用户名: 密码: 验证码:
微反应器中三维有序多孔阵列的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有序大孔材料广泛地应用于催化剂载体,分离吸附和光子晶体等方面。此外,三维有序多孔阵列在微反应器中的应用是最近研究的热点。本论文以聚二甲基硅烷模具(PDMSmold)中组装的聚苯乙烯微球胶体晶体结构作为硬模板,采用不同软刻蚀技术成功制备了三维有序大孔阵列。又将排列在PDMS mold中的二氧化硅微球转移到硅片上,制备了结构上新颖和稳定的多层二氧化硅微球组装的微结构。
     采用离心方法将聚苯乙烯微球排列在PDMS mold通道中,又在离心力作用下将陶瓷前驱体溶液填充在胶体晶体模板间隙,经过低温固化和高温焙烧,制备了三维有序大孔SiCN陶瓷阵列。通过高分辨率扫描电镜和光学显微镜的表征,证明了采用此方法,能够在相对较短的时间内制备出高质量三维有序大孔SiCN陶瓷阵列。此外,又考察了在110℃热处理不同时间对模板中聚苯乙烯微球形貌的影响,瓶颈尺寸在300nm至820nm范围内。以上不同的微球模板出发,制备出了不同“窗口”尺寸的三维有序大孔SiCN陶瓷,窗口尺寸从258 nm增加到720nm,而比表面积从477 m2g-1降低至337 m2g-1。
     采用了离心方法制备了高质量的三维有序多孔SiCN材料,但是依然存在难以制备出大面积的三维有序大孔阵列的问题。因此,采用了直接挥发组装法在PDMS mold通道中组装聚苯乙烯微球,利用转移微模塑技术(microtransfer molding,μTM)制备出不同尺寸的三维有序大孔全氟聚醚阵列(perfluoropolyether, FP) (50μm-400μm)。实验结果证明采用此方法,不仅大大缩短了操作流程所需时间,而且增大了三维有序大孔阵列的面积。此外,使用不同图案的PDMS mold,制备了不同形状的三维有序大孔全氟聚醚阵列。大面积的三维有序多孔阵列的成功制备降低了随后光刻蚀技术制备有三维有序大孔阵列的SU-8-50微通道的难度。
     采用了不同组装方法在PDMS mold通道中组装二氧化硅微球,然后制备二氧化硅微球组装的阵列。实验表明采用毛细管模塑方法不能制备出高质量和稳定的阵列,而利用转移微模塑技术和层层叠加方法制备了结构新颖和稳定的一层、二层和三层的二氧化硅微球组装的阵列。通过对二氧化硅微球不同温度焙烧后进行表征,证明了随着温度的提高,二氧化硅微球阵列在硅片上越来越稳定。当焙烧温度为950℃时,在硅片上得到了稳定的二氧化硅微球阵列。扫描电镜和显微镜照片表明此结构具有几十微米的大孔和几百或几十纳米的小孔。另外,这种稳定的二氧化硅微球阵列可以使用光刻蚀技术放入到SU-8-50微通道中,和二氧化硅微球组装的胶体晶体结构相比,孔隙率从0.63降到0.26,二层二氧化硅微球阵列所产生的床层阻力降低了63倍。此结构作为微混合器用于微反应器中流体的混合,大大提高了液体的混合效率。和无微结构的微通道相比,混合效率提高了近4倍。
3D ordered porous materials can usually be used as catalysts, separation columns and photocrystals.3D ordered porous patterns have attracted much attention due to application in the microfluidic area. In this thesis, different kinds of 3D ordered porous patterns were fabricated from PS spheres packed template in the PDMS mold. A novel and robust 3D multilayered silica beads-packed microstructure was successfully prepared by transferring the silica beads-packed patterns in the PDMS mold onto surface of silicon wafers.
     PS spheres were organized into the PDMS mold under the centrifugal force. The 3D ordered macroporous SiCN material was obtained by curing the precursor at low temperature and thermally decomposing the PS spheres at high temperature. The obtained structure was characterized by SEM and optical microscopy. The results shows high-quality 3D ordered macroporous SiCN material could be achieved in a short time using a centrifugal method. During the process we also studied the morphologies of PS spheres after annealing for different periods. The size of necks formed by heating could be controlled in the range of 300 nm to 820 nm. The window sizes of the resulting 3D macroporous SiCN ceramic among the interconnected macropores increased from 258 nm to 740 nm, and the BET surface area was reduced from initial 443 m2 g-1to 337 m2.
