用户名: 密码: 验证码:
小型动态星模拟器技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天事业的迅猛发展,天文导航设备日益受到重视,其中,测量精度高且无时间漂移的星敏感器备受青睐。由于航天实验的特殊性,无法把星敏感器送入太空中进行检测,因此有必要在地面上模拟实时星图以对星敏感器进行测试。本文以小型动态星模拟器为研究对象,分析星模拟器的工作原理,确定基于数字光处理技术的小型动态星模拟器总体方案,设计光学系统,编写动态星图软件,提出并实现星光颜色模拟方案,研制出小型动态星模拟器原理样机并设计实验进行测试。
     根据星敏感器的工作原理和工作方式,提出基于数字光处理的小型动态星模拟器总体技术方案,并确定了小型动态星模拟器的主要技术指标。
     星模拟器光学系统,包括非成像的照明光学系统和成像的准直物镜系统两部分。为了达到小型化的星模拟器技术要求,设计基于白光发光二极管的照明光学系统,并对光阀处的光斑均匀性进行优化与仿真分析,照明不均匀度达到3%;针对星模拟器准直物镜系统的特点,设计了复杂化匹兹万结构的光学系统,并对像差进行了优化分析,最终结果为绝对畸变小于光阀像元尺寸,相对畸变控制在1‰以下,达到星模拟器成像光学系统要求。
     编写了动态星图软件,采用快速检索算法,把理论运算量缩减为1/72,支持2~6.5等星的实时动态模拟。设计地基星图软件,通过与商业电子星图的对比,验证了星图显示算法的正确性。
     根据星模拟器的未来发展方向,首次提出星光颜色模拟方案。分析天文测光系统各参数,以亮星星表为基准,推导出恒星的色温,由普朗克辐射定律,参照CIE标准色度学系统,确定恒星的色度坐标和星光颜色三刺激值,实现了对恒星的星光颜色模拟。
     最后对研制的小型动态星模拟器原理样机进行测试实验,测试结果达到小型动态星模拟器技术要求。
     本文的主要创新点在于:一、采用数字光处理技术作为小型动态星模拟器的显示核心,提高显示图像的响应速度和光能利用率,国内外未见相关文献报道;二、探索性地开展星光颜色模拟的研究,为进一步开展恒星的近似光谱模拟提供了一条途径。
With the rapid aerospace development, the space navigation equipment becomes important, especially the star sensor with high accuracy and no time-drift. A star simulator is needed to test the star sensor because of the particularity of aerospace experiment. The main research of this dissertation focuses on the star simulator which is the testing equipment for the star sensor.
     The working principle of the star simulator is analyzed on introduction of the star sensor. The system of the star simulator based on Digital Light Processing is designed and the primary technical parameter is determined.
     The optical system of the star simulator is divided into two parts: non-imaging optical design and imaging optical design. The white light emitting diode is used as the light source in order to decrease the volume and weight. The illumination program is designed. As a result, the uniformity on the light valve is about 3%. To the imaging optical system of the star simulator, distortion is the most important aberration. The collimating object system with the exit pupil outside is designed on the complex petzval structure. After the optimization, the relative distortion is below 1‰.
     The display algorithm for star map is designed based on the principle of some celestial sphere coordinate system on astronomy. To improve the efficiency of the algorithm, the rapid seeking thoughts by district-dividing is introduced to reduce theoretical mathematical operation to 1/72. The dynamic display software for star map is completed to display the stars between the stellar magnitude 2 and 6.5. A star map software program on earth is also designed to test and verify the correctness of the algorithm.
     To the weakness of simulation on the stellar spectrum of the dynamic star simulator at the present stage, a program on color simulation of stars is proposed for the first time. The characteristics between the metering system and the spectral classificiation on astronomy are analyzed and finally the UBVRI metering system is chosen. The color temperature of stars is concluded on the related parameters in a star catalog. The blackbody radiation spectral lines are calculated at the concluded color temperature. The chromaticity coordinates and the tristimulus values of stars are determined according to the principle of chromaticity. Then the color simulation of stars is implemented.
