用户名: 密码: 验证码:
放牧奶牛乳脂肪酸组成及瘤胃脂肪酸代谢规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量研究表明放牧可以增加奶牛乳中十八碳烯酸-反-11(C18:1t11)、共轭亚油酸顺-9,反-11(CLAc9,t11)和α-亚麻酸(C18:3n-3)等对人体健康有益的脂肪酸含量,但针对完全放牧条件下奶牛乳脂肪酸组成的研究较少,而有关放牧奶牛瘤胃脂肪酸代谢方面的研究更少,这方面的信息资料的缺乏不仅会限制人们对放牧奶牛独特乳脂肪酸形成原因和机制的了解,而且不利于调控放牧奶牛乳成分有效措施的研究。为了进一步了解完全放牧奶牛的乳脂肪酸组成特点,并研究瘤胃脂肪酸代谢规律,阐明放牧奶牛独特乳脂肪酸组成的形成原因和机理,本研究以在新西兰林肯大学奶牛场(LUDF)的优质人工草场上放牧的奶牛为研究对象,通过研究牧草和乳脂肪酸组成的季节性变化特点、补饲大麦和青贮玉米对放牧奶牛乳脂肪酸组成和代谢的影响研究,并结合优质牧草放牧奶牛瘤胃脂肪酸组成的昼夜变化和PUFA代谢特点、瘤胃微生物的脂肪酸组成特点及牧草中富含的水溶性碳水化合物(WSC)和钾元素对体外C18脂肪酸代谢的影响研究,取得以下结果:
     1.优质牧草放牧奶牛乳中C18:1t11、CLAc9,t11和C18:3n-3在在一个泌乳期内的含量别为4.0-5.0%、1.5-2.4%和1.2-1.8%,平均含量分别是资料报道TMR饲喂奶牛乳中的1.88、3.03和2.48倍,乳中C18:2n-6: C18:3n-3的平均比值为0.7:1。牧草中的总脂肪酸和C18:3n-3含量在春、秋季较高而夏季较低。乳脂肪酸的变化主要表现为春季泌乳早期(10月)与其他时间的不同:春季泌乳早期放牧奶牛的能量负平衡显著增加了乳中C18:0,C18:1c9和不饱和脂肪酸(UFA)的含量(P<0.05),不影响C18:1t11和C18:3n-3的含量(P>0.05),但降低了CLAc9,t11的含量(P<0.05)。回归和相关分析表明乳中CLAc9,t11含量与乳中C18:1t11含量显著线性正相关(P<0.05, R2=0.596),与Δ9-去饱和酶指数呈弱相关关系(P<0.05, r=0.469),但乳中C18:1t11、C18:3n-3和CLAc9,t11含量与牧草C18:3n-3含量间无显著相关性(P>0.05)。
     2.给放牧奶牛补饲3kg DM/d大麦和4kg DM/d青贮玉米显著改变了瘤胃pH (P<0.05)、瘤胃发酵模式(P<0.05)及瘤胃和乳中的脂肪酸组成(P<0.05),尤其是增加了乳中MCFA和C18:2n-6的含量(P<0.05)、降低有益脂肪酸C18:1t11和C18:3n-3和CLAc9,t11的含量(P<0.05)。乳腺脂肪酸代谢参数分析表明:上述结果的产生主要与放牧奶牛C18:3n-3摄入量的降低、C18:2n-6摄入量的增加、乳腺C18:1t11总量的降低及CLAc9,t11内源合成比例的下降有关。因此,日粮PUFA摄入量的不同是引起乳中C18:3n-3和C18:2n-6含量不同的主要原因,而乳腺可用于CLAc9,t11内源合成的C18:1t11总量的增加是引起放牧奶牛乳中富含CLAc9,t11的直接原因。
     3.瘤胃内容物中的脂肪酸组成在24h的放牧周期内变化显著(P<0.05),其中,OBCFA的变化模式清晰地反映了瘤胃微生物在新食入牧草上的定植过程,而C18脂肪酸的变化模式清楚的反映了牧草中的PUFA在瘤胃的氢化过程。在24h放牧周期内奶牛的瘤胃pH值低于6.0的总时间达14h,但放牧奶牛瘤胃C18:3n-3和C18:2n-6的氢化率分别达93.0%和89.6%,氢化速率分别为16.5%/h和10.8%/h。脂肪酸氢化反应的最后一步被抑制是放牧奶牛瘤胃PUFA代谢的主要特点,而瘤胃中较高的C18:1t11含量和较低的CLAc9,t11含量进一步证明由氢化抑制所致的瘤胃C18:1t11蓄积是造成放牧奶牛乳中富含CLAc9,t11的主要原因。而在18:00和20:00所观察到的较低的瘤胃pH和微生物数量及较高浓度的PUFA都表明傍晚时分瘤胃的发酵活性较低,这一结果表明,在瘤胃活性较低时补充外源PUFA可能会减少其在瘤胃的氢化量而使更多的PUFA通过瘤胃。
     4.放牧奶牛瘤胃原虫、混合细菌、LAB和SAB间的脂肪酸含量差异显著(P<0.05),同时受牧草种类的显著影响(P<0.05)。放牧奶牛的瘤胃原虫富含UFA,尤其是C18:3n-3、C18:2n-6和C18:1t11,但其CLAc9,t11含量与细菌间差异不显著(P>0.05),说明瘤胃原虫不能增加放牧奶牛后端肠道CLAc9,t11的供给量。
     5.初步研究表明了高WSC和高钾对瘤胃脂肪酸的氢化作用有一定影响,但其影响效果和作用机理有待进一步研究,确定WSC和高钾在放牧奶牛的瘤胃pH范围内的作用效果。
     上述结果表明:采食优质牧草的放牧奶牛乳中尤其富含有益脂肪酸,但泌乳早期的能量负平衡不能增加乳中这些脂肪酸的含量,而改变放牧奶牛的日粮组成显著降低了其含量;脂肪酸氢化反应的最后一步被抑制是放牧奶牛瘤胃PUFA代谢的主要特点,而由此所致的C18:1t11蓄积是放牧奶牛乳中富含C18:1t11和CLAc9,t11的主要原因;放牧奶牛乳中较高的C18:3n-3含量主要与摄入量有关,而牧草中富含的WSC和钾可能对放牧奶牛独特乳脂肪酸的形成有一定影响。
It has been well documented that beneficial fatty acids, such as trans vaccenic acid (C18:1t11),conjugated linoleic acid (CLAc9,t11) and α-linolenic acid (C18:3n-3), in milk fat increased with theincrease of pasture intake. However, there is limited information related to the milk fatty acid compositionof pasture only grazing cows, while information of the rumen fatty acid metabolism of grazing cows iseven less, which both limits the understanding of the formation of this unique milk FA composition andprecludes the development of strategies for further improvement. To further understand the milk fatty acidcomposition of pasture only grazing cows, and to investigate the rumen fatty acid metabolism, as well asthe factors and the possible mechanisms resulting in this unique milk fatty acid composition of grazingcows, five experiments were carried out using the dairy cows grazing high quality pasture on LincolnUniversity Dairy Farm (LUDF), New Zealand, concerning the seasonal variation in milk fatty acidcomposition, effects of barley grain and maize silage supplementation on milk fatty acid composition andmetabolism, diurnal variation in rumen fatty acid composition and poly unsaturated fatty acid (PUFA)metabolism, comparison of rumen microbial fatty acid composition, and effects of high water solublecarbohydrate (WSC) and potassium on rumen C18fatty acid metabolism in vitro, respectively. The resultswere shown as follows:
     1. Proportions of C18:1t11, CLAc9,t11and C18:3n-3in milk from high quality pasture grazing cowswere4.5%,1.5-2.4%and1.2-1.8%over the lactation season, respectively, and their mean value were1.88,3.03and2.48folders of the proportions reported in milk from TMR fed cows. The ratio ofC18:2n-6:C18:3n-3was0.7:1in the present study. Concentrations of total fatty acid and C18:3n-3inpasture were greater in spring and autumn, however, lower in summer. The main seasonal variation in milkfatty acids happened in spring (October), when the cows were in their earlier lactations. It was showed thatthe negative energy balance happened during the early lactation in spring resulted in the increase of C18:0,C18:1c9and unsaturated fatty acid (UFA) in milk fat (P<0.05), proportions of C18:1t11and C18:3n-3werenot affected (P>0.05) but CLAc9,t11decreased (P<0.05). Regression and correlation analysis showed thatthe proportion of milk CLAc9,t11was correlated linearly with milk C18:1t11(P<0.05, R2=0.596), andcorrelated weakly with theΔ9-desaturase index (P<0.05, r=0.469). However, the proportions of milkC18:1t11, C18:3n-3and CLAc9,t11were not correlated with the proportion of pasture C18:3n-3(P>0.05).