     Even through high-quality 3D ordered porous SiCN material with the tailed window sizes was obtained, it is difficult to achieve the material over a large area on a substrate. PS spheres were organized into the PDMS mold using a directed evaporation-induced self-assembly method. Subsequently, through a microtransfer molding technique, the 3D ordered macroporous perfluoropolyether (FP) patterns with various dimensions were fabricated over a large area on a silicon wafer in relatively short time. Different kinds of porous patterns can be also fabricated using PDMS mold with varying patterns. More importantly, the 3D macroporous FP patterns over a large area were easily built inside a SU-8-50 microchannnel using a photolithography method.
     Finally, a 3D silica bead-packed microstruture was fabricated by transferring the packed silica spheres inside the PDMS onto the substrate using different soft lithographic technique. It was found that the single-layered silica bead-packed patterns with a high quality could not be achieved using the MIMIC method reported previously. A novel and robust 3D silica bead-packed microstrutures in a single、double and triple layers were fabricated using a microtransfer molding technique combined with a layer-by-layer technique. The stability of silica bead-packed patterns was improved by heating at high temperature. A stable monolithic structure with mechanical integrity was obtained on a silica wafer when heating the silica bead-packed patterns at 950℃. The double-layered silica bead-packed patterns had a bimodal pore distribution in micron and sub-micron range. Moreover, the microstructure was easily embedded inside the SU-8-50 microchannel with the aid of photolithography. Compared with densely packed silica spheres in the channel, the pressure drop was decreased by a factor of 63 when the void fraction of the packed bed in the channel increased from 0.26 to 0.63. The two-layered 3D silica beads-packed microstructure was used as a micro-mixer to enhance the mixing performance of solvents. Utilization of the system results in a fourfold increase in the mixing efficiency in the microchannel.
引文
[1]Sing K S W, Everett R H, Haul R H W, et al. Reporting physisorption data for gas/solid systems with secial reference to the determination of surface area and porosity. Pure Appl. Chem.,1985,57(04): 603-609.
    [2]Weitkamp J. Zeolites and catalysis. Solid State Ionics,2000,131(1):175-178.
    [3]Oye G, Sjoblom J, Stocker M. Synthesis, characterization and potential applications of new materials in the mesoporous range. Adv. Colloid Interface Sci.,2001,89-90:439-466.
    [4]Yanagisawa T, Shimizu T, Kuroda K, et al. The preparation of alkyltriinethylaininonium-kaneinite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn.,1990,63(4):988-992.
    [5]Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc., Chem. Commun.,1993:680-682.
    [6]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359:710-712.
    [7]Beck J S, Vartuli J C, Roth W J. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc.,1992,114(27):10834-10843.
    [8]Inagaki S, Koiwai A, Suzuki N, et al. Syntheses of highly ordered mesoporous materials, FSM-16, derived from kanemite. Bull. Chem. Soc. Jpn.,1996,69(5):1449-1457.
    [9]Chen C Y, Xiao S Q, Davis M E. Studies on ordered mesoporous materials III comparison of MCM-41 to mesoporous materials derived from kanemite. Microporous Mater.,1995,4:1-20.
    [10]Ryoo R, Kim J M, Ko C H. Stud. Surf. Sci. Catal.,1998,117:151-158.
    [11]Huo Q, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants:supercage formation in a three-dimensional hexagonal array. Science,1995,268:1324-1327.
    [12]Sakamoto Y, Kaneda M, Teraski O, et al. Direct imaging of the pores and cages of three-dimensional mesoporousmaterials. Nature,2000,408:449-453.
    [13]Zhao D, Huo Q, Feng J, et al. Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants. Chem.Mater.,1999,11(10):2668-2672.
    [14]Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 1998,12(24):6024-6036.
    [15]Zhao D, Huo Q, Feng J, Chmelka B F, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom Pores. Science,1998,279:548-552.
    [16]Lin H P, Yang L Y, Mou C Y, Liu S B, et al. A direct surface silyl modification of acid-synthesized mesoporous silica. New J. Chem.,2000,24(5):253-255.
    [17]Lim M H, Stein A. Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials. Chem. Mater.,1999,11(11):3285-3295.
    [18]Koyano K A, Tatsumi T, Tanaka Y, et al. Stabilization of mesoporous molecular sieves by trimethylsilylation. J. Phys.Chem. B,1997,101(46):9436-9440.
