、无需润滑等优点,这种直线运动装置能提供超精密、高速度的直线定位运动,适合超洁净工作环境,在现代精密制造领域有着非常广泛的应用前景。但由于磁悬浮直线运动系统是一个具有强耦合、强非线性特性的复杂多输入多输出系统,其运动精度和承载特性主要取决于平台的结构参数和控制系统。因此,磁悬浮直线运动系统的设计及高性能解耦控制器的研究具有极其重大的意义。
     本文利用磁悬浮支撑技术和电磁直线驱动技术,设计了一种新型大行程磁悬浮精密快速直线定位运动系统。该系统能提供大行程的超精密快速直线运动,系统由悬浮子系统和直线驱动子系统两部分组成。悬浮子系统由直线导轨、悬浮体及测量反馈系统组成,通过安装在悬浮体内的六对电磁铁实现悬浮体无接触地稳定悬浮于导轨上方指定位置;直线驱动子系统则由永磁定子、可控电磁动子及测量反馈系统组成,以实现悬浮体沿水平导轨方向的大行程直线往返运动。在悬浮子系统中,采用差动式双电磁力驱动结构,大大提高了悬浮体的悬浮刚度。通过有限元软件分析平台在静止和稳定悬浮两种状态下的静力学变形、各阶模态,获得了最优的运动平台结构参数。针对多个电磁铁之间存在的磁场耦合及发热问题,运用有限元方法对电磁铁进行磁场分析和热分析,根据磁场分析结果对电磁铁的结构和空间布局进行了优化,最大程度地减少了电磁铁间的磁场耦合。根据电磁铁的发热量及热流分析结果设计出了电磁铁的冷却装置。为实现磁浮直线运动平台的高性能稳定运动,控制器、功率放大器具有非常重要的作用。本文针对磁浮直线运动系统开发了基于DSP的数字控制器和一种具有可调偏置电流的PWM型开关功率放大器。
     在磁浮直线运动平台的悬浮运动中,由于悬浮体内多对电磁铁间存在明显的动力学耦合,悬浮运动控制成为了整个平台控制的重点和难点。本文首先设计了六个独立的DSP数字控制器,并利用PID控制算法实现了悬浮体的稳定悬浮。由于没有考虑悬浮运动中各个驱动力之间的相互耦合,系统的悬浮精度、动态性能欠佳。为实现平台的高性能解耦运动控制,综合分析了各驱动力之间的耦合特性,并提出了一种利用位置反馈和力反馈相结合的解耦控制策略。通过对平台的悬浮子系统进行控制建模及参数辨识,找出了解耦策略的一种简单表达式并实现了平台各悬浮力之间的动力学解耦控制。
     针对电磁铁内在的强非线性特性,为提高悬浮运动控制器的精度,进一步提出了一种新型的具有自适应能力的二型模糊控制算法,该二型模糊自适应控制算法具有处理各种非线性不确定因素的能力。最终的实验数据显示该自适应二型模糊控制器进一步提高了整个平台的控制精度。
     本文通过对精密磁悬浮直线运动系统的开发和解耦控制方法的研究,对解决未来超精密高速直线定位运动等关键技术问题、提升相关产业装备的质量,缩短相关精密制造装备的研发周期都起到了非常重要的作用。
The magnetic levitation linear motion system employs magnetic levitation mechanism and magnetic linear propulsion motor, and has the potential to achieve ultra-precision, long-range and high-speed motion of an object. It has many advantages over traditional moving mechanisms due to its contact-free and wear-free. It has been widely used in various motion systems such as high-speed maglev trains and frictionless bearings. Therefore, it has become a feasible choice for developing ultra-precision positioning mechanisms. However, maglev transportation system is a complicated nonlinear multi-input multi-output (MIMO) coupling system. The bearing characteristic of maglev platform is not only determined by its structural configuration, but also the controller design. Therefore, it has great significance to investigate a decoupling nonlinear control system for the magnetic suspension platform.