     2. Supplementing3kg DM/d barley grain and4kg DM/d maize silage, respectively, to the grazing cows significantly decreased the pasture dry matter intake (DMI)(P<0.05), influenced the rumen pH,rumen fermentation pattern (P<0.05), and the fatty acid composition in rumen digesta and milk (P<0.05).Effects on milk fatty acid composition are characterized as decrease in the beneficial fatty acids (C18:1t11,C18:3n-3and CLAc9,t11), however, increase in middle chain saturated fatty acids (MCFA) and C18:2n-6.Results of fatty acid metabolism in the mammary gland indicated that the above observations were resultedfrom the reduced intake of dietary C18:3n-3while increased intake of C18:2n-6, and decrease in the totalC18:1t11available for CLAc9,t11endogenous synthesis and the proportion of CLAc9,t11synthesized inthe mammary gland. Therefore, differences in dietary PUFA intake is the major reason causing thedifferences in milk C18:3n-3and C18:2n-6, while the increased C18:1t11for CLAc9,t11synthesis bygrazing is the main reason resulting in the higher level of CLAc9,t11in the milk of pasture grazing cows.
     3. Fatty acid profiles in rumen digeasta varied considerably over the24h grazing cycle (P<0.05), withthe most dramatic changes occurred in the evening and overnight. Diurnal variation in odd-and branched-chain fatty acids (OBCFA) clearly reflected the microbial colonization of the newly ingested pasture whilethe variation in C18fatty acids reflected the rumen biohydrogenation of dietary poly unsaturated fatty acids(PUFA). Rumen pH of cows grazing high quality pasture is lower than6.0for approximately14h over agrazing cycle, however, the biohydrogenation of C18:3n-3and C18:2n-6were as high as93.0%and89.6%,respectively, and their biohydrogenation rate were16.5%/h and10.8%/h, respectively. Inhibition ofthe final step of biohydrogenation is the major characteristic of the rumen fatty acid metabolism of pasturegrazing cows. The greater proportion of C18:1t11and lower proportion of CLAc9, t11in rumen digestaconfirmed that the accumulation of C18:1t11by the incomplete biohydrogenation is the main reasonresulting in the greater CLAc9,t11in the milk of grazing cows. The lower rumen buffering capacity(decreased rumen pH), dramatic decline in rumen microbial population (assessed by total OBCFA)observed between1800h and2000h, as well as the large increase in plant-derived PUFA implied areduced rumen biohydrogenation activity during the evening, which might provide an approach to reducethe biohydrogenation of protected PUFA supplements by strategic feeding to coincide with reduced rumenactivity.
     4. Fatty acid composition differed significantly among rumen protozoa, mixed bacteria, liquid associatedbacteria (LAB) and solid associated bacteria (SAB)(P<0.05), and also affected significantly by the type ofpastures (P<0.05). Rumen protozoa were enriched in UFA, especially C18:3n-3, C18:2n-6and C18:1t11compared with mixed bacteria (P<0.05). However, proportion of CLAc9,t11did not differ betweenprotozoa and mixed bacteria (P>0.05), indicating that the presence of rumen protozoa in grazing cowscould not increase the supply of CLAc9,t11to the lower intestinal tract.
     5. The preliminary studies indicated that the high concentrations of WSC and potassium in pasturehad some effects on rumen fatty acid metabolism, however, their effects and the possible mechanism needs further investigation, especially under the rumen pH condition of pasture grazing dairy cows.
     The above results indicated that milk from high quality pasture grazing dairy cows are particularlyrich in beneficial fatty acids, which could not be increased by the negative energy balance in early lactation,however, decreased significantly by dietary variation. Inhibition of the last step of biohydrogenation is themajor characteristic of rumen fatty acid metabolism of pasture grazing cows, and the accumulation ofC18:1t11resulted from which causing the greater C18:1t11and CLAc9,t11in the milk of grazing cows,while the greater C18:3n-3in the milk of grazing cows is related to its higher intake. The higherconcentration of WSC and potassium in pasture could also have some effects on the formation of thisunique milk fatty acid composition of grazing dairy cows.
引文
Abaza M A, Abou Akkada A R, El-Shazly K.1975. Effect of rumen protozoa on dietary lipid in sheep. JAgric Sci.85:135–143.
    AbuGhazaleh A A, Holmes L.2009. Altering dairy cows milk fatty acid composition through grazing andoil supplementation. Milchwissenschaft.64:241-244.
    Agen s S, Burstedt E, Holtenius K.2003. Effects of feeding intensity during the dry period.1. feed intake,body weight, and milk Production. J Dairy Sci.86:870-882.
    Allen M S.1997. Relationship Between Fermentation Acid Production in the Rumen and the Requirementfor Physically Effective Fiber. J Dairy Sci.80:1447-1462.
    AOAC.1990. Official Methods of Analysis.15th ed. Association of Official Analytical Chemists, Arlington,VA.
    Bauchart D, Legay-Carmier F, Doreau M, Gaillard B.1990. Lipid metabolism of liquid-associated andsolid-adherent bacteria in rumen contents of dairy cows offered lipid-supplemented diets. Br J Nutr.63:563-578.
    Atkinson R L, Scholljegerdes E J, Lake S L, Nayigihugu V, Hess B W, Rule D C.2006. Site and extent ofdigestion, duodenal flow, and intestinal disappearance of total and esterified fatty acids in sheep fed ahigh-concentrate diet supplemented with high-linoleate safflower oil. J Dairy Sci.84:387-396.
    Auldist M J, Walsh B J, Thomson N A.1998. Seasonal and lactational influences on bovine milkcomposition in New Zealand. J Dairy Sci.65:401-411.
    Bargo F, Delahoy J E, Schroeder G F, Baumgard L H, Muller L D.2006. Supplementing total mixed rationswith pasture increase the content of conjugated linoleic acid in milk. Anim Feed Sci Technol.131:226-240.
    Bauchart D, Legay-Carmier F, Doreau M, Gaillard B.1990. Lipid metabolism of liquid-associated andsolid-adherent bacteria in rumen contents of dairy cows offered lipid-supplemented diets. Br J Nutr.63:563-578.
    Bauman D E, Griinari, J M.2003. Nutritional regulation of milk fat synthesis. Annu Rev Nutr.23:203-227.
