用户名: 密码: 验证码:
极化光纤调相器及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究内容是采用极化方法制造全光纤相位调制器并对其参数特征进行理论分析和实验研究。
     高速率,大带宽,低损耗的全光纤相位调制器是光纤通信和光纤传感领域中最重要的组件之一,特别是它可以用来制造全光纤闭环陀螺仪,使高精度光纤陀螺仪的实现成为可能。但是,目前常用的相位调制器如LiNbO3相位调制器和压电陶瓷(PZT)相位调制器都无法全部满足以上要求。因此,本论文采用热极化方法,直接在具有宏观中心反演对称结构的光纤上制作相位调制器,这对于石英材料的理论和应用研究都有重要的意义。所谓热极化,是将石英光纤加热到300℃左右,然后施加2000~6000伏高电压(石英材料中电场强度达到大约108V/m),该过程持续10~30分钟,然后保持电压并将样品冷却至室温。光纤经上述处理后将具有电光效应,电光系数的大小与极化电压成正比,并且与极化温度,极化时间和样品组分有关。由于具有电光效应的区域是位于阳极内侧厚度大约20微米的一个薄层,所以,阳极必须尽量靠近纤芯。
     针对热极化光纤的特点,本论文完成了以下理论分析和实验工作:
     1、首次利用圆波导模型和标量近似理论对具有复杂几何结构的极化D型光纤的传输特性进行了理论分析。论文首先给出其等效折射率数学模型,在纤芯和包层中,光场用贝塞尔函数及虚宗量贝塞尔函数的求和表示,在聚合物和金属中用指数函数的求和表示,交界面上采用将虚宗量贝塞尔函数用平面波展开的方法匹配边界条件,然后利用标量近似求出极化D型光纤不同偏振态光场模式的本征值方程,最后通过数值计算得到光纤的传输损耗与抛磨平面和纤芯之间的距离,聚合物粘接材料的折射率和厚度,以及偏振态之间的关系。这些关系对实验中器件参数的设计、优化提供了理论依据。
     2、首次对双孔极化光纤传输特性进行了理论分析。由于双孔光纤的孔径和电极材料的直径比纤芯直径大得多,可以将圆孔和电极等效为平面波导。采用求解极化D型光纤传输特性类似的方法可得到相应的本征值方程组。利用数值计算求解本征值方程组可得到以下重要结论:y偏振模的传输损耗远小于x偏振模,所以前者可作为工作模式;金属电极周围的空气间隙(微米量级)有利于大幅度降低双孔极化光纤的传输损耗;不同的电极材料的损耗特性不同。
     3、与常用的数值方法-光束传输方法(FD-BPM)的计算结果以及实验数据的对比表明,上述双孔极化光纤传输特性的理论分析结果是合理、可信的。
     4、根据上述理论分析的结论,我们选用双孔光纤插入细金属丝电极的方案制备极化光纤。该技术方案具有传输损耗小、耐击穿电压高的优点,有利于提高极化光纤器件的有效电光系数。
     5、采用内腐蚀的方法精确控制双孔光纤的孔径,使用带石磨涂层的黑钨丝作为电极材料,制备了长度达1m的极化光纤器件,比现有的实验数据提高了一个数量级。该极化光纤器件损耗约为0.5dB/m,电光系数为0.06pm/V,使极化光纤器件的实用化成为可能。
High speed, broad bandwidth, low loss and all-fiber phase modulators are the most important components in fiber-optic communications and sensors. It also can be used to realize high-performance all-fiber close loop gyro. But the widely used LiNbO3 crystal and PZT phase modulators can not satisfy the above requirements. So this thesis will manufacture phase modulators directly on the fiber by thermally poling. During thermally poling process, silica materials are heated to about 300℃, and applied a 2000~6000 high voltage(the electric field intensity is about 108V/m). The process will persist 10~30min. Then holding the voltage, fiber samples are cooled down to the room temperature. After above process, the electro-optic effect emerges. The electro-optic coefficient is proportional to the poling voltage and also related to poling temperature, time and components of samples. The electro-optic region lies only a 20μm thin layer beneath the anode. So the anode must be very close to the fiber core.
     According to the characteristics of the poling fibers, the following theoretical analysis and experiments are accomplished in this thesis:
     1. The propagation characteristics of the poling D-shaped fiber with complex geometrical structure are theoretically analyzed by Circular Waveguide model and scalar approximation theory for the first time. Firstly, the equivalent refractive index model of the fiber is proposed. In the fiber cladding and core, the optical fields are represented by the sum of the Bessel and modified Bessel functions, respectively. In the polymer and metal, the optical fields are written to the sum of the exponential functions. To match the boundary conditions, the modified Bessel functions are expanded to the planar wave in the interface. Then the eigenvalue equations of different polarizations are obtained by scalar approximation. At last, the relations between propagation losses and the states of polarizations, the geometric structures of the fiber, the refractive index and thickness of the polymer are calculated. The calculated results will provide theoretical instructions to design and optimize the parameters of devices in experiments.