     In this dissertation, a novel maglev transportation platform is constructed for realizing large travel ultra precision high-speed linear motion. The present maglev transportation platform consists of a levitation subsystem and a propulsion subsystem. In the levitation subsystem, six pairs of electromagnets are used to suspend the moving platform. For every pair of electromagnets, differential electromagnet driving mode is employed to provide suspension force. Such differential electromagnet driving gives better suspension stiffness and suspension performance. Through analyzing the magnetic coupling of electromagnets with finite-element (FE) method, an optimized electromagnets spatial distribution is designed. The optimal case uses eight U-shaped and four E-shaped electromagnets to assemble the levitation subsystem, and it greatly diminishes the magnetic coupling effects among electromagnets. With FE method, the heat generation mechanism and heat flow in electromagnet is analyzed and the cooling mechanism is also designed. A special digital DSP controller and a unique PWM power amplifier are designed for the magnetic suspension plate.
     To remove the redundant constraints or dynamic coupling existing among six electromagnets, a decoupling levitation control strategy is developed for the novel maglev transportation system. In the decoupling control strategy, three separate controllers are employed for three electromagnets pairs of four ones, and then by real-time computing the electromagnetic force of the three electromagnets pairs, the decoupling controller creates the corresponding decoupling control signal for the fourth electromagnets pairs. Therefore, the control of the fourth electromagnets pairs follows the changes of other three electromagnets pairs'electromagnetic forces, and the fourth electromagnets pairs bring no wallop to the existed three electromagnets pairs. All four controllers work for their own electromagnets pairs and the coupling effects among them are removed. Additionally, this decoupling levitation strategy facilitates the controller design. The experimental results show that the decoupling levitation control strategy decouples the interactions among four channels perfectly. Moreover, the controllers are simple, effective and easy to be implemented in practice.
     To handle the uncertainties in electromagnets and magnetic suspension stage, a novel Type 2 adaptive fuzzy control method is proposed. Because the T2 fuzzy set is three-dimensional and includes a spatial uncertainty band, the T2 fuzzy set will provide a better capability of modeling uncertainties. In the Type 2 adaptive fuzzy controller, a simple type-reducer is employed to avoid the complex iterative computation. Then to determine the quanity of T2 fuzzy control better than its Tl counterpart, a genetic algorithm is used to optimize the controller parameters and compare their performance under various settings in simulation. Finally, the new Type 2 adaptive fuzzy control method is used to control the present magnetic suspension platform. The experimental control performance verifies that the new method has better control performance and robustness.
     In this dissertation, a novel magnetic decoupling control method is proposed. This study gives great guidance to achieve ultra-precision and high-speed linear positioning movement, and it plays a key role in improvement of the industrial equipments and reduction of R & D periods in precision manufacturing facilities.
引文
[1]冯伯儒,张锦,侯得胜.微光刻技术的发展.微细加工技术,2000,1:1-9.
    [2]姚汉民,周明宝,田宏.迈向21世纪的光刻技术.光电工程,1999,26(1):1-8.
    [3]宋文荣.微电子制芯领域中磁悬浮精密定位平台的研究:[中国科学院研究生院博十学位论文].2004.
    [4]王延风.磁悬浮精密定位工作台机电一体化CAD/CAE集成研究:[中国科学院研究生院博十学位论文].2004.
    [5]Zhou H., Duan J.-a., Guo N. Levitation Mechanism Modeling for a Maglev Transportation System. Journal of Central South University of Technology,2011, in Press.
    [6]李云钢,常文森,龙志强.EMS磁浮列车的轨道共振和悬浮控制系统设计.国防科技大学学报,1999,21(2):93-96.
    [7]李云钢,常文森.磁浮列车悬浮系统鲁棒控制器设计.计算技术与自动化,1996:10-15.
    [8]李云钢.磁浮列车悬浮系统的串级控制.自动化学报,1999:247-251.