    Bauman D E, Lock A L.2010. Milk fatty acid composition: challenges and opportunities related to humanhealth. World Buiatrics Congress.278-289.
    Bauchart D, Verite R, Remond B.1984. Long-chain fatty acid digestion in lactating cows fed fresh grassfrom spring to autumn. Can J Anim Sci.64:330–331.
    Beam T M, Jenkins T C, Moate P J, Kohn R A, Palmquist D L.2000. Effects of amount and source of faton the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. J Dairy Sci.83:2564–2573.
    Beaulieu A D, Drackley J K.2006. Fatty acid composition of milk from dairy cows fed fresh alfalfa baseddiets. Anim Feed Sci Technol.131:241-254.
    Bessa R J B, Maia M R G, Jeronimo E, Belo A T, Cabrita A R J, Dewhurst R J, Fonseca A J M.2009. Usingmicrobial fatty acids to improve understanding of the contribution of solid associated bacteria tomicrobial mass in the rumen. Anim. Feed Sci Technol.150:197-206.
    Bionaz M, Loor J.2008. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMCGenomics.9:366.
    Boken S L, Staples C R, Sollenberger L E, Jenkins T C, Thatcher W W.2005. Effect of grazing and fatsupplementation on production and reproduction of Holstein cows. J Dairy Sci.88:4258-4272.
    Booker, J W.2009. Production, distribution and utilisation of maize in New Zealand.[Masters thesis]. Christchurch: Lincoln University.
    Boufa ed H, Chouinard P Y, Tremblay G F, Petit H V, Michaud R, Bélanger G.2003. Fatty acids inforages. I. Factors affecting concentrations. Can J Anim Sci.83:501–511.
    Brown W, AbuGhazeleh A A, Ibrahim S A.2008. Milk conjugated linoleic acid response to fishi oil andlinseed oil supplementation of grazing dairy cows. Asian-Aust J Anim Sci.21:663-670
    Castillo A R, Taverna M A, Paez R R, Cuatrin A, Colombatto D, Bargo F, Garcia M S, Garcia P T, ChavezM, Beaulieu A D, Drackley J K.2006. Fatty acid composition of milk from dairy cows fed freshalfalfa based diets. Anim Feed Sci Technol.131:241-254.
    Chardigny J M, Destaillats F, Malpuech-Brugère C, Moulin J, Bauman D E, Lock AL, Barbano D M,Mensink R P, Bezelgues J B.2008. Do Trans fatty acids from industrially produced sources and fromnatural sources have the same effect on cardiovascular disease risk factors in healthy subjects? Resultsof the Trans Fatty Acids Collaboration (TRANSFACT) study. Am J Clin Nutr.87:558-566.
    Chikunya S, Demirel G, Enser M, Wood J D, Wilkinson R G, Sinclair L A.2004. Biohydrogenation ofdietary n-3PUFA and stability of ingested vitamin E in the rumen, and their effects on microbialactivity in sheep. Br J Nutr.91:539-550.
    Chilliard Y.1992. Physiological constraints to milk production: factors which determine nutrientpartitioning, lactation persistency and mobilization of body reserves. World Review of Anim Prod.27:19–26.
    Chilliard Y, Ferlay A.2004. Dietary lipids and forages interactions on cow and goat milk fatty acidcomposition and sensory properties. Reprod Nutr Dev.44:467–492.
    Chilliard Y, Ferlay A, Doreau M.2001. Effect of different types of forages, animal fat or marine oils incow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) andpolyunsaturated fatty acids. Livest Prod Sci.70:31–48.
    Chilliard Y, Ferlay A, Loor J, Rouel J, Martin B.2002. Trans and conjugated fatty acids in milk from cowsand goats consuming pasture or receiving vegetable oils or seeds. Ital J Anim Sci.1:243–254.
    Chilliard Y, Ferlay A, Mansbridge R M, Doreau M.2000. Ruminant milk fat plasticity: Nutritional controlof saturated, polyunsaturated, transand conjugated fatty acids. Ann Zootech.49:181–205.
    Chilliard Y, Ferlay A, Rouel J, Lamberet G.2003. A review of nutritional and physiological factorsaffecting goat milk lipid synthesis and lipolysis. J Dairy Sci.86:1751–1770.
    Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M.2007. Diet, rumen biohydrogenation andnutritional quality of cow and goat milk fat. Eur J Lipid SciTechn.109:828-855.
    Clandinin M T, Cook S L Konard, S D French M A.2000. The effect of palmitic acid on lipoproteincholesterol levels. Int J Food Sci Nutr.51Suppl: S61-71.
    Collomb M, Bisig W, Butikofer U, Sieber R, Bregy M, Etter L.2008. Seasonal variation in the fatty acidcomposition of milk supplied to dairies in the mountain regions of Switzerland. Dairy Sci&Techn.88:631-647.
    Collomb M, Butikofer U, Sieber R, Jeangros B, Bosset J O.2002. Composition of fatty acids in cow's milkfat produced in the lowlands, mountains and highlands of Switzerland using high-resolution gaschromatography. Int Dairy J.12:649-659.
    Collomb M, Bisig W, Butikofer U, Sieber R, Bregy M, Etter L.2008. Seasonal variation in the fatty acidcomposition of milk supplied to dairies in the mountain regions of Switzerland. Dairy Sci&Techn.88:631-647.
    Couvreur S, Hurtaud C, Lopez C, Delaby L, Peyraud J L.2006. The linear relationship between theproportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J DairySci.89:1956-1969.
    Croissant A E, Washburn S P, Dean L L, Drake M A.2007. Chemical properties and consumer perceptionof fluid milk from conventional and pasture-based production systems. J Dairy Sci.90:4942-4953.
    Dabadie H, E Peuchant, M Bernard, P LeRuyet, F Mendy.2005. Moderate intake of myristic acid in sn-2position has beneficial lipidic effects and enhances DHA of cholesteryl esters in an interventionalstudy. J Nutr Biochem.16:375–382.
    Dawson KA, Boling JA.1984. Factors affecting resistance of monensin-resistant and sensitive strains ofbacteriodes rumninicola. Can J Anim Sci.64:132-133.
    Dawson R M C, Hemington N, and Hazlewood G P.1977. On the role of higher plant and microbial lipasesin the ruminal hydrolysis of grass lipids. Br J Nutr.38:225–232.
    Dawson R M C, Kemp P.1969. The effect of defaunation on the phospholipids and on the hydrogenationof unsaturated fatty acids in the rumen. Biochem J.115:351–352.
    Devillard E, McIntosh F M, Newbold C J, Wallace R J.2006. Rumen ciliate protozoa contain highconcentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid ordesaturate stearic acid. Br J Nutr.96:697-704.
    Dewhurst R J, Fisher W J, Tweed J K S, Wilkins R J.2003. Comparison of grass and legume silages formilk production.1. Production responses with different levels of concentrate. J Dairy Sci.86:2598–2611.
    Dewhurst R J, King P J.1998. Effects of extended wilting, shading and chemical additives on the fattyacids in laboratory grass silages. Grass Forage Sci.53:219–224.
    Dewhurst R J, Moorby J M, Scollan N D, Tweed J K S, Humphreys M O.2002. Effects of a stay-green traiton the concentrations and stability of fatty acids in perennial ryegrass. Grass Forage Sci.57:360–366.
    Dewhurst R J, Moorby J M, Vlaeminck B, Fievez V.2007. Apparent recovery of duodenal odd-andbranched-chain fatty acids in milk of dairy cows. J Dairy Sci.90:1775-1780.
