用户名: 密码: 验证码:
基于生物形态学的有害赤潮显微图像诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,近海海域赤潮频发,造成严重危害,引起了世界各国政府、公众和科学家的关注。而我国近海赤潮问题也早已引起了公众、政府和科技界的广泛关注,国家从基础研究、高技术发展等不同层面安排研究赤潮发生的机制、预警、预报与防治方法,着手建立业务化的赤潮监测体系等。其中,快速有效的鉴定赤潮主要藻种是赤潮自动监测中的一个重要环节。本文主要针对我国沿海常见有害赤潮藻,采集藻种不同生长时期、不同角度的多视点图像,建立中国海常见有害赤潮显微图像数据库;以传统的生物形态分类学为依据,利用图像分析、统计学习和模式识别技术,研究赤潮藻种的多视点综合表示特征,建立赤潮藻显微图像识别系统;同时,构建一个基于Web的有害赤潮显微图像采集与诊断系统,可对上传的显微光学图像提供远程处理、分析与反馈。主要工作包括:
     1.中国海常见赤潮藻的生物形态学特征和分类学研究。结合中国沿海近年来的赤潮发生情况,列出了中国海常见赤潮藻种名录(共40种,其中包括11种重点藻种);通过光学显微镜人工目视和拍照观察等手段,研究了这40种赤潮藻的生物形态学特征;并在此基础上,初步设计了这40种赤潮藻的形态学分类系统,从而为有害赤潮显微图像数据库系统和诊断系统的设计提供了依据,同时为下一步显微图像识别系统的研究奠定了基础。
     2.有害赤潮显微图像数据库系统和诊断系统的设计与实现。以40种所研究赤潮藻的生物形态学分类特征为依据,结合显微图像识别系统的实际应用需求,设计并搭建了有害赤潮显微图像数据库系统;结合JAVA(J2EE)技术和Web数据库技术,设计并实现了基于Web的有害赤潮显微图像采集与诊断系统。
     截止目前,该有害赤潮显微图像数据库已经收录课题所研究40种中国海常见赤潮藻中的24种(其中包括11种重点藻种中的10种),以甲藻为主,包括甲藻门15种、硅藻门4种、硅鞭藻纲3种、定鞭藻纲1种、蓝藻门1种,显微图像共计3790张;并且,所建立的有害赤潮显微图像数据库系统和基于Web的有害赤潮显微图像诊断系统已经分别正常运行一年和半年多。
     3.显微图像识别系统研究。基于中国海常见赤潮藻的生物形态学分类知识,以已经设计实现并运行的有害赤潮显微图像诊断系统为平台,提出了显微图像识别系统的技术路线,并针对显微图像识别进行了如下工作:
     ●提出了一种基于多方向投影的自动阈值方法进行藻种显微图像分割,该方法能较好的用于无角毛类藻种显微图像的目标细胞分割,不但能够提取藻种显微图像中的主要目标细胞,在此主要目的基础上尽可能大的保留原图像中目标细胞的全部信息,而且由于采用了较多方向(八个方向)进行投影,因此能够更为精确的定位细胞的位置,从而完全去除周围的杂质。该工作为下一步藻种图像细胞特征提取和分类识别奠定了基础。
     ●从理论上分析了变分偏微分方程图像分解的TV-L~2模型和TV-G模型及其数值解法,结合这两种模型在藻种显微图像分解中的实际应用,进一步验证了TV-G模型中G空间对纹理的描述优于TV-L~2模型中的L~2空间,从而能够较为精确的实现细胞图像纹理与主体结构的分解;分别采用具有尺度、平移、旋转不变性的Hu不变矩来描述藻种显微图像分解后的主体结构(形状)特征,具有多尺度多分辨率变化不变性的分形维数来描述藻种显微图像分解后的纹理(壳面花纹)特征,进行分类识别,并通过实验验证了该方法的可行性。
     ●改进了基于分形邻距的图像匹配方法,针对藻种显微图像,改进方法较传统方法能够更为准确的实现目标匹配,从而可较大程度提高藻种的识别准确率。
In recent years, red tides with serious harm appear more and more frequently incoastal waters, which caused more attention by the governments, the public and scientists.The same phenomenon happens in China, the country arranged researches on formationmechanism, early warning, forecasting, preventing and controlling methods ofred tide on different levels such as the fundamental research and high-technology development,which aims to establish operational monitoring system of red tide. Therefore,identifying the dominant species of red tide rapidly and effectively plays an importantrole in automatic monitoring of red tide. According to the situation that Harmful AlgalBlooms (HAB) appear in China's coastal waters, this paper elaborates the work includingmicroscopic image acquisition of HAB on multi-viewpoints with different growingperiods and establishment of microscopic image database about HAB appearingfrequently in China's coastal waters. Based on the traditional biological morphologicaltaxonomy, this paper studies multi-viewpoints characteristics of HAB microscopicimages, establishes the microscopic image identification system of HAB, and buildsan image collecting and diagnosing system for HAB based on B/S (Browser/Server)architecture which can provide remote processing, analysing as well as feedback foruploaded microscopic images. The work mainly contains:
     1. Research on ecological characteristics and taxonomy of HAB appearing frequentlyin China's coastal waters. According to the information of red tide appearingin recent years, listing the species of red tide appearing frequently inChina's coastal waters including 40 species totally within 11 important species;studying the ecological characteristics of these 40 species by the observation aswell as photographs through microscopes; designing the taxonomic system forthese 40 species. These work lay the foundation for designing microscopic imagedatabase of HAB and microscopic image identification system.