     The testing experiments are carried out and the experimental results demonstrate the research work.
     The first new idea of the dissertation is to introduce Digital Light Processing as the core of the display scheme. The second is to propose a program on color simulation of stars.
引文
[1] C C Liebe, E W Dennison, B Hancock, et al. Active pixel sensor (APS) based star trackers[C]. Aerospace Conference (IEEE), 1998, 1. 119-127.
    [2] W M Johnson, R E Phillips. Stellar/inertial (EBCCD/MEMS) attitude measurement and control of small satellite[C]. Space 2001 - Conference and Exposion (AIAA), 2001.
    [3] Katake A B. Modeling, imaging processing and attitudes estimation of high speed star sensors[D] : [A Dissertation for the Degree of Doctor of Philosophy]. Texas: Texas A&M University, 2006.
    [4] G N Rao, T K Alex, M S Bhat. Incremental-angle and angular velocity estimation using a star sensor[J]. Journal of Guidance, Control and Dynamics, 2002, 25: 433-441.
    [5]郭玉蛟.星模拟器概述[J].控制工程,1986(5):42-49.
    [6]王晓东.大视场高精度星敏感器技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所光学工程,2003.
    [7] C C Liebe, K Gromov, D M Meller. Toward a stellar gyroscope for spacecraft attitude determination[J]. Journal of Guidance, Control and Dynamics, 2004, 27: 91-99.
    [8] C C Liebe. Accuracy performance of star tracker– a tutorial[J]. Transaction on aerospace and electronic systems, 2002, 38(2): 587-599.
    [9]张文明.小型星模拟器的研制方法和研制技术[D]:[硕士学位论文].成都:电子科技大学光学工程,2003.
    [10]潘平.单星模拟器数字光源调制技术[D]:[硕士学位论文].西安:中国科学院西安光学精密机械研究所,2005.
    [11]王南华,张陶,赵旭行.小型动态星模拟器设计[J].航天控制,1996(4):13-20.
    [12] J L Smith, C Whitford, et al.小卫星的低成本姿态确定与控制[J].控制工程,1998(2):41-53.
    [13]李春霞,付苓,许世文等.星模拟器光学系统的设计[J].哈尔滨工业大学学报,1998,30(3):115-117.
    [14]钟奉金,许世文,赵亮等.星模拟器中积分球内光纤端面有效照度的计算[J].哈尔滨工业大学学报,1998,30(4):113-115.
    [15] J L Crassidis. Angular velocity determination directly from star tracker measurements[J]. Journal of Guidance, Control and Dynamics, 2002, 25: 1165-1168.
    [16]巩岩,胡宜宁,赵阳.基于数字光处理技术的小型星模拟器设计[J].光学精密工程,2007,15(11):1698-1703.
    [17] J C Minano, P Benitez, R Mohedano, et al. Ultra compact optics for optical wireless communications[C]. Conference on Optical Wireless Communications II (SPIE), 1999, 3858. 80-90.
    [18] R Mohedano, J Minano C, P Benitez, et al. Ultracompact nonimaging devices for optical wireless communications[J]. Optical Engineering, 2000, 39(10): 2740-2747.
    [19]陆巍.投影显示照明光学的理论和实验研究[D]:[博士学位论文].杭州:浙江大学光学工程,2006.
    [20]沈默. LED投影显示照明系统研究[D]:[硕士学位论文].杭州:浙江大学光学工程,2006.
    [21] R Winston. Nonimaging Optics[J]. Scientific American, 1999, 264(3): 76-81.
    [22]甄艳坤. LCOS微投影显示中照明系统的研究和设计[D]:[博士学位论文].杭州:浙江大学光学工程,2007.
    [23]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,2002,68-69.