    Dewhurst R J, Scollan N D, Youell S J, Tweed J K S, Humphreys M O.2001. Influence of species, cuttingdate and cutting interval on the fatty acid composition of grasses. Grass Forage Sci.56:68–74.
    Dewhurst R J, Shingfield K J, Lee M R F, Scollan N D.2006. Increasing the concentrations of beneficialpolyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim Feed SciTechnol.131:168–206.
    Dhiman T R, Anand G R, Satter L D, Pariza M W.1999. Conjugated linoleic acid content of milk fromcows fed different diets. J Dairy Sci.82:2146-2156.
    Dohme F, Fievez V, Raes K, Demeyer D I.2003. Increasing levels of two different fish oils lower ruminalbiohydrogenation of eicosapentaenoic and docosahexaenoic acid in vitro. Anim Res.52:309-320.
    Doreau M, Chilliard Y.1997. Digestion and metabolism of dietary fat in farm animals. Br J Nutr.78Suppl1: S15-35.
    Doreau M, Ferlay A.1994. Digestion and utilisation of fatty acids by ruminants. Anim Feed Sci Technol.45:379-396.
    Durmic Z, McSweeney C S, Kemp G W, Hutton P, Wallace R J, Vercoe P E.2008. Australian plants withpotential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids. AnimFeed Sci Technol.145:271-284.
    Elgersma A, Ellen G, van der Horst H, Boer H, Dekker P R, Tamminga S.2004. Quick changes in milk fatcomposition from cows after transition from fresh grass to a silage diet. Anim Feed Sci Technol.117:13–27.
    Elgersma A, Ellen G, van der Horst H, Muuse B G, Boer H, Tamminga S.2003. Influence of cultivar andcutting date on the fatty acid composition of perennial ryegrass (Lolium perenne L.). Grass Forage Sci.58:323–331.
    Elgersma A, Maudet P, Witkowska I M, Wever A C.2005. Effects of nitrogen fertilisation and regrowthperiod on fatty acid concentrations in perennial ryegrass (Lolium perenne L.). Ann Appl Bio.147:145-152.
    Elgersma A, Tamminga S, Ellen G.2006. Modifying milk composition through forage. Anim Feed SciTechnol.131:207-225.
    Engle T E, Fellner V, Spears J W.2001. Copper status, serum cholesterol, and milk fatty acid profile inHolstein cows fed varying concentrations of copper. J Dairy Sci.84:2308-2313.
    Enjalbert F, Nicot M C, Bayourthe C, Moncoulon R.1998. Duodenal infusions of palmitic, stearic or oleicacids differently affect mammary gland metabolism of fatty acids in lactating dairy cows. J Nutr.128:1525–1532.
    Eyssen H, Verhulst A.1984. Biotransformation of linoleic acid and bile acids by Eubacterium lentum. ApplEnviron Microbiol.47,39-43.
    Faruque A J, Jarvis B D W, and Hawke J C.1974. Studies on rumen metabolism. IX. Contribution of plantlipases to the release of free fatty acids in the rumen. J Sci Food Agric.25:1313–1328.
    Fay J P, Jakober K D, Cheng K J, and Costerton J W.1990. Esterase activity of pure cultures of rumenbacteria as expressed by the hydrolysis of ρ-nitrophenylpalmitate. Can J Microbiol.36:585–589.
    Ferlay A, Martin B, Pradel P, Coulon J B, Chilliard Y.2006. Influence of grass-based diets on milk fattyacid composition and milk lipolytic system in Tarentaise and Montbeliarde cow breeds. J Dairy Sci.89:4026-4041.
    Fievez V, Vlaeminck B, Jenkins T, Enjalbert F, Doreau M.2007. Assessing rumen biohydrogenation and itsmanipulation in vivo, in vitro and in situ. Euro J Lipid Sci Technol.109:740-756.
    Flowers G, Ibrahim S A, AbuGhazaleh A A.2008. Milk fatty acid composition of grazing dairy cows whensupplemented with linseed oil. J Dairy Sci.91:722-730.
    Fotouhi N and Jenkins T C.1992. Resistance of fatty acyl amides to degradation and hydrogenation byruminal microorganisms. J Dairy Sci.75:1527-1532.
    Fuentes M C, Calsamiglia S, Cardozo P W, Vlaeminck B,2009. Effect of pH and level of concentrate in thediet on the production of biohydrogenation intermediates in a dual-flow continuous culture, pp.4456-4466.
    Fulco A J.1983. Fatty acid metabolism in bacteria. Prog Lipid Res.22:133-160.
    Garton G A, Lough A K, and Vioque E.1961. Glyceride hydrolysis and glycerol fermentation by sheeprumen contents. J Gen Microbiol.25:215–225.
    Gerson T, John A, King ASD.1985. The effects of dietary starch and fibre on the in vitro rates of lipolysisand hydrogenation by sheep rumen digesta. J Agric Sci Camb.105:27–30.
    Gerson T, John A, King ASD.1986. Effects of feeding ryegrass of varying maturity on the metabolism andcomposition of lipids in the rumen of sheep. J Agric Sci Camb.106:445–448.
    Gerson T, John A, Sinclair BR.1983. The effect of dietary N on in vitro lipolysis and fatty acidhydrogenation in rumen digesta from sheep fed diets high in starch. J Agric Sci Camb.101:97–101.
    Gilliland T, Barrett P, Mann R, Agnew R, Fearon A.2002. Canopy morphology and nutritional quality traits aspotential grazing value indicators for Lolium perenne varieties. J Agric Sci.(Cambridge)139:257-273.
    Glasser F, Ferlay A, Chilliard Y.2008a. Oilseed Lipid Supplements and Fatty Acid Composition of CowMilk: A Meta-Analysis. J Dairy Sci.91:4687-4703.
    Glasser F, Schmidely R, Sauvant D, Doreau M.2008b. Digestion of fatty acids in ruminants: ameta-analysis of flows and variation factors:2. C18fatty acids. Animal.2:691-704.
    Griinari J M, Bauman D E.1999. Biosynthesis of conjugated linoleic acid and its incorporation into meatand milk in ruminants. Pages180–200in Advances in Conjugated Linoleic Acid Research. Vol.1.
    Griinari J M, Corl B A, Lacy S H, Chouinard P Y, Nurmela K V, Bauman D E.2000. Conjugated linoleicacid is synthesized endogenously in lactating dairy cows by Delta(9)-desaturase. J Nutr.130:2285-2291.
    Grings EE, Males JR.1987. Effects of potassium on macromineral absorption in sheep fed wheatstraw-based diets. J Anim Sci.64:872-879.
    Grundy S M, Vega G L.1998. Plasma cholesterol responsiveness to saturated fatty acids. Am J Clin Nutr.47:822–824.
    Harfoot C G.1978. Lipid metabolism in the rumen. Prog Lipid Res.17:21–54.
    Harfoot C G, Hazlewood G P,1997. Lipid metabolsim in the rumen, In: Hobson P N. Steward C S.(Eds.),The Rumen Microbial Ecosystem, Blackie and Professional, London, pp:382-426.
    Harfoot C G, Noble R C, Moore J H.1973a. Factors influencing the extent of biohydrogenation of linoleicacid by rumen micro-organisms in vitro. J Sci Food Agric.24:961–970.
    Harfoot C G, Noble R C, Moore J H.1973b. Food particles as a site for biohydrogenation of unsaturatedacids in the rumen. Biochem J.132:829–832.