    [9]江浩,连级三.单磁铁悬浮系统的动态棋型与控制.西南交通大学学报,1992,83:59-67.
    [10]程秀福,金如鳞,谭娃.角动量飞轮磁悬浮.上海交通大学学报,1980,4:91-102.
    [11]汪希平.电磁轴承系统的刚度阻尼特性分析.应用力学学报,1997,14(3):95-100.
    [12]张晓友,金永德.五轴控制型磁轴承控制系统设计.哈尔滨工业大学学报,1985,26(2):41-46.
    [13]金永德.磁悬浮飞轮运动方程.哈尔滨工业大学学报,1985,4:43-47.
    [14]陈易新,胡业发,杨恒明等.机床主轴可控磁力轴承的结构分析与设计.机床与液压,2001,5:51-54.
    [15]李永盼.磁悬浮轴承滑动模态控制的研究:[博士学位论文].清华大学工程物理系.1994.
    [16]童水光.转子轴承系统电磁阻尼器的研究:[博士学位论文].浙江大学.1991.
    [17]Tsai N. C., Huang W. M., Chiang C. W. Dynamic Analysis of Magnetic Actuator for Micro-Gyroscopes. Electromagnetics,2009,29(2):105-124.
    [18]Han H. S., Yim B. H., Lee N. J., Hur Y. C., Kim S. S. Effects of the guideway' s vibrational characteristics on the dynamics of a Maglev vehicle. Vehicle System Dynamics,2009,47(3): 309-324.
    [19]Fulford C., Maggiore M., Apkarian J. Control of a 5DOF Magnetically Levitated Positioning Stage. IEEE Transactions on Control Systems Technology,2009,17(4):844-852.
    [20]Dong X. M., Yu M., Li Z. S., Liao C. R., Chen W. M. A Comparison of Suitable Control Methods for Full Vehicle with Four MR Dampers, Part 1: Formulation of Control Schemes and Numerical Simulation. Journal of Intelligent Material Systems and Structures,2009,20(7): 771-786.
    [21]Tsampardoukas G., Stammers C. W., Guglielmino E. Semi-active control of a passenger vehicle for improved ride and handling. Proceedings of the Institution of Mechanical Engineers Part D-Joumal of Automobile Engineering,2008,222(D3):325-352.
    [22]Sung K. G., Han Y. M., Cho J. W., Choi S. B. Vibration control of vehicle ER suspension system using fuzzy moving sliding mode controller. Journal of Sound and Vibration,2008,311(3-5): 1004-1019.
    [23]Kim D., Hwang S., Kim H. Vehicle stability enhancement of four-wheel-drive hybrid electric vehicle using rear motor control. Ieee Transactions on Vehicular Technology,2008,57(2): 727-735.
    [24]Shimizu T., Sueyoshi M., Kawana R., Sugiura T., Yoshizawa M. Internal resonance of a rotating magnet supported by a high-T-c superconducting bearing. Ieee Transactions on Applied Superconductivity,2007,17(2):2166-2169.
    [25]Amel'kin N. I. Stability analysis of steady rotations of a rigid body bearing two-degree-of-freedom control moment gyros with dissipation in gimbal suspension axes. Mechanics of Solids,2007,42(4):517-529.
    [26]Han F. T., Gao Z. Y., Li D. M., Wang Y. L. Nonlinear compensation of active electrostatic bearings supporting a spherical rotor. Sensors and Actuators a-Physical,2005,119(1):177-186.
    [27]Molenaar A., Zaaijer E. H., Beek H. F. V. a novel long stroke planar magnetic bearing actuator. 6th International Conference on New Actuators with Accompanying Exhibition.1998.
    [28]Akar M., Kalkkuhl J. C. Design and Evaluation of an Integrated Chassis Controller for Automotive Vehicle Emulation. Ieee Transactions on Industrial Electronics,2009,56(9): 3571-3579.