    [19]Shephard D S, Zhou W, Maschmeyer T, et al. Site-directed surface derivatization of MCM-41:use of high-resolution transmission electron microscopy and molecular recognition for determining the position of functionality within mesoporous materials. Angew. Chem., Int. Ed.,1998,37(19): 2719-2723.
    [20]Kimura T, Saeki S, Sugahara Y, et al. Organic modification of FSM-Type mesoporous silicas derived from kanemite by silylation. Langmuir,1999,15(8):2794-2798.
    [21]Ryoo R, Ko C H, Kruk M, et al. Block-copolymer-templated ordered mesoporous silica:array of uniform mesopores or mesopore-micropore network. J. Phys. Chem. B,2000,104(48):11465-11471.
    [22]Tatsumi T, Koyano K A, Igarashi N, Remarkable activity enhancement by trimethylsilylation in oxidation of alkenes and alkanes with H2O2 catalyzed by titanium-containing mesoporous molecular sieves. Chem. Commun.,1998,325-326.
    [23]Corma A, Garcia H, Navarro M T, et al. Observation of a 390-nm emission band associated with framework Ti in mesoporous titanosilicates. Chem. Mater.,2000,12(10):3068-3072.
    [24]Jaroniec C P, Kruk M, Jaroniec M, et al. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes J. Phys. Chem. B,1998,102(28):5503-5510.
    [25]Jun S, Joo H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc.,2000,122(43):10712-10713.
    [26]Choi M, Ryoo R. Ordered nanoporous polymer-carbon composites Nature,2003,2:473-476.
    [27]Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B,1999,103(37):7743-7746.
    [28]Gates B, Yin Y, Xia Y. Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures Chem. Mater.,1999,11(10):2827-2836.
    [29]Yan H, Blanford C F, Lytle J C, et al. Influence of processing conditions on structures of 3D ordered macroporous metals prepared by colloidal crystal templating. Chem. Mater.,2001,13(11):4314-4321.
    [30]Yu J S, Yoon S B, Chai G S, Reproducible production of nanoporous carbon membranes. Carbon, 2001,39(9):1421-1425.
    [31]Johnson S A, Ollivier P J, Mallouk T E. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science,1999,283:963-965.
    [32]Jiang P, Hwang K S, Mittleman D M, et al. Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids. J. Am. Chem. Soc.,1999,121(50),11630-11637.
    [33]Miyagawa N, Okumiyra M, Hinohara N S. Controlling of Pore Morphology, Proc. of the 6th Int. Symp. On Ceram. Mater.& Comp. For Eng., Arita, Japan,1997,824.
    [34]R. Kittner, cfi/Ber. DKG,1994,71,549.
    [35]H. Sieber, A. Kaindl, D. Schwarze, J. P. Werner and P. G. Erlangen, cfi/Ber. DKG,2000,77,21.
    [36]N. Miyagawa, M. Okumiyra and N. S. Hinohara, Controlling of Pore Morphology, Proc. of the 6th Int. Symp. On Ceram. Mater.& Comp. For Eng., Arita, Japan,1997,824.
    [37]Hulteen J C, Martin C R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem.,1997,7(7):1075-1087.
    [38]Vogli E, Mukerji J, Hoffman C, et al. Conversion of oak to cellular silicon carbide ceramic by gas-phase reaction with silicon monoxide. J. Am. Ceramic. Soc.,2001,84(6):1236-1240.
    [39]Sieber H, Hoffmann C, Kaindl A, et al. Biomorphic cellular ceramics. Adv. Eng. Mater.,2000,2(3): 105-109.
    [40]Patel M, Padhi B K. Formation of alumina whiskers using Al2(SO4)3 and aluminium isopropoxide. J. Mater. Sci.,1990,10(21):1243-1245.
    [41]Krishnaro R V, Mahajan Y R. Thermomechanical characterization of B4C vacuum plasma sprayed coatings on stainless steel tubular substrates. J. Mater. Sci.,1996,15(14):1234-1236.
    [42]Krishnaro R V, Mahajan Y R, Kumar T J. Conversion of raw rice husks to SiC by pyrolysis in nitrogen atmosphere. J. Europ. Ceram. Soc.,1998,18(2):147-152.
    [43]Ota T. Biomimetic process for producing SiC "Wood". J. Am. Ceram. Soc.,1995,78(12):3409-3411.