     2. Design and implementation of HAB microscopic image database and diagnosis system. Based on the biological ecological taxonomic characteristics of the 40species and the application requirements of the microscopic image identificationsystem, designing and building the microscopic image database of HAB; designingand implementing the microscopic image diagnosis system for HAB basedon B/S architecture using the technology of JAVA (J2EE) and WEB database.
     Until now, this database collects 24 of 40 species within 10 of 11 importantspecies, including 15 species of Dinophyta, 4 species of Bacillariophyta,3 species of Dictyochophyceae, 1 species of Haptophyceae, and 1 speciesCyanophyta. Furthermore, the image database and diagnosis system have alreadyworked more than one and half a year respectively.
     3. Research on microsopic image identification. Based on the ecological taxonomiccharacteristics of the 40 species and the microscopic image diagnosis system forHAB, designing the technology roadmap of microscopic image identificationsystem. About this system, this paper mainly contains the work as follows:
     (a) proposing a method of image segmentation for cell image based on multipledirections projection and automatic thresholding. This method can separatethe object cell from the microcopic image which is useful for cell extractionof species without setae. Therefore, object cell information in microscopicimages can be extracted. Besides, the location of the cell in microscopicimages can be located accurately to remove noises around the cell becausethis method adopts 8 directions projection. This method lays the foundationfor further features extraction and identification.
     (b) analysing image decomposition model of TV-L~2 and TV-G as well astheir numerical solution based on variational partial differential equationstheoretically. The actual application of these two models in decomposingphytoplankon microscopic images illustrates that the texture of image isbetter described by G space in TV-G model than that by L~2 space in TV-L~2model. Therefore, TV-G model is used to decompose microscopic imagesinto cartoon and texture components. To identify the species, the cartoonimage expressing shape of the cell is described by Hu invariant moment which have the invariance of scale, translation and rotation while the texttareimage expressing valve stria is descibed by fractal dimension which havethe invariance of multi-scale and multi-resolution. And the experimentalresults prove feasibility of this method.
     (c) improving the image matching method based on fractal neighbor distance.The improved method can realise the object matching more exactly thantraditional method for phytoplankton images, which can improve the identificationrate dramatically.
引文
[1] 邹景忠.赤潮生物与赤潮灾害研究.见:曾呈奎,编.中国海洋科学研究及开发.青岛:青岛出版社,1992:284-287.
    [2] 华泽爱.赤潮灾害.北京:海洋出版社,1994.
    [3] 邹景忠,王克行.我国赤潮灾害研究的新进展.海洋环境监测文集.北京:海洋出版社,1995:138-143.
    [4] 俞志明,曹西华.“九五”期间中国沿海有害赤潮灾害状况及其防治对策.安全与环境学报,2002,2(6):15-17.
    [5] 邹景忠.赤潮灾害.见:曾呈奎,编.中国海洋志.河南:大象出版社,2003:802-826.