    [24] G Zochling. Design and analysis of illumination systems[C]. International Lens Design Conference (SPIE), 1354. 617-626.
    [25] A Cvetkovic, O Dross, J Chaves, et al. Etendue preserving mixing and projection optics for high brightness LEDs applied to automotive headlamps[C]. International Optical Design Conference 2006 (OSA-SPIE), 2006, 6342. 63420R.
    [26] J C Minano, P Benitez. Fermat’s principle and conservation of 2D etendue[J]. Nonimaging Optics and Efficient Illumination Systems, 2004, 5529: 87-95.
    [27] R Winston, J C Minano, P Benitez. Nonimaging Optics[M]. Amsterdam: Elsevier. 18-22.
    [28] P Benitez, J C Minano, M Hernandez. Novel nonimaging lens for photodiode receivers with a prescribed angular response and maximum integrated sensitivity[C]. Optical Wireless Communication III (SPIE): 2001, 4214. 94-103.
    [29]张以谟.应用光学[M].北京:机械工业出版社,1988:401-402、166-167.
    [30] O Dross, R Mohedano, M Hernandez, et al. Kohler integrators embedded into illumination optics add functionality[C]. Illumination Optics (SPIE), 2008, 7103. 71030G.
    [31] M Hernandez, A Cvetkovic, P Benitez, et al. High-performance Kohler concentrators with uniform irradiance on solar cell[C]. Nonimaging Optics and Efficient Illumination Systems V (SPIE), 2008, 7059. 705908.
    [32] D E Williamson. Cone channel optics[J]. The Optical Society of America. 1952, 42(10): 712-715.
    [33] Chong-Min Chang, Han-Ping D Shieh. Design of illumination and projection optics for projectors with single digital micromirror devices[J]. Applied Optics. 2000, 39(19): 3202-3208.
    [34]王蔚生,窦晓鸣,黄维实.液晶投影机光棒照明系统的分析与设计[J].光学仪器,2004,26(4):36-40.
    [35]缪莹莹.基于LED照明的DLP投影显示系统研究[D]:[硕士学位论文].杭州:浙江大学光学工程,2007.
    [36] A P Riser, W J Cassarly. Analysis of single lens arrays using convolution[J]. Optical Engineering, 2001, 40(5): 805-813.
    [37] J C Minano, M Hernandez, P Benitez, et al. Free-form integrator array optics[C]. Nonimaging Optics and Efficient Illumination Systems II (SPIE), 2005, 5942. 59420C.
    [38] F Munoz, P Benitez, O Dross. Simultaneous multiple surface design of compact airgap collimators for light-emitting diodes[J]. Optical Engineering, 2004, 43: 1522-1530.
    [39]胡海蕾. LED照明光学系统的设计及其阵列光照度分布研究[D]:[硕士学位论文].福州:福建师范大学,2005.
    [40] I J Morejon, Jinhui Zhai, Haizhang Li, et al. Led polarizing optics for color illumination system and method of using same[P]. United States Patent, US 7261453 B2. 2007-08-28.
    [41] D Dudley, W Duncan, J Slaughter. Emerging digital micromirror device (DMD) applications[J]. MOEMS Display and Imaging Systems, SPIE, 2003, 4985: 14-25.
    [42] Yu Xing Jie. Optical components for LCOS projectors[D]: [A Dissertation for the Degree of Doctor of Philosophy]. Hang Kong: The Hang Kong University of Science and Technology, 2004.
    [43] Ostar-projection LE ATB A2A[DB]. www.osram.com.
    [44]小型星模拟器可行性方案论证报告[R].中国科学院长春光学精密机械研究所,1994.
    [45] DLP discovery .7 XGA 2xLVDS 12°type A DMD[DB]. www.dlpdiscovery.com.
    [46]陈时伟.数位光源处理投影系统之光学设计与光机模拟[D]:[硕士学位论文].台北:元智大学,2002.