    [29]Guo Y. G., Jin J. X., Zhu J. G., Lu H. Y. Design and analysis of a prototype linear motor driving system for HTS maglev transportation. Ieee Transactions on Applied Superconductivity,2007, 17(2):2087-2090.
    [30]Tsunashima H., Abe M. Dynamics of the mechanical levitation control-system for a maglev transport vehicle. Jsme International Journal Series C-Dynamics Control Robotics Design and Manufacturing,1994,37(3):528-535.
    [31]Gottzein E., Brock K. H., Schneider E., Pfefferl J. Control aspects of a tracked magnetic levitation high-speed test vehicle. Automatica,1977,13(3):205-223.
    [32]Jin J. X., Guo Y. G., Chen J. X., Zheng L. H., Zhu J. G. HTS levitation and transportation with linear motor control. Proceedings of the 26th Chinese Control Conference, Vol 6,2007:10-14.
    [33]万鸿俊,魏天水,刘莉.直线电机伺服系统的设计与应用研究.机械设计与制造,2006,12:9-11.
    [34]叶云岳.直线电机原理与应用.北京:机械工业出版社,2002.
    [35]刘伟.直线电机在微电子领域中的应用.光学精密工程,2001,9(4):311-314.
    [36]Lin F. J., Chou P. H., Shieh P. H., Chen S. Y. Robust Control of an LUSM-Based X-Y-theta Motion Control Stage Using an Adaptive Interval Type-2 Fuzzy Neural Network. Ieee Transactions on Fuzzy Systems,2009,17(1):24-38.
    [37]Zhang Z. P., Menq C. H. Six-axis magnetic levitation and motion control. Ieee Transactions on Robotics,2007,23(2):196-205.
    [38]Kim W. J., Verma S., Shakir H. Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,2007,31:337-350.
    [39]Verma S., Shakir H., Kim W. J. Novel electromagnetic actuation scheme for multiaxis nanopositioning. Ieee Transactions on Magnetics,2006,42(8):2052-2062.
    [40]Kwon H. N., Lee J. H., Takahashi K., Toshiyoshi H. MicroXY stages with spider-leg actuators for two-dimensional optical scanning. Sensors and Actuators a-Physical,2006,130:468-477.
    [41]Verma S., Kim W. J., Shakir H. Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications. Ieee Transactions on Industry Applications,2005.41(5): 1159-1167.
    [42]Kim W. J., Trumper D. L., Lang J. H. Modeling and vector control of planar magnetic levitator. Ieee Transactions on Industry Applications,1998,34(6):1254-1262.
    [43]Kuo S. K., Shan X. M., Menq C. H. Large travel ultra precision x-y-theta motion control of a magnetic-suspension stage. IEEE/ASME Transactions on Mechatronics,2003,8(3):334-341.
    [44]董吉洪,田兴志,李志来,王明哲.步进扫描投影光刻机工件台掩模台的发展.微纳科学与技术,2004,5:20-24.
    [45]汪劲松,朱煜,张鸣,尹文生,段广洪,杨学智,徐登峰,杨开明,朱立伟,王建发,于晖,步进投影光刻机双台轮换曝光超精密定位硅片台系统,专利,2003
    [46]汪劲松,朱煜,张鸣,尹文生,段广洪,杨学智,徐登峰,杨开明,朱立伟,王建发,于晖,带有平衡块消振装置的超精密硅片定位系统,专利,2004
    [47]朱煜,汪劲松,张鸣,闵伟,胡金春,尹文生,徐登峰,杨开明,段广洪,动圈式大范围移动磁浮六自由度工作台,专利,2007
    [48]吴剑锋.机床主动磁悬浮支承进给平台系统的动力学研究:[硕士学位论文].上海大学.2004.
    [49]陈开盛.亚微米光刻与光掩模新技术现状与研发前景.半导体技术,2000,25(5A):18-20.
    [50]苏雪莲.新世纪光刻技术及光刻设备的发展趋势.微电子技术,2001,29(2):8-16.