    [6] 胡国成.我国沿海赤潮发生的原因及其危害.中国水产,2006,(2):73-74,80.
    [7] 马志华,杨翼,董军兴.1998-2005年中国海洋灾害分析研究.第三届南中国海有害赤潮的防治与管理国际研讨会.中国香港:科学出版社,2006:349-356.
    [8] 邹景忠,周名江,俞志明,等.养殖水体富营养化和有害赤潮.见:李永祺,邹景忠,等,编.海水养殖生态环境的保护与改善.北京:科学出版社,1999:74-131.
    [9] 俞志明.赤潮灾害的预测与治理.北京:科学出版社,1994.
    [10] 黄晓航,等.赤潮发牛机理研究:海洋原甲藻的氮营养生理特性.海洋与湖沼,1996,28(1):33-38.
    [11] 缪锦来,石红旗,李光友,等.赤潮灾害的发展趋势、防治技术及其研究进展.安全与环境学报,2002,2(3):40-44.
    [12] 周名江,朱明远.我国近海有害赤潮发生的生态学、海洋学机制及预测防治研究进展.地球科学进展,2006,21(7):673-679.
    [13] 王修林,孙培艳,高振会,等.中国有害赤潮预测方法研究现状和进展.海洋科学进展,2003,21(1):93-98.
    [14] 吕颂辉,齐雨藻.中国的赤潮、危害、成因和防治.见:张利民,编.中国赤潮研究与防治.北京:海洋出版社,2005:1-7.
    [15] 王朝晖,齐雨藻,陈菊芳,等.大亚湾春季卡盾藻种群动态及其赤潮成因分析.水生生物学报,2006,30(4):394-398.
    [16] Jingzhong Z, Cheng Z. Recent progress of the study on harmful algal blooms in China: An overview. Proceedings of Transfer and Environmental Impact of pollutants in the coastal and Estuarine Area of China. Beijing: Ocean Press, 1996:105-110.
    [17] 梁松,钱宏林,齐雨藻.中国沿海的赤潮问题.生态科学,2000,19(4):44-50.
    [18] 周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):53-59.
    [19] 苏纪兰.中国的赤潮研究.中国科学院院刊,2001,(5):339-342.
    [20] 齐雨藻,王艳,王寿松,等.中国沿海赤潮.北京:科学出版社,2003.
    [21] 江天久,佟蒙蒙,齐雨藻.赤潮的分类分级标准及预警色设置.生态科学,2006,26(6):2035-2040.
    [22] 梁松,钱宏林.珠江口及其邻近海域赤潮的研究.南海资源与环境研究文集.广州:中山大学出版社,1999:1-7.
    [23] 钱宏林,梁松,齐雨藻.广东沿海赤潮的特点及成因研究.生态科学,2000,19(3):8-16.
    [24] 颜天,周名江,邹景忠,等.香港及珠江口海域有害赤潮发生机制初步探讨.生态学报,2001,21(10):1634-1641.
    [25] 张捷,于波.长江口至嵊泗列岛附近海域浮游植物与赤潮的监测研究.浙江海洋学院学报,2001,20(3):213-216.
    [26] 周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探.应用生态学报,2003,14(7):1031-1038.
    [27] 韩笑天,邹景忠,张永山.胶州湾赤潮生物种类及其生态分布特征.海洋科学,2004,28(2):49-54.
    [28] 闵怀,黄备,唐静亮,等.浙江省沿海赤潮灾害的初步分析.环境污染与防治,2008,30(11):90-91,95.
    [29] 安鑫龙,齐遵利,李雪梅,等.河北省沿海赤潮研究20年.安徽农业科学,2008,36(31):13787-13788,13861.
    [30] 张前前,王修林,祝陈坚.赤潮浮游植物种类和数量分析的研究进展.海洋环境科学,2004,23(1):46-47,57,67.
    [31] 高亚辉,杨军霞,骆巧琦,等.海洋浮游植物自动分析和识别技术.厦门大学学报,2006,45(S2):40-45.
    [32] Dubelaar G B J, Balfoort H W, Hofstraat H W. Automatic identification and counting of phytoplankton. Water Sci Technology, 1991, 24(10):285-286.