    [47] S Magarill. Optical system for projection display[P]. United States Patent, 5604624. 1997-02-18.
    [48] Fang C Ho, Cheng-Wei Chu. Non-polarizing color separation and color re-combination prism for projection display systems[C]. OSA/OIC, 2004. FA4.
    [49] S G Lee. TIR prism system for DMD and projector adopting the same[P]. United States Patent, US 6760168 B2. 2004-07-06.
    [50]杨林华,史瑞亮,范宁.高辐照度太阳紫外辐照源研制技术[J].航天器环境工程,2004,21(4): 29-34.
    [51]巩岩,胡宜宁,赵阳.基于数字光处理技术的小型星模拟器设计[J].光学精密工程,2007,15(11):1698-1703.
    [52]王之江,顾培森.实用光学技术手册[M].北京:机械工业出版社,2007. 343-350.
    [53] W J Smith, E Batensky, D Williamson, et al. The past, present, and future of optical design[C]. International Optical Design Conference (SPIE-OSA), 2006, 6342: 63422Y.
    [54]陈元枝,郝志航.适用于星敏感器的星图识别方法[J].光电工程,2000,27(5): 5-10.
    [55]余明.简明天文学教程[M].北京:科学出版社,2002. 26-32、122、283-284、282-283.
    [56]徐晓云.卫星轨道姿态动力学仿真软件平台研究与开发[D]:[硕士学位论文].北京:清华大学工程力学系,2002.
    [57]胡宜宁,巩岩.动态星图显示算法的设计与实现[J].宇航学报,2008,29(3):849-853.
    [58]许世文,龙夫年,付苓.实时星场模拟器中的坐标变换[J].哈尔滨工业大学学报,1998,30(5):118-120.
    [59]唐建国,袁家虎,吴钦章.液晶光阀星图模拟设计与实现[J].光电工程,1999,26(增刊):75-78.
    [60]黄磊,黄祖珂,陈宗镛.天文变量的计算[J].海洋湖沼通报,2003,3:96-100.
    [61] Filters and colors[DB]. www.creativecommons.org.
    [62] Photometric systems and colors[DB]. www.creativecommons.org.
    [63]孙维瑾,费保俊,易明.维恩位移定律2种表述之间的关系[J].装甲兵工程学院学报,2004,18(4):3-4.
    [64]胡宜宁,巩岩.星模拟器星光颜色模拟的初步研究[J].光电工程,2010,37(2):65-68.
    [65] M S Bessell. UBVRI systems: resolving different versions[J]. Astronomy Society of the Pacific, 1995, 107(7): 672-682.
    [66] M S Bessell. UBVRI passbands[J]. Astronomical Society of the Pacific, 1990, 102(10): 1181-1199.
    [67] A U Landolt. UBVRI photometric standard stars around the sky at -50°delination[J]. The Astronomical Journal, 2007, 133(6): 2502-2523.
    [68] J Hernandez, N Calvet, C Briceno, et al. Spectral analysis and classification of herbig Ae/Be stars[J]. The Astronomical Journal, 2004, 127(3): 1682-1701.
    [69] S Veilleux, D E Osterbrok. Spectral classification of emission-line galaxies[J]. The Astrophysics Journal Supplement Series, 1987, 63(2): 295-310.
    [70] T J Moffett. Equatorial UBVRI photoelectric sequences[J]. The Astronomical Journal, 1979, 84(5): 627-632.
    [71] A Mora, B Merin, E Solano, et al. EXPORT: Spectral classification and projected rotational velocities of Vega-type and pre-main sequence stars[J]. Astronomy and Astrophysics, 2001, 378: 116-131.
    [72]符泰然,程晓舫,钟茂华,等.基于辐射光谱的相关色温与热力学温度相关性分析[J].光谱学与光谱分析,2006,26(11):1984-1987.