    [51]Shan X. M., Kuo S. K., Zhang J. H., Menq C. H. Ultra precision motion control of a multiple degrees of freedom magnetic suspension stage. IEEE-ASME Transactions on Mechatronics, 2002,7(1):67-77.
    [52]Cassat A., Jufer M. Maglev Projects Technology Aspects and Choices. IEEE Transactions on Applied Superconductivity,2002,2(1):915-924.
    [53]Kuo S. K., Menq C. H. Modeling and control of a six-axis precision motion control stage. IEEE/ASME Transactions on Mechatronics,2005,10(1):50-59.
    [54]MacLeod C., Goodall R. M. Frequency-shaping LQ control of Maglev suspension systems for optimal performance with deterministic and stochastic inputs. IEEE Proceedings-Control Theory and Applications,1996,143(1):25-30.
    [55]Wai R. J., Lee J. D. Adaptive fuzzy-neural-network control for maglev transportation system. Ieee Transactions on Neural Networks,2008,19(1):54-70.
    [56]Wai R. J., Lee J. D. Robust levitation control for linear maglev rail system using fuzzy neural network. Ieee Transactions on Control Systems Technology,2009,17(1):4-14.
    [57]宋文荣,何惠阳,于国飞,王延风,查明,磁悬浮轴承式超精密微进给机构,专利,2002
    [58]宋文荣,何惠阳,王延风,于国飞,查明,超精密微位移导轨磁悬浮方法及其装置,专利,2003
    [59]虞烈.可控磁悬浮转子系统:北京:科学出版社,2003.
    [60]齐斌.两级磁悬浮运动平台的悬浮与驱动控制研究:[硕士学位论文].长沙:中南大学.2008.
    [61]秦克利.磁悬浮平台的运动控制研究,[硕士学位论文].中南大学,2009.
    [62]胡立波.五自由度磁力轴承控制系统设计与仿真研究:[硕士学位论文].武汉理工大学.2005.
    [63]丁征宇,周海波,郭宁平.电磁力的精确建模及参数辩识.现代制造工程,2010.
    [64]段吉安,郭宁平,周海波.一种新型磁悬浮直线运动平台的热分析.审稿中,2011.
    [65]雷银照.电磁场.北京:高等教育出版社,2008.
    [66]Chan C. C., Yan L. T., Chen P. Z., Wang Z. Z., Chau K. T. Analysis of electromagnetic and thermal fields for induction-motors during starting. Ieee Transactions on Energy Conversion, 1994,9(1):53-60.
    [67]唐兴伦ANSYS工程应用教程-热与电磁学篇.北京:中国铁道出版社,2002.
    [68]杨丽伟,张奕黄.异步牵引电机的温度场分析.防爆电机,2008,43(2):18-21.
    [69]童诗白,华成英.模拟电子技术基础.北京:高等教育出版社,2001:69.
    [70]李国栋,张庆春,梁迎春.电磁轴承的PWM功率放大器的研究.机电一体化,2005,2(1).
    [71]张占松,蔡宣三.开关电源的原理与设计.北京:电子工业出版社,2005.
    [72]王兆安,黄俊.电力电子技术.北京:机械工业出版社,2005.
    [73]于军,翟玉文,孙陆梅.TL494脉宽调制器集成电路的研究.吉林化工学院学报,2005,20(3):3.
    [74]谭建国.使用ANSYS 6.0进行有限元分析.北京:北京大学出版社,2002.
    [75]肖新标,沈火明,叶裕明,赵光明.ANSYS 7.0实例分析与应用.北京.清华大学出版社,2004.
    [76]陈晓霞.ANSYS 7.0高级分析.北京:机械工业出版社,2004.
    [77]路旭升.非球面复合加工机床结构设计与分析:[硕十学位论文].长沙:国防科学技术大学.2002.
    [78]陆新江.电磁悬浮平台系统的承载特性与控制研究:[硕十学位论文].长沙:中南大学.2004.
    [79]欧阳华.两级磁悬浮平台动力学特性研究:[硕十学位论文].长沙:中南大学.2007.