    [33] Hader D P. Novel Method to determine vertical distributions of phytoplankton in marine water columns. Environmental and Experimental Botany, 1995, 35(4):547-555.
    [34] Pech-Pacheco J L, Alvarez-Borrego J. Optical-digital system applied to the identification of five phytoplankton species. Marine Biology, 1998, 132:357-365.
    [35] Kocak D M, Lobo N D V, Widder E A. Computer vision techniques for quantifying, tracking,and identifying bioluminenscent plankton. IEEE Journal of Oceanic Engineering, 1999,24(1):81-95.
    [36] Pech-Pacheco J L, Borrego J A, Crist(?)bal G. Identification of a red tide blooming species through an automatic optical-digital system. Proceedings of Algorithms and Systems for Optical Information Processing V, volume 4471 of Optics and Imaging Systems. San Diego,CA, USA, 2001. 243-250.
    [37] Buf H, Bayer M M. Automatic Diatom Identification. Singapore: World Scientific, 2002.
    [38] Forero-Vargas M G, Alvarado J E, Luna-Tamayo A. Automatic diatom recognition on digital images. Proceedings of Applications of Digital Image Processing XXV, volume 4790 of Image Classification. Seattle, WA, USA, 2002. 133-142.
    [39] 张磊,王学民,王明时.基于图像处理技术的赤潮生物自动识别.仪器仪表学报,2003,24(S4):369-370.
    [40] Embleton K V, Gibson C E, Heaney S I. Automated counting of phytoplankton by pattern recognition: a comparison with a manual counting method. Journal of Plankton Research,2003, 25:669-681.
    [41] 王明时,王学民,张磊.显微图像分析技术在赤潮生物识别中的应用.天津大学学报,2004,37(5):392-395.
    [42] 王学民,张磊,王明时.图像处理技术在赤潮生物自动识别中的应用.计算机辅助设计与图形学学报,2004,16(2):158-162.
    [43] 赵文仓,姬光荣,周立俭,等.浮游植物细胞图像识别方法的研究.计算机工程,2005,31(24):143-144,155.
    [44] 徐雷,于连生.赤潮藻的显微图形测量方法研究.海洋技术,2003,22(3):43-46.
    [45] 李金忠,吴沿友,秦松,等.显微图像处理在藻类分类计数中的应用.贵州科学,2006,24(3):25-27,30.
    [46] 汪振兴,余焱,姜建国.赤潮藻类图像自动识别的研究.海洋环境科学,2007,26(1):42-44
    [47] Johnsen G, Samset O, Granskog L, et al. In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton: taxonomic characteristics and responses to photoadapta-tion by means of discriminant and HPLC analysis. Marine Ecology Progress Series, 1994,105:149-157.
    [48] Kirkpatrick G J, Millie D F, Moline M A, et al. Optical Discrimination of a Phytoplankton Species in Natural Mixed Populations. Limnology and Oceanography, 2000, 45(2):467-471.
    [49] 李继刚,王世忠,高志,等.藻类和悬浮物的光谱识别研究.高技术通讯,2000,(7):68-71.
    [50] Cowles T J, Desiderio R A, Neuer S. In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra. Marine Biology, 1993, 115(2):217-222.
    [51] Seppaelae J, Balode M. The use of Spectral Fluorescent Signatures technology in drug detection: A new frontier in forensic analysis. Hydrobiologia, 1998, 363(1):207-217.
    [52] 张前前,类淑河,王修林,等.浮游植物活体三维荧光光谱分类判别方法研究.光谱学与光谱分析,2004,24(10):1227-1229.
    [53] Furuya K, Hayashi M, Yabushita Y, et al. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC2 derived pigment signatures. Deep Sea Research Part Ⅱ: Topical Studies in Oceangraphy, 2003, 50(2):367-387.
    [54] 王海黎,洪华生,徐立.反相高效液相色谱法分离测定海洋浮游植物的叶绿素和类胡萝卜素.海洋科学,1999,4:6-9.
    [55] 姚鹏,于志刚,米铁柱.海洋浮游藻类的化学分类法.海洋环境科学,2003,22(1):75-80.
    [56] Balfoort H W, Snoek J, Smiths J R M, et al. Automatic identification of algae: neural network analysis of flow cytometric data. Journal of Plankton Research, 1992, 14(4):575-589.