     2. The propagation characteristics of the poling twin-hole fiber are theoretically analyzed for the first time. Due to the facts that the diameters of the holes and electrodes are much larger than that of the fiber core, they can be regarded as planar waveguides. Corresponding eigenvalue equations are attained by the similar method used to solve D-shaped fiber. Some important conclusions are achieved by numerically solving the eigenvalue equations: the propagation loss of x-polarization mode is much larger than that of the y-polarization mode, so the latter can be the operation mode; the air gaps (several micrometers) around the metal electrodes can decrease the propagation loss of the twin-hole fiber greatly. Different electrode materials have different propagation losses.
     3. The above analytical results of the propagation characteristics of the twin- hole fiber are reasonable and believable by comparing the analytical results to the calculating results through the widely used finite difference beam propagation method (FD-BPM) and experimental data.
     4. Based on the conclusion of the above theoretical analysis, we prepare the electrodes of poling fiber by inserting thin metal wires into the holes of the fiber. This technical project has the advantage of low propagation loss and can resist high poling voltage that can improve the electro-optic coefficient of the poled fiber devices.
     5. We accurately control the diameter of holes by inner erosion, use the black tungsten wires with lead coating as the electrode material and assemble a suit of microscopic and adjusting system to insert the tungsten wires into the holes. A pair of 1m long internal electrodes is obtained by careful manipulation. This length is an order higher than the present experimental result. The loss of the fiber is less than 0.5dB/m with electro-optic coefficient of 0.06pm/V. This performance can be applied to practical application.
引文
[1] U. Osterberg, and W. Margulis, Dye laser pumped by Nd:YAG laser pulses frequency doubled in glass optical fiber. Optics Letters (1986) 11(8), pp. 516~518.
    [2] R.A. Myers, N. Mukherjee, and S.R.J. Brueck, Large second-order nonlinearities in poled fused silica. Optics Letters (1991) 16(22), pp. 1732~1734.
    [3] P.G. Kazansky, A. Kamal, and P.S.J. Russell, High second-order nonlinearities induced in lead silicate glass by electro-beam irradiation. Optics Letters (1993) 18(9), pp. 693~695.
    [4] X.-C. Long, R.A. Myers, and S.R.J. Brueck, Measurement of linear electro-optics effect in temperature/electric-field poled optical fibers. Electronics Letters (1994) 30(25), pp. 2162~2163.
    [5] T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, Electro-optic modulation in germanosilicate fiber with UV-excited poling. Electronics Letters (1995) 31(7), pp. 573~575.
    [6] Z. Chen, Y. Liao, Y. Hu, S. Xiong, Z. Meng, and W. Jin, Thermally Poled PANDA fibre device with microstrip electrode. Electronics Letters (2000) 36(22), pp. 1839~1840.
    [7] V. Pruneri, Recent advances in poled optical fibres, (2005), pp. 164-167.
    [8] T. Fujiwara, M. Takahashi, and A.J. Ikushima, Decay behaviour of second-order nonlinearity in GeO2-SiO2 glass poled with UV-irradiation. Electronics Letters (1997) 33(11), pp. 980~982.
    [9] P. Blazkiewicz, W. Xu, and S. Fleming, Optimum Parameters for CO2 Laser-Assisted Poling of Optical Fibers. Journal of Lightwave Technology (2002) 20(6), pp. 965~968.
    [10] P.S.J. Russell, and H. Takebe, Glass Fiber Poling and Applications. Journal of Lightwave Technology (1997) 15(8), pp. 1484~1493.
    [11] X.-C. Long, and S.R.J. Brueck, Large-Signal Phase Retardation with a Poled Electrooptic Fiber. Photonics Technology Letters (1997) 9(6), pp. 767~769.
    [12] P.G. Kazansky, L. Dong, and P.S.J. Russell, Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres. Electronics Letters (1994) 30(16), pp. 1345~1347.
    [13] M. Fokine, L.E. Nilsson, ?. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Integrated fiber Mach–Zehnder interferometer for electro-optic switching. Optics Letters (2002) 27(18).
    [14] N. Myrén, Poled fiber devices, Royal Institute of Technology, Stockholm, (2005).
    [15] K. Lee, P. Hu, J.L. Blows, D. Thorncraft, and J. Baxter, 200-m optical fiber with an integrated electrode and its poling. Optics Letters (2004) 29(18), pp. 2124~2126.
    [16] N. Mukherjee, R.A. Myers, and S.R.J. Brueck, Dynamics of second-harmonic generation in fused silica. J. Opt. Soc. Am. B (1994) 11(4), pp. 665~669.