    Harfoot C G, Noble R C, Moore J H.1975. The role of plant particles, bacteria and cell-free supernatantfractions of rumen contents in the hydrolysis of trilinolein and the subsequent hydrogenation oflinoleic acid. Antonie Van Leeuwenhoek.41:533–542.
    Hawke J C.1973. Lipids. In: Butler, G.W., Bailey, R.W.(Eds.), Chemistry and Biochemistry of Herbage.Academic Press, London, UK, pp:213–263.
    Hawke J C, Silcock W R.1970. The in vitro rates of lipolysis and biohydrogenation in rumen contents.Biochem Biophys Acta.218:201–212.
    Hazlewood G P, Kemp P, Lauder D, Dawson R M C.1976. C18unsaturated fatty acid hydrogenationpatterns of some rumen bacteria and their ability to hydrolyse exogenous phospholipid. Br J Nutr.35:293–297.
    Hespell R B, O’Bryan-Shah P J.1988. Esterase activities in Butyrivibrio fibrisolvens strains. Appl EnvironMicrobiol.54:1917–1922.
    Howard B V, Van Horn L, Hsia J.2006. Low-fat dietary pattern and risk of cardiovascular disease: theWomen’s Health Initiative Randomized Controlled Dietary Modification Trial. J Am Mecd Assoc.295:655–666.
    Hungate R E.1966. The Rumen and its Microbes. Academic press, London and New York.
    Ip C, Banni S, Angioni E, Carta G, McGinley J, Thompson H J, Barbano B, Bauman DE.1999. Conjugatedlinoleic acid-enriched butterfat alters mammary gland morphogenesis and reduces cancer risk in rats. JNutr.129:2135–2142.
    Hurtaud C, Faucon F, Couvreur S, Peyraud J L.2010. Linear relationship between increasing amounts ofextruded linseed in dairy cow diet and milk fatty acid composition and butter properties. J Dairy Sci.93:1429-1443
    Jacobs M N, Covaci A, Gherghe A, Schepen P.2004. Time trend investigation of PCBs, PBDEs andorganochlorine pesticides in selected n3polyunsaturated fatty acid rich dietary fish oil and vegetableoil supplements; nutritional relevance for human essential n3fatty acid requirements. J Agric FoodChem.52:1780–1788.
    Jahreis G, Fritsche J, Steinhart H.1997. Conjugated linoleic acid in milk fat: high variation depending onproduction system. Nutr Res.17:1479–1484.
    Jenkins T C.1993. Lipid-Metabolism in the Rumen. J Dairy Sci.76:3851-3863.
    Jenkins T C, Wallace R J, Moate P J, and Mosley E E.2008. Recent advances in biohydrogenation ofunsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci.86:397–412
    Jensen R G.2002. The composition of bovine milk lipids: January1995to December2000. J Dairy Sci.85:295–350.
    Jensen R G, Ferris A M, Lammi-Keefe C J.1991. The composition of milk fat. J Dairy Sci.74:228-3243.
    Jiang J, Bjoerck L, Fonden R, Emanuelson M.1996. Occurrence of conjugated cis-9, trans-11-octacecadienoic acid in bovine milk: Effects of feed and dietary regimen. J Dairy Sci.79:438–445.
    Jesse B W, Solomon R K, Baldwin R L.1992. Palmitate metabolism in isolated sheep rumen epithelialcells. J Dairy Sci.70:2235-2242.
    Jittakhot S, Schonewille J, Wouterse H S, Yuangklang C, Beynen A C.2004. The relationships betweenpotassium intakes, transmural potential difference of the rumen epithelium and magnesium absorptionin wethers. Br J Nutr.91:183–189.
    Jouany J P, Lassalas B, Doreau M, Glasser F.2007. Dynamic features of the rumen metabolism of linoleicacid, linolenic acid and linseed oil measured in vitro. Lipids.42:351-360.
    Kala P, SamkováE.2010. The effects of feeding various forages on fatty acid composition of bovine milkfat: A review. Czech J Anim Sci.55:521–537
    Kalscheur K F, Teter B B, Piperova L S, Erdman R A.1997. Effect of dietary forage concentration andbuffer addition on duodenal flow of trans-C18:1fatty acids and milk fat production in dairy cows. JDairy Sci.80:2104-2114.
    Katz I, Keeney M.1966. Characterization of the octadecenoic acids in rumen digesta and rumen bacteria. JDairy Sci.49:962-966.
    Kay J K, Mackle T R, Auldist M J, Thomson N A, Bauman D E.2004. Endogenous synthesis of cis-9,trans-11conjugated linoleic acid in dairy cows fed fresh pasture. J Dairy Sci.87:369-378.
    Kay J K, Roche J R, Kolver E S, Thomson N A, Baumgard L H.2005. A comparison between feedingsystems (pasture and TMR) and the effect of vitamin E supplementation on plasma and milk fatty acidprofiles in dairy cows. J Dairy Res.72:322-332.
    Keeney M.1970. Lipid metabolism in the rumen. Pages489–503in Physiology of Digestion andMetabolism in the Ruminant. A. T. Phillipson, ed. Oriel Press Limited, Newcastle upon Tyne, UK.
    Kelly M L, Berry J R, Dwyer D A, Griinari J M, Chouinard P Y, Van Amburgh M E, Bauman D E.1998.Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairycows. J Nutr.128:881-885.
    Kemp P, Lander D J.1984. Hydrogenation in vitro of α-linolenic acid to stearic acid by mixed cultures ofpure strains of rumen bacteria. J Gen Microbiol.130:527–533.
    Kemp P, Lander D J, Orpin C G.1984. The lipids of the rumen fungus Piromonas communis. J GenMicrobiol.130:27–37.
    Kemp P, White R W, Lander D J.1975. The hydrogenation of unsaturated fatty acids by five bacterialisolates from the sheep rumen, including a new species. J Gen Microbiol.90:100–114.
    Van de Vossenberg J L, Joblin K N.2003. Biohydrogenation of C18unsaturated fatty acids to stearic acidby a strain of Butyrivibrio hungatei from the bovine rumen. Lett Appl Microbiol.37:424–428.
    Kennedy J, Dillon P, Delaby L, Faverdin P, Stakelum G, Rath M.2003. Effect of genetic merit andconcentrate supplementation on grass intake and milk production with Holstein Friesian dairy cows. JDairy Sci.86:610-621.
    Kepler C R, Hirons K P, McNeill J J, and Tove S B.1966. Intermediates and products of thebiohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J Biol Chem.241:1350–1354.
    Kepler C R and Tove S B.1967. Biohydrogenation of unsaturated fatty acids. III. Purification andproperties of a linoleate△12-cis,△11-trans isomerase from Butyrivibrio fibrisolvens. J Biol Chem.242:5686–5692.
    Khanal R C, Dhiman T R, Boman R L, McMahon D J.2007. Influence of supplementing dairy cowsgrazing on pasture with feeds rich in linoleic acid on milk fat conjugated linoleic acid (CLA) content.Asian-Austr J Anim Sci.20:1374-1388.
    Khanal R C, Olson K C.2004. Factors affecting conjugated linoleic acid content in milk, meat and egg: Areview. Pak J Nutr.3:82-98.
    Khorasani GR. Armstrong D G.1990. Effect of sodium and potassium on overall digestibility of aSemi-purified diet and microbial protein production in the rumen of sheep. Liv Produc Sci.24:347-357
    Kim E J, Huws S A, Lee M R F, Wood J D, Muetzel S M, Wallace R J, Scollan N D.2008. Fish oilincreases the duodenal flow of long chain polyunsaturated fatty acids and trans-1118:1and decreases18:0in steers via changes in the rumen bacterial community. J Nutr.138:889-896.