    [57] 焦念志,杨燕辉.四类海洋超微型生物的同步监测.海洋与湖沼,1999,30(5):506-511.
    [58] 张利华,张经,晁敏.流式细胞术对微微型浮游植物识别初探.海洋科学,2002,26(3):60-65.
    [59] Scholin C A, Anderson D M. Two distinct small subunit ribosomal RNA genes in the north American toxic dinoflagellate Alexandrium fundyense (Dinophyceae). Journal of Phycology,1993, 29:209-216.
    [60] Scholin C A, Anderson D M. Identification of group and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae) I: RFLP analysis of SSU rRNA genes.Journal of Phycology, 1994, 30(4):744-754.
    [61] Scholin C A, Anderson D M. LSU rDNA-based RFLP assays for distrimination species and strains of Alexandrium (Dinophyceae). Journal of Phycology, 1996, 32:1022-1035.
    [62] Scholin C A, Matin R, Miller P E, et al. DNA probes and a receptor-binding assay for detection of Pseudo-nitzschia (Bacillariophyceae) species and domoic acid activity in cultured and natural samples. Journal of Phycology, 1999. 1356-1367.
    [63] Hallegraeff G M, Hara Y. Taxonomy of harmful marine raphidophytes. In: Hallegraeff G M, Anderson D M, Cembella A D, (eds.). Proceedings of Manual on harmful marine microalgae. Paris: Renouf Pub Co., Ltd, 1995: 365-371.
    [64] 郭皓,王健国,易晓蕾,等.中国近海赤潮生物图谱.北京:海洋出版社,2004.
    [65] 王安利,王维娜,刘存歧.唐海县虾池赤潮生物种类与赤潮类型的研究.河北渔业,1994.3-4.
    [66] Sournia A. Red tide and toxic marine phytoplankton of the world ocean: An inquiry into biodiversity. In: Lassus P, Arzul G, Denn E, et al., (eds.). Proceedings of Harmful Marine Algal Blooms, Proliferation D'Algues Marines Nuisibles. London, New York, Paris: Technique & Documentation-Lavosier/Andover England UK: Intercept Ltd, 1995:103-112.
    [67] Rao D V S, Quilliam M A, Pocklington R. Domoic Acid-A Neurotoxic Amino Acid Produced by the Marine Diatom Nitzschia pungens in Culture. Can. J. Fish. Aquat. Sci., 1988,45(12):2076-2079.
    [68] 陈继海,陈典金.束毛藻引起赤潮水危害坛紫菜的观察.海洋科学,1982,4:232-234.
    [69] 黄祖源.关于夜光虫造成赤潮水危害海带夏苗生长的观察.福建水产,1986,2:8-12.
    [70] 周贞英.平潭岛的东洋水束毛藻.福建师范学院学报,1962,4:75-79.
    [71] 陈亚瞿.东海1972年一次毛丝藻赤潮的分析.水产学报,1982,6(2):181-189.
    [72] Taylor F J R. The taxnomy and relationships of red tide dinoflagellates. In: Anderson D M,White A W, Baden D G, (eds.). Proceedings of Toxic Dinoflagellates. New York: Elsevier,1985:11-26.
    [73] Cembella A D, Taylor F J R. Electrophoretic variability within the Protogonyaulax tamare-selcatenella species complex: red tide dinoflagellates. Biochemical Systematics and Ecology, 1986, 15:171-186.
    [74] Hayhome B A, Anderson D M, Kulis D M, et al. Variation among congeneric dinaflagellates from the northeastern United States and Canada. Part Ⅰ. Enzyme electrophoresis. Marine Biology, 1989, 101(4):427-435.
    [75] Sako Y. Isozyme and cross analysis of mating populations in the Alexandrium catenella/tamarense species complex. In: Graneli E, Sunderstrom E, Edler L, et al., (eds.).Proceedings of Toxic Marine Phytoplankton. New York: Elsevier, 1990: 87-93.
    [76] Tang X, Stewart W K, Huang H, et al. Automatic plankton image recognition. Artificial Intelligence Review, 1998, 12: 177-199.
    [77] Boddy L, Morris C W, Wilkins M F, et al. Neural network analysis of flow cytometric data for 40 marine phytoplankton species. Cytometry, 1994, 15:283-293.