    [44]Greil P, Lifka T, Kaindl A. Biomorphic Cellular Silicon Carbide Ceramics from Wood:I. Processing and Microstructure. J. Europ. Ceram. Soc.,1998,18 (14):1961-1973.
    [45]Cruso R A, Schattka J H. Cellulose acetate templates for porous inorganic network fabrication. Adv. Mater.,2000,12(24):1921-1923.
    [46]Rahman S, Yang H. Nanopillar arrays of glassy carbon by anodic aluminum oxide nanoporous templates. Nano Lett.,2003,3(4):439-442.
    [47]Che G, Lakshmi B B, Martin C R, et al. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater.,1998,10(1):260-267.
    [48]Vito S D, Martin C R. Toward colloidal dispersions of template-synthesized polypyrrole nanotubules. Chem. Mater.,1998,10(7):1738-1741.
    [49]Porrata P, Goun E, Matsui H. Size-controlled self-Assembly of peptide nanotubes using polycarbonate membranes as templates. Chem. Mater.,2002,14(10):4378-4381.
    [50]Wang H, Li X D, Kim T S, et al. Inorganic polymer-derived tubular SiC arrays from sacrificial alumina templates. Appl. Phys. Lett.,2005,86:173104-173106.
    [51]Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization. Nature 1997,389: 447-448.
    [52]董鹏,周倩,刘丽霞等。单分散胶体颗粒的有序组装及其应用研究进展。化学通报,2004,z1:359-365。
    [53]Xia Y, Gates B, Yin Y, et al., Monodispersed colloidal spheres:old materials with new applications. Adv. Mater.,2000,12 (10):693-713.
    [54]Velev O D, Lenhoff A M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid Interface Sci.,2000,5(1,2):56-63.
    [55]Sadakane M, Asanuma T, Kubo J, et al. Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method. Chem. Mater.,2005,17(13):3546-3551.
    [56]王浩,李效东。三维有序多孔SiC陶瓷的制备及表征。中国科学E辑技术科学,2006,36(3):259-269。
    [57]Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals, Nature,2001,414:289-293.
    [58]Jiang P, Bertone J F, Hwang K S, et al. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater.,1999,11(8):2132-2140.
    [59]Wang D, Mohwald H. Rapid fabrication of binary colloidal crystals by stepwise spin-coating. Adv. Mater.,2004,16(3):244-247.
    [60]Hulteen J C, Van Duyne R P. Nanosphere lithography:A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A,1995,13(3):1553-1558.
    [61]Jiang P, McFarland M F. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc.,2004,126(42):13778-13786.
    [62]Jiang P, McFarland M F. Wafer-scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals. J. Am. Chem. Soc.,2005,127(11):3710-3711.
    [63]Trau M, Sankaran S, Saville D A, et al. Electric-field-induced pattern formation in colloidal dispersions. Nature,1995,374:437-439.
    [64]Trau M, Saville D A, Aksay I A. Field-induced layering of colloidal crystals. Science,1996,272: 706-709.
    [65]Hayward R C, Saville D A, Aksay I A. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature,2000,404:56-59.
    [66]Solomentsev Y, Bohmer M, Anderson J L. Particle clustering and pattern formation during electrophoretic deposition:a hydrodynamic model. Langmuir,1997,13(23):6058-6068.
    [67]Larsen A E, Grier D G. Melting of metastable crystallites in charge-stabilized colloidal suspensions. Phys. Rev. Lett.,1996,76(20):3862-3865.
    [68]Gong T, Marr D W M. Electrically switchable colloidal ordering in confined geometries. Langmuir, 2001,17(8):2301-2304.
    [69]Lumsdon S O, Kaler E W, Velev O D. Two-dimensional crystallization of microspheres by a coplanar AC electric field. Langmuir,2004,20(6):2108-2116.
    [70]Sides P J. Electrohydrodynamic particle aggregation on aelectrode driven by an alternating electric field normal to it. Langmuir,2001,17(19):5791-5800.
    [71]Rogach A L, Kotov N A, Koktysh D S, et al. Electrophoretic deposition of latex-based 3D colloidal photonic crystals:A technique for rapid production of high-quality opals. Chem. Mater.,2000,12(9): 2721-2726.
    [72]Kumacheva E, Golding R K, Allard M, et al. Colloid crystal growth on mesoscopically patterned surfaces:effect of confinement. Adv. Mater.,2002,14(3):221-224.