    Kim E J, Sanderson R, Dhanoa M S, Dewhurst R J.2005. Fatty acid profiles associated with microbialcolonization of freshly ingested grass and rumen biohydrogenation. J Dairy Sci.88:3220-3230.
    Kim S C, Adesogan A T, Badinga L, Staples C R.2007. Effects of dietary n-6: n-3fatty acid ratio on feedintake, digestibility, and fatty acid profiles of the ruminal contents, liver, and muscle of growing lambs.J Anim Sci.85:706-716.
    Klopfenstein T J, Purser D B, Tyznik W J.1966. Effect of defaunation on feed digestibility, rumenmetabolism and blood metabolites. J Anim Sci.25:765–773.
    Knopp R H, Retzlaff B M.2004. Saturated fat prevents coronary artery disease? An American paradox. AmJ Clin Nutr.80:1102–1103.
    Kolver E S, de Veth M J.2002. Prediction of ruminal pH from pasture-based diets. J Dairy Sci.85:1255-1266.
    Kolver E S, Muller L D, Varga G A.1998. Ruminal utilization of pasture in response to inclusion ofdietary starch. Proc New Zeal Soc Anim Prod.57:38-41.
    Kopecny J, Zorec M, Mrazek J, Kobayashi Y, and Marinsek-Logar R.2003. Butyrivibrio hungatei sp. nov.and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J SystEvol Microbiol.53:201–209.
    Kraft J, Collomb M, Mockel P, Sieber R, Jahreis G.2003. Differences in CLA isomer distribution ofcow’s milk lipids. Lipids.38:657–664.
    Lafontan M, Berlan M, Stich V, Crampes F, Riviere D, Glisezinski I de, Sengenes C, Galitzky J.2002.Recent data on the regulation of lipolysis by catecholamines and natriuretic peptides. Ann Endocrinol.63:86-90.
    Lee M R F, Colmenero J D O, Winters A L, Scollan N D, Minchin F R.2006a. Polyphenol oxidase activityin grass and its effect on plant-mediated lipolysis and proteolysis of Dactylis glomerata (cocksfoot) ina simulated rumen environment. J Sci Food Agric.86:1503-1511.
    Lee M R, Connelly P L, Tweed J K, Dewhurst R J, Merry R J, Scollan N D.2006b. Effects of high-sugarryegrass silage and mixtures with red clover silage on ruminant digestion.2. Lipids. J Anim Sci.84:3061-3070.
    Lee M R, Huws S A, Scollan N D, Dewhurst R J.2007. Effects of fatty acid oxidation products (green odor)on rumen bacterial populations and lipid metabolism in vitro. J Dairy Sci.90:3874-3882.
    Leiber F, Kreuzer M, Nigg D, Wettstein H R, Scheeder M R L.2005. A study on the causes for theelevated n-3fatty acids in cows’ milk of alpine origin. Lipids.40.191–202.
    Lieber F, Kreuzer M, J rg B, Leuenberger H, Wettstein H R.2004.Contribution of altitude and alpineorigin of forage to the influence of alpine sojourn of cows on intake, nitrogen conversion, metabolicstress and milk synthesis. Anim Sci.78:451-466.
    Liu Y P.2007. Rumen biohydrogenation of polyunsaturated fatty acids in high quality pasture.[MasterThesis]. New Zealand. Christchurch: Lincoln University.
    Lock A L, Bauman, D E.2004. Modifying milk fat composition of dairy cows to enhance fatty acidsbeneficial to human health. Lipids.39:1197-1206.
    Lock A L, Garnsworthy P C.2002. Independent effects of dietary linoleic and linolenic fatty acids on theconjugated linoleic acid content of cows’ milk. Anim Sci.74:163–176.
    Lock A L, Parodi P W, Bauman D E.2005. The biology of trans fatty acids: Implications for human healthand the dairy industry. Aust J Dairy Technol.60:134–142.
    Lock A L, Shingfield K J.2004. Optimising milk composition. In: Dairying–Using Science to MeetConsumers’s Needs. Eds. E. Kebreab, J. Mills, D. E. Beever, Occasional Publication No.29of theBritish Society of Animal Science Nottingham University Press, Lougborough (UK) pp:107–108.
    Loor J J, Ferlay A, Ollier A, Doreau M, Chilliard Y.2005. Relationship among trans and conjugated fattyacids and bovine milk fat yield due to dietary concentrate and linseed oil. J Dairy Sci.88:726-740.
    Loor J J, Soriano F D, Lin X, Herbein J H, Polan C E.2003. Grazing allowance after the morning orafternoon milking for lactating cows fed a total mixed ration (TMR) enhances trans11-18:1and cis9,trans11-18:2(rumenic acid) in milk fat to different extents. Anim Feed Sci Tech.109:105–119.
    Loor J J, Ueda K, Ferlay A, Chilliard Y, Doreau M.2004a. Biohydrogenation, duodenal flow, and intestinaldigestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage:concentrate ratio and linseed oil in dairy cows. J Dairy Sci.87:2472-2485.
    Loor, J J, Ueda, K, Ferlay, A, Chilliard, Y, Doreau, M.,2004b. Short communication: Diurnal profiles ofconjugated linoleic acids and trans fatty acids in ruminal fluid from cows fed a high concentrate dietsupplemented with fish oil, linseed oil, or sunflower oil. J Dairy Sci.87:2468-2471.
    Louren o M, Vlaeminck B, Bruinenberg M, Demeyer D, Fievez V.2005. Milk fatty acid composition andassociated rumen lipolysis and fatty acid hydrogenation when feeding forages from intensivelymanaged or semi-natural grasslands. Anim Res.54:471-484.
    Louren o M, De Smet S, Raes K, Fievez V.2007a. Effect of botanical composition of silages on rumenfatty acid metabolism and fatty acid composition in longissimus muscle and subcutaneous fat of lambs.Animal.1:911-921.
    Louren o M, Van Ranst G, De Smet S, Raes K, Fievez V.2007b. Effect of grazing pastures with differentbotanical composition by lambs on rumen fatty acid metabolism and fatty acid pattern of longissimusmuscle and subcultaneous fat. Animal.1:537-545.
    Lucas A, Agabriel C, Martin B, Ferlay A, Verdier-Metz I, Coulon J B, Rock E.2006. Relationshipsbetween the conditions of cow’s milk production and the contents of components of nutritionalinterest in raw milk farmhouse cheese. Lait.86:177–202.
    Maia M R G, Chaudhary L C, Figueres L, and Wallace R J.2006. Metabolism of polyunsaturated fattyacids and their toxicity to the microflora of the rumen. Antonie Leeuwenhoek.91:303–314.
    M nsson H L.2008. Fatty acids in bovine milk fat. Food Nutr Res.52:12-25.
    Mattsson S.1949. Poly-unsaturated fatty acids in butter and their influence on the oxidation of butter.Methods of analysis and preliminary results. In: Proceedings of the XIIth International Dairy Congress,Stockholm, pp.308–324, Section II.
    Mattsson A D, Rengel Z, Robinson D L.1949. Determination of cation exchange capacity of ryegrass rootsby summing exchangeable cations. Plant and Soil.56:217-222.
    Mayes RW, Lamb C S, Colgrave P M.1986. The use of dosed and herbage n-alkanes as markers for thedetermination of herbage intake. J Agric Sci Camb.107:161–170.
    McKain N, Shingfield K J, Wallace R J.2010. Metabolism of conjugated linoleic acids and18:1fattyacids by ruminal bacteria: products and mechanisms. Microbiology.156:579-588.