    [17] H. Takebe, P.G. Kazansky, and P.S.J. Russell, Effect of poling conditions on second-harmonic generation in fused silica. Optics Letters (1996) 21(7), pp. 468~470.
    [18] C.M.B.C. A. L. C. Triques, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, Depletion region in thermally poled fused silica. Appl. Phys. Lett (2000) 76pp. 2496~2498.
    [19] T.G. Alley, and S.R.J. Brueck, Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass. Optics Letters (1998) 23(15), pp. 1170~1172.
    [20] A.C. Liu, D. Pureur, M.J.F. Digonnet, and G.S. Kino, Absolute measurement of the second-order nonlinearity profile in poled silica. Optics Letters (1998) 23(8), pp. 588~590.
    [21] 叶成, J. 习斯, 分子非线性光学的理论与实践, 化学工业出版社, 北京, (1995).
    [22] K.D. Singer, M.G. Kuzyk, W.R. Holland, J.E. Sohn, S.J. Lalama, R.B. Comizzoli, H.E. Katz, and M.L. Schilling, Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films. Applied Physics Letters (1988) 53(19), pp. 1800-1802.
    [23] K.D. Singer, J.E. Sohn, and S.J. Lalama, Second harmonic generation in poled polymer films. Applied Physics Letters (1986) 49(5), pp. 248-250.
    [24] 李家泽, 阎吉祥, 光电子学基础, 北京理工大学出版社, 北京, (1998), pp. 37-42.
    [25] 闫西林, 阮永丰, 吴顺华, 郭阿强, 晶体物理学, 电子工业出版社, 北京, (1995), pp. 92-96.
    [26] 陈哲, 极化光纤电光器件的理论与实验研究, 清华大学, 北京, (2000).
    [27] X.T. Long, Physics and Device Applications of Linear Electrooptics Effect Poled Amorphous Silica-basedMaterials, University of New Mexico, New Mexico, (1997).
    [28] T.G. Alley, The formation of the second-order nonlinearity in thermally poled fused silica glass, The University of New Mexico, New Mexico, (1998).
    [29] 彭江得, 光电子技术基础, 清华大学出版社, 北京, (1988), pp. 119~131.
    [30] 王召兵, 单光纤同时测量电流电压传感系统理论分析及实验研究, 清华大学, 北京, (1998).
    [31] 费浩生, 非线性光学, 高等教育出版社, 北京, (1990), pp. 68-84.
    [32] A.C.Liu, M.J.F. Digonnet, and G.S. Kino, Electro-optic phase modulation in silica channel waveguide. Optics Letters (1994) 19(7), pp. 466~468.
    [33] 顾畹仪, 李国瑞, 光纤通信系统, 北京邮电大学出版社, 北京, (2002), pp. 12~24.
    [34] 倪明, 胡永明, 孟洲, 陈哲, 廖延彪, 侧面抛磨极化光纤的传输特性分析. 光学学报 (2002) 22(1), pp. 121~125.
    [35] C. Tsao, Optical Fibre Waveguide Analysis, Oxford University Press, Oxford, (1992).
    [36] C. Vassallo, Rigorous Theory for modes of optical fibers with cladding limited by a plane. Electronics Letters (1986) 22(18), pp. 944~945.
    [37] D. Marcuse, F. Ladouceur, and J.D. Love, Vector modes of D-shaped fibers. IEE Proceedings-J (1992) 139(2), pp. 117~126.
    [38] W.W. Hu, Z.Y. Liu, B. Zhu, and J.R. Qian, Modal propagation characteristics of D-shaped metallic optical fibres. Electronics Letters (2000) 36(2), pp. 123~124.
    [39] V. Kutsaenko, E. Laretskii, and W. Johnstone, Optical transmission of a "Continuous fiber" component comprising a multilayer structure with thethin metal film. Lightwave Technology, Journal of (1996) 14(10), pp. 2294-2300.
    [40] S.P. Ma, K.F. Chen, K.Y. Hsu, and S.M. Tseng, Surface-polariton fiber polarizers with high polarization extinction ratio, Proc. LEOS’96, Boston, (1996), pp. 382~383.
    [41] S.-M. Tseng, and C.-L. Chen, Side-polished fibers. Applied Optics (1992) 31(18), pp. 3438~3447.
    [42] H.C. Lefèvre, 光纤陀螺仪, 国防工业出版社, 北京, (2002), pp. 206-213.
    [43] N. Myrén, and W. Margulis, All-Fiber Electrooptical Mode-Locking and Tuning. Photonics Technology Letters (2005) 17(10), pp. 2047~2049.
    [44] T. Fujiwara, D. Wong, and S. Fleming, Large Electrooptic Modulation in a Thermally-Poled Germanosilicate Fiber. Photonics Technology Letters (1995) 7(10), pp. 1177~1179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700