    [73]Winkleman A, Gates B D, Mccarty L S, et al. Directed self-assembly of spherical particles on patterned electrodes by an applied electric Field. Adv. Mater.,2005,17(12):1507-1511.
    [74]Kim E, Xia Y, Whitesides G M. Two-and three-dimensional crystallization of polymeric microspheres by micromolding in capillaries. Adv. Mater.,1996,8(3):245-247.
    [75]Gates B, Qin D, Xia Y. Assembly of nanoparticles into opaline structures over large areas. Adv. Mater.,1999,11(6):466-469.
    [76]Ozin G A, Yang S M. The race for the photonic chip:colloidal crystal assembly in silicon wafers. Adv. Funct. Mater.2001,11(2):95-104.
    [77]Aizenberg J, Braun P V, Wiltzius P. Patterned colloidal deposition controlled by electrostatic and capillary forces. Phys. Rev. Lett.2000,84(13):2997-3000.
    [78]Fan F, Stebe K J. Assembly of colloidal particles by evaporation on surfaces with patterned hydrophobicity. Langmuir 2004,20(8):3062-3067.
    [79]Zheng H P, Lee I, Rubner M F, et al. Two component particle arrays on patterned polyelectrolyte multilayer templates. Adv. Mater.2002,14(8):569-572.
    [80]H. Y. Koo, D. K. Yi, S. J. Yoo, D.-Y. Kim, A Snowman-like Array of Colloidal Dimers for Antireflecting Surfaces. Adv. Mater.2004,16(3),274-279.
    [81]Z. Adamczyk, M. Zembala, B. Siwek, P. Warszynski, Structure and ordering in localized adsorption of particles. J. Colloid Interface Sci.1990,140(1),123-127.
    [82]Xia Y, Yin Y, Lu Y, et al. Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv. Funct. Mater.2003,13(12):907-918.
    [83]Lee S K, Yi G R, Moon J H, et al. Pixellated photonic crystal films by selective photopolymerization, Adv. Mater.2006,18(16):2111-2116.
    [84]Lee S K, Yi G R, Yang S M. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips. Lab Chip 2006,6(9):1171-1177.
    [85]Ling X Y, Phang I Y, Maijenburg W, et al. Free-standing 3D supramolecular hybrid particle structures. Angew. Chem. Int. Ed.2009,48(5):983-987.
    [86]F. Fan, K. J. Stebe, Assembly of Colloidal Particles by Evaporation on Surfaces with Patterned Hydrophobicity. Langmuir 2004,20(8),3062-3067.
    [87]Velev O D, Kaler E W. Structured porous materials via colloidal crystal templating:from inorganic oxidesto metals. Adv. Mater.2000,12(7):531.
    [88]Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science,1998,281:538-540.
    [89]Holland B T, Blanford C F, Do T, et al. Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater.1999,11(3):795-805.
    [90]Le Z, Li J, Zhang Y, et al. Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol-gel method. J. Mater. Chem.2000,10(12):2629-2631.
    [91]沈勇,邬泉周,李玉光。三维规则排列的大孔SiO2材料的制备及表征。催化学报,2002,23:179-181。
    [92]沈勇,邬泉周,李玉光。三维规则排列的大孔钛硅混合氧化物的制备与表征无机材料学报。2003,18(2):400-406。
    [93]Zhang Y, Lei Z, Li J, et al. A new route to three-dimensionally well-ordered macroporous rare-earth oxides. New J. Chem.2001,25(9):1118-1120.
    [94]邬泉周,沈勇,李玉光。三维有序大孔Al2O3制备的新方法及表征。物理化学学报,2003,19(8):737-741.
    [95]Yan H, Blanford C F, Holland B T, et al. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion. Chem. Mater.2000,12(4):1134-1141.
    [96]Yan H, Blanford C F, Smyrl W H, et al. Preparation and structure of 3D ordered macroporous alloys by PMMA colloidal crystal templating. Chem. Comm.2000,16:1477-1478.
    [97]Zhu G, Qiu S, Gao F, et al. Template-assisted self-assembly of macro-micro bifunctional porous materials. J. Mater. Chem.2001,11(6):1687-1693.
    [98]Velev O D, Tessier P M, Lenhoff A M, et al. Materials:a class of porous metallic nanostructures. Nature,1999,401:548-548.
    [99]Lei Z, Zhang Y, Wang H, et al. Fabrication of well-ordered macroporous active carbon with a microporous framework. J. Mater. Chem.2001,11(8):1975-1977.