    Min B R, Barry T N, Attwood G T, McNabb W C.2003. The effect of condensed tannins on the nutritionand health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol.106:3-19.
    Mohammed R, Stanton C S, Kennelly J J, Kramer J K, Mee J F, Glimm D R, O'Donovan M, Murphy J J.2009. Grazing cows are more efficient than zero-grazed and grass silage-fed cows in milk rumenicacid production. J Dairy Sci.92:3874-3893.
    Motard-Belanger A, Charest A, Grenier G.2008. Study of the effect of trans fatty acids from ruminants onblood lipids and other risk factors for cardiovascular disease. Am J Clin Nutr.87:593-599.
    Nam I S, Garnsworthy P C.2007. Biohydrogenation of linoleic acid by rumen fungi compared with rumenbacteria. J Appl Microbiol.103:551–556.
    Obara Y, Dellow D W.1993. Effects of intraruminal infusion of urea, sucrose or urea plus sucrose onplasma urea and glucose kinetics in sheep fed chopped lucerne hay. J Agric Sci.121:125-130.
    Offer, N W.2002. Effects of cutting and ensiling grass on levels of CLA in bovine milk. Pages16-17inProc.13th Int. Silage Conf., Auchincruive, Scotland. L. M. Gechie and C. Thomas, ed. ScottishAgricultural College, UK.
    Or-Rashid M M, Odongo N E, McBrid B W.2007. Fatty acid composition of ruminal bacteria and protozoa,
    with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids. J
    Anim Sci.85:1228-1234.
    Or-Rashid M M, Odongo N E, McBrid B W.2008. Fatty acid composition of yak (Bos grunniens) cheeseincluding conjugated linoleic acid and trans-18:1fatty acids. J Agri Food Chem.2008,56:1654-60.
    Or-Rashid M M, AlZahal O, McBrid B W.2011.Comparative studies on the metabolism of linoleic acid byrumen bacteria, protozoa, and their mixture in vitro. Appl Microbio Biotech.89(2):387-395
    Paillard D, McKain N, Chaudhary L C, Walker N D, Pizette F, Koppova I, McEwan N R, Kopecny J,Vercoe P E, Lewis P, Wallace R J.2007. Relation between phylogenetic position, lipid metabolismand butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Leeuwenhoek.91:417–422.
    Palladino R A.2010. A comparison between Holstein-Friesian and Jersey dairy cows and their F(1) hybridon milk fatty acid composition under grazing conditions. J Dairy Sci.93:2176-2184.
    Palladino R, O'Donovan M, Murphy J, McEvoy M, Callan J, Boland T, Kenny D.2009. Fatty acid intakeand milk fatty acid composition of Holstein dairy cows under different grazing strategies: Herbagemass and daily herbage allowance. J Dairy Sci.92:5212.
    Palmquist D L, Jenkins T C.2003. Challenges with fats and fatty acid methods. J Anim Sci.81:3250-3254.
    Palmquist D L, Lock, A L, Shingfield, K J, Bauman, D E.2005. Biosynthesis of conjugated linoleic acid inruminants and humans. Adv Food Nutr Res.50:179-217.
    Parodi P W.2009. Has the association between saturated fatty acids, serum cholesterol andcoronary heatdisease been over emphasized? Int Dairy J.19:345-361.
    Polan C E, McNeill J J, Tove S B.1964. Biohydrogenation of unsaturated fatty acids by rumen bacteria. JBacteriol.88:1056–1064.
    Qiu X, Eastridge M L, Griswold K E, Firkins J L.2004. Effects of substrate, passage rate, and pH incontinuous culture on flows of conjugated linoleic acid and trans C18:1. J Dairy Sci.87:3473-3479.
    Rego O A, Alves S P, Antunes L M, Rosa H J, Alfaia C F, Prates J A, Cabrita A R, Fonseca A J, Bessa R J.2009. Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplementedwith rapeseed, sunflower, or linseed oils. J Dairy Sci.92:4530-4540.
    Rego O, Regalo S, Rosa H, Alves S, Borba A, Bessa R, Cabrita A, Fonseca A.2008. Effects of Grass Silageand Soybean Meal Supplementation on Milk Production and Milk Fatty Acid Profiles of GrazingDairy Cows. J Dairy Sci.91:2736.
    Rego O A, Rosa H J D, Portugal P, Cordeiro R, Borba A E S, Vouzela C M, Bessa R J B.2005a. Influenceof dietary fish oil on conjugated linoleic acid, omega-3and other fatty acids in milk fat from grazingdairy cows. Livest Prod Sci.95:27-33.
    Rego O A, Rosa H J D, Portugal P V, Franco T, Vouzela C M, Borba A E S. Bessa R J B.2005b. Theeffects of supplementation with sunflower and soybean oils on the fatty acid profile of milk fat fromgrazing dairy cows. Anim Res.54:17-24.
    Ribeiro C V, Karnati S K, Eastridge M L.2005. Biohydrogenation of fatty acids and digestibility of freshalfalfa or alfalfa hay plus sucrose in continuous culture. J Dairy Sci.88:4007-4017.
    Ribeiro C V, Eastridge M L, Firkins J L, St-Pierre N R, Palmquist D L.2007. Kinetics of fatty acidbiohydrogenation in vitro. J Dairy Sci.90:1405-1416.
    Roche J R, Petch S, Kay J K.2005. Manipulating the dietary cation-anion difference via drenching toearly-lactation dairy cows grazing pasture. J Dairy Sci.88:264-276.
    Rumpler W V, Johnson D E, Bates D B.1986. The effect of high dietary cation concentration onmethanogenesis by steers fed diets with or without ionophores. J Anim Sci.62:1737-1741.
    Salminen S, Deighton MA, Benno Y, Gaback SL.1998. Lactic acid bacteria in health and disease. In:Salminen S, Vonwright A (eds). Lactic Acid bacteria: Microbiol an functional aspects2ndEdition.New York: Marcel Dekker Inc,211-254.
    Schauff D J, Clark J H.1989. Effects of prilled fatty acids and calcium salts of fatty acids in rumenfermentation, nutrient digestibilities, milk production and milk composition. J Dairy Sci.72:917-927.
    Schroeder G F, Couderc J J, Bargo F, Rearte D H.2005. Milk production and fatty acid profile of milk fatby dairy cows fed a winter oats (Avena sativa L.) pasture only or a total mixed ration. N Z J Agric Res.48:187–195.
    Schroeder G F, Gagliostro G A, F Bargo, Delahoy J E, Muller L D.2004. Effect of fat supplementation onmilk production and composition by dairy cows on pasture: A review. Livest Prod Sci.86:1–18.
    Scollan N D, Enser M, Gulati S K, Richardson I, Wood J D.2003. Effects of including a ruminallyprotected lipid supplement in the diet on the fatty acid composition of beef muscle. Br J Nutr.90:709-716.
    Scollan N, Hocquette J-F, Nuernberg K, Dannenberger D, Richardson I, Moloney A.2005. Innovations inbeef production systems that enhance the nutritional and health value of beef lipids and theirrelationship with meat quality. Meat Sci.74:17-33.
    Shingfield K J, Reynolds, C K, Hervas G, Griinari J M, Grandison A S, Beever D E.2006. Examination ofthe persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet ofdairy cows. J Dairy Sci.89:714-732.
    Shingfield K J, Salo-Vaananen P, Pahkala E, Toivonen V, Jaakkola S, Piironen V, Huhtanen P.2005. Effectof forage conservation method, concentrate level and propylene glycol on the fatty acid compositionand vitamin content of cows' milk. J Dairy Res.72:349-361.