    [78] Boddy L, Morris C W, Wilkins M F, et al. Identification of 72 phytoplankton species by radial basis function neural network analysis of flow cytometric data. Marine Ecology Progress Series, 2000, 195:47-59.
    [79] Culverhouse P F, Simpson R G, Ellis R, et al. Automatic classification of field collected dinoflagellates by artificial neural network. Marine Ecology Progress Series, 1996, 138:281-287.
    [80] Hicks Y, Marshall D, Martin R R, et al. Automatic landmarking for building biological shape models. Proceedings of IEEE International Conference on Image Processing, 2002.
    [81] See J H, Campbella L, Richardson T L, et al. Combining new technologies for determination of phytoplankton community structure in the northen Gulf of Mexico. Journal of Phycology,2005, 41:305-310.
    [82] Ishikawa K, Kumagai M, Walker R F. Application of autonomous underwater vehicle and image analysis for detecting the three-dimentional distribution of freshwater red tide Uroglena americana (Chrysophyceae). Journal of Plankton Research, 2004, 27:129-134.
    [83] 姬光荣,等.基于内禀性结构模式的图像分割.电子学报,2002,30.
    [84] 戴君伟,王博亮,谢杰镇,等.海洋赤潮生物图像实时采集系统.高技术通讯,2006,16:1316-1320.
    [85] Guillard R L, Ryther J H. Studies of marine planktonic diatom L. Cyclotellanana H. and Detonula confervacea (Cleve) Gran. Journal of Phycology, 1962, 17:309-314.
    [86] Bradbury S. The evolution of the microscope. Oxford, New York: Pergamon Press, 1967.
    [87] 杨世民,董树刚.中国海域常见浮游硅藻图谱.青岛:中国海洋大学出版社,2006.
    [88] 郭玉洁,钱树本.硅藻门.北京:科学出版社,2003.
    [89] Garcia-Molina H, Ullman J D, Widom J. Database Systems: The Complete Book. Upper Saddle River, New Jersey: Prentice Hall, 2001.
    [90] Ramakrishnan R, Gehrke J. Database Management Systems. 3th ed., McGraw-Hill Com-panies, 2002.
    [91] 王珊,张孝,李翠平.数据库技术与应用.北京:清华大学出版社,2005.
    [92] Silberschatz A, FKorth H, SSudarshan. Database Systems Concepts. 5th ed., McGraw-Hill Companies, 2005.
    [93] Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative perfor-mance evaluation. Journal of Electronic Imaging, 2004, 13(1): 146-165.
    [94] Otsu N. A Threshold Selection Method from Gray-level Histograms. IEEE Transactions on Systems, Man and Cybern, 1979, SMC-9(1):62-66.
    [95] Gabor D. Information theory in electron morcrocopy. Laboratory Investigation, 1965,14:801-807.
    [96] Jain A K. Partial differential equations and finite-difference methods in image process-ing. Part 1: image representation. Journal of Optimization Theory and Applications, 1977,23:65-69.
    [97] Witkin A P. Scale-Space filtering. Proceedings of Processing of the International Joint Conference on Artificial Intelligence, 1983. 1019-1021.
    [98] Koenderink J. The structure of image. Biological Cybernetics, 1984, 50:363-370.
    [99] Hummel R A. Representations based on zero-crossing in scale-space. Proceedings of Processing of the International Joint Conference on Artificial Intelligence, 1986. 204-209.
    [100] Perona P, Malik J. Scale space and edge detection using anisotropic diffusion. Proceedings of Proc.IEEE Comp.Soc.Workshop on computer vision, volume 12, 1990. 629-639.
    [101] Osher S, Rudin L I. Feature-Oriented image enhancement using Shock Filter. Society for Industrial and Applied Mathematics, 1990, 27(4):919-940.
    [102] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms.Physica D, 1992, 60:259-268.
    [103] You Y L, Xu W, Tannenbaum A, et al. Behavioral Aanalysis of anisotropic diffusion in Image Processing. IEEE Transactions on Image Processing, 1996, 11(5):1539-1553.
    [104] Sethian J A. Level set methods and fast marching methods. Cambridge University Press,1999.
    [105] Osher S J, Fedldw R P. Level Set Methods and Dynamic Implicit Surfaces. Springer, 2002.