    [100]Zakhidov A A, Baughman R H, Iqbal Z, et al. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 1998,282:897-901.
    [101]容建华,杨振忠,齐凯等。二氧化硅模板技术制备三维有序聚苯乙烯孔材料。科学通报,2000,45(15): 1627-1630。
    [102]Wang D, Caruso F. Fabrication of polyaniline inverse opals via templating ordered colloidal assemblies. Adv. Mater.2001,13(5):350-354.
    [103]Sung I K, Yoon S B, Yu J S, et al. Fabrication of macroporous SiC from templated preceramic polymers. Chem. Comm.,2002,14:1480-1481.
    [104]Brian J, Stein A. Surface modification of ultrafine magnetic iron oxide particles. Chem. Mater.2002, 14(8):3326-3331.
    [105]Jiang P, Cizeron J, Bertone J F, et al. Preparation of macroporous metal films from colloidal crystals. J. Am. Chem. Soc.1999,121(34):7957-7958.
    [106]Miguez H, Meseguer F, LoPez C, et al. Germanium FCC structure from a colloidal crystal template. Langmuir 2000,16(10):4405-4408.
    [107]Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 2000,405:437-440.
    [108]Park S H, Xia Y. Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates. Chem. Mater.1998,10(7):1745-1747.
    [109]Park S H, Xia Y. Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv. Mater.1998,10(13):1045-1048.
    [110]Gates B, Yin Y, Xia Y. Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures. Chem. Mater.1999,11(10):2827-2836.
    [111]Miguea H, Chomski E, Garcia-Santamaria F, et al. Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition. Adv. Mater.2001,13(21):1634-1637.
    [112]Bartlett P N, Birkin P R, Ghanem M A, et al. Electrochemical syntheses of highly ordered macroporous conducting polymers grown around self-assembled colloidal templates. J. Mater. Chem. 2001,11:849-853.
    [113]Bartlet P N, Dunford T, Ghanem M. Templated electrochemical deposition of nanostructured macroporous PbO2. J. Mater. Chem.2002,12(3):3130-3135.
    [114]Braun P V, Wiltzius P. Microporous materials:electrochemically grown photonic crystals. Nature 1999,402:603-604.
    [115]Bartlet P N, Baumberg J J, Birkin P R, et al. Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres. Chem. Mater.2002,14(50):2199-2208.
    [116]Vugt K, Driea F 1, Tjerkstra R W, et al. Macroporous germanium by electrochemical deposition. Chem. Comm.2002,18:2054-2055.
    [117]Lee Y C, Kuo T J, Hsu C J, et al. Fabrication of 3D macroporous structures of Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductors using electrochemical deposition. Langmuir 2002,18(25):9942-9946.
    [118]Subramanian G, Manoharan V N, Thorne J D, et al. Ordered macroporous materials by colloidal assembly:a possible route to photonic bandgap materials Adv. Mater.1999,11(15):1261-1265.
    [119]Gates B, Xia Y. Photonic crystals that can be addressed with an external magnetic field. Adv. Mater. 2001,13(21):1605-1608.
    [120]A Stein, R C Schroden. Colloidal crystal templating of three-dimensionally ordered macroporous solids:materials for photonics and beyond. Current Opinion in Solid State and Materials Science,2001, 5(6):553-564.
    [121]陈祖耀,郝凌云,江万权等。微纳电子技术,2002,3:21-25。
    [122]W J Scott R, S M Yang, G Chabanis et al. Tin Dioxide Opals and Inverted Opals:Near-Ideal Microstructures for Gas Sensors. Adv. Mater.,2001,13(19):1468-1472.
    [123]H Miguez, F Meseguer, C Lopez et al. Evidence of FCC Crystallization of SiO2 Nanospheres. Langmuir,1997,13(23):6009-6011.
    [124]J S Sakamoto, B Dunn. Hierarchical battery electrodes based on inverted opal structures. J. Mater. Chem.,2002,12(10):2859-2861.
    [125]Geisler M, Xia Y. Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater.2004,16(17):1249-1252.
    [126]Xia Y, Rogers J A, Paul K E, et al. Chem Rev.1999,99:1823.
    [127]Broers A N, Molzen W W, Cuomo J J. Appl. Phys. Lett.1976,29:596.
    [128]Qin D, Xia Y, Rogers J A, et al. Microfabrication, Microstructures and Microsystems. Top.Cur. Chem.1998,194:1-20.