    [80]Li Q. M., Gao D., Deng H., Hua O. Y. Modal analysis of a high-precision magnetic suspension stage.2008 7th World Congress on Intelligent Control and Automation, Vols 1-23,2008: 6044-6048.
    [81]Zheng X. J., Wu J. J., Zhou Y. H. Numerical analysis on dynamic control of five-degree-of-freedom maglev vehicle moving on flexible guideways. Journal of Sound and Vibration,2000,235(1):43-60.
    [82]Li Q. M., Wan L., Zhu L., Xu Z., Decoupling control for a magnetic suspension stage, in IEEE International Conference on Control and Automation.2007:Guangzhou, China,.
    [83]de Boeij J., Steinbuch M., Gutierrez H. M. Mathematical model of the 5-DOF sled dynamics of an electrodynamic maglev system with a passive sled. IEEE Transactions on Magnetics,2005, 41(1):460-465.
    [84]Ljung L. System identification: Theory for the user. Beijing: Tsinghua,2002:
    [85]Li H. X., Deng H. An approximate internal model-based neural control for unknown nonlinear discrete processes. IEEE Transactions on Neural Networks,2006,17(3):659-670.
    [86]Paleologu C., Benesty J., Ciochina S. A Robust Variable Forgetting Factor Recursive Least-Squares Algorithm for System Identification. Ieee Signal Processing Letters,2008,15: 597-600.
    [87]Mendel J. M. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Upper Saddle River, NJ:Prentice-Hall,2001.
    [88]Karnik N. N., Mendel J. M. Centroid of a type-2 fuzzy set. Information Sciences,2001, 132(1-4):195-220.
    [89]Mendel J. M. Advances in type-2 fuzzy sets and systems. Information Sciences,2007,177(1): 84-110.
    [90]Mendel J. M., John R. I., Liu F. L. Interval type-2 fuzzy logic systems made simple. Ieee Transactions on Fuzzy Systems,2006,14(6):808-821.
    [91]Liang Q. L., Mendel J. M. Interval type-2 fuzzy logic systems:Theory and design. Ieee Transactions on Fuzzy Systems,2000,8(5):535-550.
    [92]Karnik N. N., Mendel J. M., Liang Q. L. Type-2 fuzzy logic systems. Ieee Transactions on Fuzzy Systems,1999,7(6):643-658.
    [93]Wu H. W., Mendel J. M. Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. Ieee Transactions on Fuzzy Systems,2002,10(5):622-639.
    [94]Mendel J. M. Type-2 fuzzy sets and systems: An overview. Ieee Computational Intelligence Magazine,2007,2(1):20-29.
    [95]Zhou H., Ying H., Duan J.-a. Adaptive control using interval type-2 fuzzy logic. Proceedings of the 18th international conference on Fuzzy Systems. Jeju Island, Korea.2009.
    [96]Du X. Y., Ying H. Control performance comparison between a type-2 fuzzy controller and a comparable conventional mamdani fuzzy controller. Nafips 2007-2007 Annual Meeting of the North American Fuzzy Information Processing Society,2007:100-105.
    [97]Sepulveda R., Castillo O., Melin P., Rodriguez-Diaz A., Montiel O. Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Information Sciences,2007,177(10):2023-2048.
    [98]Melin P., Castillo O. A new method for adaptive model-based control of non-linear plants using type-2 fuzzy logic and neural networks. Proceedings of IEEE FUZZ Conference. St. Louis, USA. 2003.
    [99]Hagras H. Type-2 FLCs: A new generation of fuzzy controllers. Ieee Computational Intelligence Magazine,2007,2(1):30-43.
    [100]John R. I., Coupland S. Type-2 fuzzy logic: A historical view. Ieee Computational Intelligence Magazine,2007,2(1):57-62.
    [101]Kheireddine C., Lamir S., Mouna G., Khier B. Indirect adaptive interval type-2 fuzzy control for nonlinear systems. International Journal of Modelling, Identification and Control 2007,2(2):14.