    [106] Chan T F, Shen J. Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics, 2002, 62:1019-1043.
    [107] Shen J. Inpainting and the fundamental problem of image processing. SIAM News, 2003,36(5): 1-4.
    [108] 王大凯,侯榆青,彭进业.图像处理的偏微分方程方法.北京:科学出版社,2008.
    [109] Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations.AMS Bookstore, 2001.
    [110] Vese L, SOsher. Modeling texture with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing, 2003, 19(13):553-572.
    [111] Osher S, Sole A, Vese L. Image Decomposition and Restoration Using Total Variation Minimization and the H-1 Norm. Journal of Multiscale Modeling and Simulation, 2003,1(3): 1579-1590.
    [112] Aujol J F, Aubert G, Blance-Feraud L, et al. Image decomposition into a bounded variation component and a oscillating component. Journal of Mathematical Imaging and Vision, 2005,22(1):71-88.
    [113] Aubert G, Aujol J F. Modeling very oscillating singals. Application to image processing,2005, 51(2): 163-182.
    [114] Aujol J F, Aubert G, Blance-Feraud L, et al. Image decomposition application to SAR image. Lecture Notes in Computer Science, 2003, 2695:297-312.
    [115] Aujol J F, Aubert G, Blance-Feraud L, et al. Dual norms and image decomposition models.International Journal of Computer Vision, 2005, 63(1):85-104.
    [116] Hu M K. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 1962, 8(2): 179-187.
    [117] Mandelbrot B B, Ness J W V. Fractional Brownian motion, fractional noise and applications.SIAM Review, 1968, 10(4):422-437.
    [118] Pentland A P. Fractal based description of natural scenes. Pattern Analysis, 1984, 6:661-674.
    [119] 冯晨.基于分形维数的中国海常见浮游植物细胞特征提取[博士学位论文].青岛:中国海洋大学,2007.
    [120] 张济忠.分形.北京:清华大学出版社,1997.
    [121] 孙保平.分形图像处理技术研究[硕士学位论文].南京:河海大学,2001.
    [122] Barnsley M F, Sloan A D. A Better Way to Compress Image Byte. Byte, 1988, 13(1):215-223.
    [123] Barnsley M F, Hurd L. Fractal Image Compression. Wellesley: AK Peters, Ltd., 1993.
    [124] Jacquin A E. A Novel Fractal Block-Coding Technique for Digital Image. Proceedings of IEEE International Conference Acoustics, Speech and Signal Processing, volume 4, Albu-querque, 1990. 2225-2228.
    [125] Jacquin A E. Image Coding Based on a Fractal Theory of Iterated Contractive Image Trans-formations. IEEE Transactions on Image Processing, 1992, 1(1): 18-30.
    [126] Mandelbrot B B. The Fractal Geometry of Nature. New York: W H Freeman, 1983.
    [127] Hutchinson. Fractals and Self-Similarity. Journal of Mathematics, 1981, 30:713-740.
    [128] Barnsley M F, Demko S. Iterated function system and the global constrction of fractal.Proceedings of Royal Society of London, volume 399, London, 1985. 243-275.
    [129] Barnsley M F. Fractals Everywhere. U.S.: Academic Press, 1988.
    [130] 夏道行,吴卓人,严绍宗,等.实变函数与泛函分析(下册).北京:人民教育出版社,1979.
    [131] 张石生.不动点理论及应用.重庆:重庆出版社,1984.
    [132] 何传江.分形图像编码技术的算法研究[博士学位论文].重庆:重庆大学,2004.
    [133] Fisher Y. Fractal Encoding: Theory and Application to Digital Image. New York: Springer-Verlag, 1994.
    [134] Saupe D, Jacob S. Variance-based quadtrees in fractal image compression. Electronics Letters, 1997, 33(1):46-48.
    [135] Zhao Y, Yuan B. A New Affine Transformation: Its Theory and Application to Image Coding. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(3):269-274.
    [136] Tan T, Yan H. The fractal neighbor distance measure. Pattern Recognition, 2002,35(6): 1371-1387.
    [137] Tan T, Yan H. Object recognition based on fractal neighbor distance. Signal Processing,2001, 81:2105-2129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700