    [129]Xia Y, Whitesides G M. Soft Lithography.Angew. Chem. Int. Ed.1998,37(25):550-575.
    [130]Becker H, Gartner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 2000,21(1):12-16.
    [131]Quake S R, Scherer A. From micro-to nanofabrication with soft materials. Science 2000,290: 1536-1540.
    [132]Whitesides G M, Ostoni E, Takayama S, et al. Soft Lithography in biology and biochemistry. Ann. Rev. Biom. Eng.2001,3,335-373.
    [133]Gates B D, Xu Q, Love C, Unconventional nanofabrication. Annu. Rev. Mater. Res.2004,34: 339-372.
    [134]Rogers J A, Nuzzo R G. Recent progress in soft lithography. Materials Today 2005,8(2):50-56.
    [135]Xia Y. George M. Whitesides. Soft lithography and the art of patterning-a tribute to professor Adv. Mater.2004,16(15):1245-1246.
    [136]Xia Y, Qin D, Whitesides G M. Microcontact printing with a cylindrical rolling stamp:a practical step toward automatic manufacturing of patterns with submicrometer-sized features. Adv. Mater.1996, 8(12):1015-1018.
    [137]Yang X M, Tryk D A, Hasimoto K, et al. Appl. Phys. Lett.1996,69:4020.
    [138]Marzolin C, Terfort A, Tien J. Patterning of a polysiloxane precursor to silicate glasses by microcontact printing. Thin Solid Films 1998,315(1,2):9-12.
    [139]Hidber P C, Nealey P F, Helbig W, et al. New strategy for controlling the size and shape of metallic features formed by electroless deposition of copper:microcontact printing of catalysts on oriented polymers, followed by thermal shrinkage. Langmuir 1996,12(21):5209-5215.
    [140]Yan X, Yao J, Lu G, et al. Microcontact printing of colloidal crystals. J. Am. Chem. Soc.2004, 126(34):10510-10511.
    [141]Zaumseil J, Meitl M A. Hsu J W P, et al. Three-dimensional and multilayer nanostructures formed by nanotransfer printing, Nano Lett.2003,3(9):1223-1227
    [142]Zhao X M, Xia Y, Whitesides G M. Fabrication of three-dimensional micro-structures:microtransfer molding. Adv. Mater.1996,8(10):837-840.
    [143]Kim E, Xia Y, Whitesides G M. Polymer microstructures formed by moulding in capillaries. Nature 1995,376,581-584.
    [144]Suh K Y, Kim Y S, Lee H H. Capillary force lithography. Adv. Mater.2001,13(18):1386-1389
    [145]Suh K Y, Lee H H. Capillary force lithography:large-area patterning, self-organization, and anisotropic dewetting. Adv. Funct. Mater.2002,12(8):405-413.
    [146]Bruinink C M, Peter M, Boer M, et al. Stamps for submicrometer soft lithography fabricated by capillary force lithography. Adv. Mater.2004,16(13):1086-1090.
    [147]Kim E, Xia Y, Zhao X M, et al. Solvent-assisted microcontact molding:a convenient method for fabricating three-dimensional structures on surfaces of polymers. Adv. Mater.1997,9(8):651-654.
    [148]Xia Y, Whitesides G M. Extending microcontact printing as a microlithographic technique. Langmuir 1997,13(7):2059-2067.
    [149]Delamarche E, Schmid H, Michel B, et al. Stability of molded polydimethylsiloxane microstructures. Adv. Mater.1997,9(9):741-746.
    [150]Rolland J P, Hagberg E C, Denison G M, et al. High-resolution soft lithography:enabling materials for nanotechnologies. Angew. Chem. Int. Ed.2004,43(43):5796-5799.
    [151]Yoo P J, Choi S J, Kim J H, et al.Unconventional patterning with a modulus-tunable mold:from imprinting to microcontact printing. Chem. Mater.2004,16(24):5000-5005.
    [152]Odom T W, Love J C, Wolfe D B, et al. Improved pattern transfer in soft lithography using composite stamps. Langmuir 2002,18(13):5314-5320.
    [153]Jeon S, Park J U, Cirelli R, et al. Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. PNAS.2004,101(34):12428-12433.
    [154]Meisel D C; Diem M; Deubel M, et al. Shrinkage precompensation of holographic three-dimensional photonic-crystal templates. Adv. Mater.2006,18(22):2964-2968.