    [102]刘少军.现代控制方法及计算机轴助设计.长沙:中南大学出版社,2003.
    [103]Mann G. K. I., Hu B. G., Gosine R. G. Analysis of direct action fuzzy PID controller structures. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics,1999,29(3):371-388.
    [104]Ying H. Anyalytical structure of a fuzzy controller with linear-control rules. Information Sciences,1994,81(3-4):213-227.
    [105]Ying H. Analytical structure of the typical fuzzy controllers employing trapezoidal input fuzzy sets and nonlinear control rules. Information Sciences,1999,116(2-4):177-203.
    [106]Ying H. Constructing nonlinear variable gain controllers via the Takagi-Sugeno fuzzy control. Ieee Transactions on Fuzzy Systems,1998,6(2):226-234.
    [107]Ying H. Deriving analytical input-output relationship for fuzzy controllers using arbitrary input fuzzy sets and Zadeh fuzzy AND operator. Ieee Transactions on Fuzzy Systems,2006,14(5): 654-662.
    [108]Li W. Design of a hybrid fuzzy logic proportional plus conventional integral-derivative controller. Ieee Transactions on Fuzzy Systems,1998,6(4):449-463.
    [109]Elhajjaji A., Rachid A. Explicit formulas for fuzzy controller. Fuzzy Sets and Systems,1994, 62(2):135-141.
    [110]Ying H., Siler W., Buckley J. J. Fuzzy control-theory-a nonlinear case. Automatica,1990, 26(3):513-520.
    [111]Yen J., Langari R. Fuzzy Logic: Intelligence. Control, and Information. Upper Saddle River, NJ: Prentice-Hall,1999.
    [112]Ying H. Gneral analytical structure of typical fuzzy controllers and their limiting structure theorems. Automatica,1993,29(4):1139-1143.
    [113]Ying H. A general technique for deriving analytical structure of fuzzy controllers using arbitrary trapezoidal input fuzzy sets and Zadeh AND operator. Automatica,2003,39(7):1171-1184.
    [114]Li H. X., Tong S. C. A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Transactions on Fuzzy Systems,2003,11(1):24-34.
    [115]Driankov D., Hellendoorn H., Reinfrank M. An Introduction to Fuzzy Control. New York: Springer-Verlag,1993.
    [116]Li H. X., Gatland H. B. A new methodology for designing a fuzzy-logic controller. Ieee Transactions on Systems Man and Cybernetics,1995,25(3):505-512.
    [117]Ying H. Practical design of nonlinear fuzzy controllers with stability analysis for regulating processes with unknown mathematical models. Automatica,1994,30(7):1185-1195.
    [118]Ying H. O. The simplest fuzzy controllers using different inference methods are different nonlinear proportional-integral controllers with variable gains. Automatica,1993,29(6): 1579-1589.
    [119]Wang L. X. Stable adaptive fuzzy controllers with application to inverted pendulum tracking. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics,1996,26(5):677-691.
    [120]Haj-Ali A., Ying H. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains. Automatica,2004,40(9):1551-1559.
    [121]Wong C. C., Chou C. H., Mon D. L. Studies on the output of fuzzy controllers with multiple inputs. Fuzzy Sets and Systems,1993,57(2):149-158.
    [122]Ying H. The Takagi-Sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers. Automatica,1998,34(2):157-167.
    [123]Chen C. L., Wang S. N., Hsieh C. T., Chang F. Y. Theoretical analysis of crisp-type fuzzy logic controllers using various t-norm sum-gravity inference methods. Ieee Transactions on Fuzzy Systems,1998,6(1):122-136.
    [124]Ying H. Structure and stability analysis of general Mamdani fuzzy dynamic models. International Journal of Intelligent Systems,2005,20(1):103-125.
    [125]Wang L.-X. Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on Fuzzy Systems,1993,1(2):146-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700