    [73]戴霁穹,糜正瑜,戴显熹.黑体辐射的峰值关系、标度律及有关物理常数[J].红外研究,1989,8(4):277-284.
    [74]张建镛,易庆祥,王强,等.常温黑体辐射标准[J].计量学报,1989,10(1):1-7.
    [75]杨公侠.相关色温与照度[J].同济大学学报,1992,20(3):321-327.
    [76]胡超,叶关荣.对相关色温计算方法的探讨[J].计量学报,1990,11(3):222-227.
    [77] Stellar Classification Table[DB]. http://www.spacegear.org/data/SCTable/sctable.3.0.csv, 2003-09-23.
    [78]李庆扬,王能超,易大义.数值分析[M].第4版.北京:清华大学出版社,2001. 90-98.
    [79]叶壬葵.有关黑体辐射的若干问题[J].物理通报,1998,7:3-4.
    [80]邓明德,尹京苑,刘西桓,等.黑体辐射公式的积分解及应用[J].理论研究,2002,1:2-10.
    [81]王廷江.关于黑体辐射曲线拐点分布规律的讨论[J].西南民族大学学报,2003,29(6):737-739.
    [82]金伟其,胡威捷.辐射度,光度与色度及其测量[M].北京:北京理工大学出版社,2006. 114、117-118.
    [83]程杰铭,陈夏洁,顾凯.色彩学[M].第2版.北京:科学出版社,2006. 4-9.
    [84] G Reimann, D B Judd, H J Keegan. Spectralphotometric and colorimetric determination of the colors of the TCCA standard color cards[J]. Journal of the Optical Society of America, 1946, 36(3): 128-159.
    [85] F W Billmeyer, A C Webber. Three-dimensional color models constructed on the CIE and Munsell systems[J]. Journal of the Optical Society of America, 1953, 43(2): 69-70.
    [86] I Nimeroff. Field trial of the 1959 CIE supplementary standard observer proposal[J]. Journal of the Optical Society of America, 1964, 54(5): 696-704.
    [87] R W Burnham. Comparison of color systems with respect to uniform visual spacing[J]. Journal of the Optical Society of America, 1949, 39(5): 387-392.
    [88] J E McCarley, C E Green, K H Horowitz. Digital system for converting spectrophotometric data to CIE coordinates, dominant wavelength, and excitation purity[J]. Journal of the Optical Society of America, 1965, 55(4): 355-360.
    [89] C L Sanders, G Wyszecki. Correlated for lightness in terms of CIE-tristimulus values. Part I[J]. Journal of the Optical Society of America, 1957, 47(5): 398-404.
    [90] G Wyszecki. Color matching and color-difference matching[J]. Journal of the Optical Society of America, 1972, 62(1): 117-128.
    [91] W Budde, C L Sanders. CIE interlaboratory comparison of measurements of photocell spectral sensitivity[J]. Applied Optics, 1973, 12(9): 2099-2107.
    [92] M Melgosa, J J Quasada, E Hita. Uniformity of some recent color metrics tested with an accurate color-difference tolerance dataset[J]. Applied Optics, 1994, 33(34): 8069-8077.
    [93] G Wyszecki. On projective transformations of the CIE-chromaticity diagram[J]. Journal of the Optical Society of America, 1956, 46(11): 982-986.
    [94] G Wyszecki. A graphical interpretation of a three-components theory of chromatic adaptation in terms of the CIE chromaticity diagram[J]. Joural of the Optical Society of America, 1954, 44(10): 787-792.
    [95] G Wyszecki, C L Sanders. Correlated for lightness in terms of CIE-tristimulus values. Part II[J]. Journal of the Optical Society of America, 1957, 47(9): 840-842.
    [96]章毓晋.图像处理和分析[M].北京:清华大学出版社,2003. 22-24.
    [97]费业泰.误差理论与数据处理[M].第5版.北京:机械工业出版社,2006. 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700