    [155]Yang S; Chen G; Megens M; et al. Functional biomimetic microlens arrays with integrated pores. Adv. Mater.2005,17(4):435-438.
    [156]Moon J H; Yang S; Dong W T; et al. Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography. Opt. Express 2006,14(13):6297-6302.
    [157]Moon J H; Ford J; Yang S. Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography. Polym. Adv. Technol.2006,17(2):83-93.
    [158]Cumpston B H; Ananthavel S P; Barlow S; et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 1999,398:51-54.
    [159]Kawata S; Sun H B; Tanaka T, et al. Finer features for functional microdevices. Nature 2001,412, 697-698.
    [160]Bratton D; Yang D; Dai J Y; et al. Recent progress in high resolution lithography. Polym. Adv. Technol.2006,17(2):94-103.
    [161]Lee K S; Yang D Y; Park S H; et al. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polym. Adv. Technol.2006,17(2):72-82.
    [162]李世普。特种陶瓷工艺学。1990。
    [163]Wang H, Yu J S, Li X D, et al. Inorganic polyer-derived hollow SiC and filled SiCN sphere assemblies from a 3DOM carbon template. Chem. Commun.2004,20:2352-2353.
    [164]Sung I K, Christian, Mitchell M, et al. Tailored macroporous SiCN and SiC structures for high-temperature fuel reforming. Adv. Funct. Mater.2005,15(8):1336-1342.
    [165]Yan J, Wang A, Kim D P. Preparation of silver metallic sponge from macroporous carbon template. Materials Science Forum,2006,510-511:770-773.
    [166]Christian, Mitchell M, Kim D P, et al., Ceramic microreactors for on-site hydrogen production. J. Catal.2006,241(2):235-242.
    [167]Yan J, Wang A, Kim D P. Preparation of ordered mesoporous SiC from preceramic polymer templated by nanoporous silica. J. Phys. Chem. B,2006,110(11):5429-5433.
    [168]Yan J, Wang A, Kim D P. Preparation of ordered mesoporous SiCN ceramics with large surface area and high thermal stability, Micropor. Mesopor. Mater.2007,100(1-3):128-133.
    [169]Thirtha V, Lehman R, Nosker T. Glass transition phenomena in melt-processed polystyrene/polypropylene blends. Poly. Eng. Sci.2005,45(9) 1187-1193.
    [170]Yang S M, Miguez H, Ozin G A. Opal circuits of light-planarized microphotonic crystal chips. Adv. Funct. Mater.2002,12(6):425-431.
    [171]Jiang P, Hwang K S, Mittleman D M, et al. Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids. J. Am. Chem. Soc.1999,121(50):11630-11637.
    [172]Therriault D, White S R, Lewis J A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater.2003,2:265-271.
    [173]Kitaev V, Ozin G A. Self-assembled surface patterns of binary colloidal crystals. Adv. Mater.2003, 15(1):75-78.
    [174]Xia D, Brueck S R J. A facile approach to directed assembly of patterns of nanoparticles using interference lithography and spin coating. Nano. Lett.2004,4(7):1295-1299.
    [175]Li Q, Lewis J A. Nanoparticle inks for directed assembly of three-dimensional periodic structures. Adv. Mater.2003,15(19):1639-1643.
    [176]Stroock A D, Dertinger S K W, Ajdari A, et al. Chaotic mixer for microchannels. Science 2002,295: 647-651.
    [177]Kim S M, Lee S H, Suh K Y. Cell research with physically modified microfluidic channels:a review. Lab Chip 2008,8(7):1015-1023.
    [178]Zheng S, Ross E, Legg M A, et al. High-speed electroseparations inside silica colloidal crystals. J. Am. Chem. Soc.2006,128(28),9016-9017.
    [179]Ishigami N, Ago H, Motoyama Y, et al. Microreactor utilizing a vertically-aligned carbon nanotube array grown inside the channels. Chem. Comm.2007,16:1626-1628.
    [180]Mair D A, Schwei T R, Dinio T S, et al. Use of photopatterned porous polymer monoliths as passive micromixers to enhance mixing efficiency for on-chip labeling reactions. Lab Chip 2009,9(7): 877-883.
    [181]Miguez H, Tetreault N, Hatton B, et al. Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide. Chem. Comm.2002,22: 2736-2737.
    [182]Park S G, Lee S K, Moon J H, et al. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing. Lab Chip,2009,9(21),3144-3150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700