    Shi J, Arunasalam K, Yeung D, Kakuda Y, Mittal G, Jiang Y M.2004. Saponins from edible legumes:Chemistry, processing, and health benefits. J Med Food.7:67-78.
    Short E I.1954. The estimation of total nitrogen using the Conway micro-diffusion cell. J Clin Pathol.7:81–83.
    Simopoulos A P.2008. The importance of the omega-6/omega-3fatty acid ratio in cardiovascular diseaseand other chronic diseases. Exp Biol Med (Maywood).233:674-688.
    Simopoulos A P.2002. The importance of the ratio of omega-6/omega-3essential fatty acids. BiomedPharmacother.56:365-379.
    Simopoulos A P, Leaf, A, Salem, N, Jr.1999. Essentiality of and recommended dietary intakes for omega-6and omega-3fatty acids. Ann Nutr Metab.43:127-130.
    Sinclair L A.2007. Nutritional manipulation of sheep of the fatty acid composition neat: a review. J AgricSci.145:419-434.
    Singh S, Hawke J C.1979. The in vitro lipolysis and biohydrogenation of monogalactosyldigly ceride bywhole rumen contents and its fractions. J Sci Food Agric.30:603–612.
    Sir-Tarino P W, Sun Q, Hu F B, Krauss R M.2010. Meta-analysis of prospective cohort studies evaluatingthe association of saturated fat with cardiovascular disease. Am J Clin Nutr.91:535-546
    Soppela P, Nieminen M.2002. Effect of moderate wintertime undernutrition on fatty acid composition ofadipose tissues of reindeer (Rangifer tarandus tarandus L.). Comp Biochem Physiol.132A:403-409.
    Spears J W, Harvey RW.1987. Lasalocid and dietary sodium and potassium effects on mineral metabolism,ruminal volatile fatty aicds and performance of finishing steers. J Anim Sci.65:830-840
    Steele W, Noble R C.1984. Changes in lipid composition of grass during ensiling with or without added fator oil. Proc Nutr Soc.43:51.
    Stern M D, Hoover W H, Leonard J B.1977. Ultrastructure of rumen holomies by electron microscopy. JDairy Sci.60:911–918.
    Stockdale C R, Walker G P, Wales W J, Dalley D E, Birkett A, Shen Z, Doyle P T.2003. Influence ofpasture and concentrates in the diet of grazing dairy cows on the fatty acid composition of milk. JDairy Res.70:267-276.
    Taubes G.2001. The sot science of dietary fat. Science.291:2535-2541.
    Taweel H Z, Tas B M, Dijkstra J, Tamminga S.2004. Intake regulation and grazing behavior of dairy cows undercontinuous stocking. J Dairy Sci,87:3417-3427.
    Thomas T A.1977. An automated procedure for the determination of soluble carbohydrates in herbage. JSci Food Agric.28:639–642.
    Troegeler-Meynadier A, Nicot M C, Bayourthe C, Moncoulon R, Enjalbert F.2003. Effects of pH andconcentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenationin vitro. J Dairy Sci.86:4054-4063.
    Ulyatt M J, Lee J, Corson D.1995. Assessing feed quality. Pages59–62in Proc. Ruakura Farmers Conf.,Hamilton, New Zealand.
    Van de Vossenberg, J. and K. N. Joblin.2003. Biohydrogenation of C18unsaturated fatty acids to stearicacid by a strain of Butyrivibrio hungatei from the bovine rumen. Lett. Appl.Microbiol.37:424-428.
    Vanhatalo A, Kuoppala K, Toivonen V, Shingfield K J.2007. Effects of forage species and stage of maturity
    on bovine milk fatty acid composition. Eur J Lipid Sci Tech.109:856-867.
    Van Nevel C J, Demeyer D I.1996. Influence of pH on lipolysis and biohydrogenation of soybean oil byrumen contents in vitro. Reprod Nutr Dev.36:53–63.
    Van Soest P J.1994. Nutritional Ecology of the Ruminant (2ndEd.). Cornell University Press, Ithaca, NY.
    Van Soest P J, Robertson J B, Lewis B A.1991. Methods for dietary fiber, neutral detergent fiber, andnonstarch polysaccharides in relation to animal nutrition. J Dairy Sci.74:3583-3597.
    Verhulst A, Parmentiere G, Janssen G, Asselbergh S, Eyssen H.1985. Biotransformation of unsaturatedlong-chain fatty acids by Eubacterium lenturn. Appl Enviro Micro.51:532-538.
    Viviani R, Borgatti A R.1967. Studies on long chain fatty acids composition in rumen fluid during thedevelopment of ruminal function in the calf. Zentralb Veterinaermed Reihe A.14:833-844.
    Vlaeminck B, Dufour C, van Vuuren A M, Cabrita A R J, Dewhurst R J, Demeyer D, Fievez V.2005. Useof odd and branched-chain fatty acids in rumen contents and milk as a potential microbial marker. JDairy Sci.88:1031-1042.
    Vlaeminck B, Fievez V, van Laar H, Demeyer D.2004. Rumen odd and branched chain fatty acids inrelation to in vitro rumen volatile fatty acid productions and dietary characteristics of incubatedsubstrates. J Anim Physi Ani Nutr.88:401-411.
    Vlaeminck B, Fievez V, Cabrita A R J, Fonseca A J M, Dewhurst R J.2006a. Factors affecting odd-andbranched-chain fatty acids in milk: A review. Anim Feed Sci Tech.131:389-417.
    Vlaeminck B, Fievez V, Demeyer D, Dewhurst R J.2006b. Effect of forage: Concentrate ratio on fatty acidcomposition of rumen bacteria isolated from ruminal and duodenal digesta. J Dairy Sci.89:2668-2678.
    Wales W J, Kolver E S, Egan A R, Roche J R.2009. Effects of strain of Holstein-Friesian and concentratesupplementation on the fatty acid composition of milk fat of dairy cows grazing pasture in earlylactation. J Dairy Sci.92:247-255.
    Wallace R J.2004. Antimicrobial properties of plant secondary metabolites. Proc Nutr Soc.63:621-629.
    Wallace R J, McKain N, Shingfield K J, and Devillard E.2007. Isomers of conjugated linoleic acids aresynthesized via different mechanisms in ruminal digesta and bacteria. J Lipid Res.48:2247–2254.
    Ward P V, Scott T W, Dawson R M C.1964. The Biohydrogenation of a-Linolenic Acid and Oleic Acid byRumen Micro-organisms. Biochem J.92:60-62.
    White R W, Kemp P, Dawson R M C.1970. Isolation of a rumen bacterium that hydrogenates oleic acid aswell as linoleic and linolenic acid. Biochem J.116:767–768.
    White S L, Bertrand J A, Wade M R, Washburn S P, Green J T, Jr., Jenkins T C.2001. Comparison of fattyacid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. J DairySci,84:2295-2301.
    Whiting C M, Mutsvangwa T, Walton J P, Cant J P, McBride B W.2004. Effects of feeding either freshalfalfa or alfalfa silage on milk fatty acid content in Holstein dairy cows. Anim Feed Sci Tech.113:27–37.
    Wijesundera C., Shen Z, Wales W J, Dalley D E.2003. Effects of cereal grain and fibre supplements on thefatty acid composition of milk fat of grazing dairy cows in early lactation. J Dairy Res.70:257–265.
    Williams A G and Coleman A G.1992. The Rumen Protozoa. Springer-Verlag, New York, NY.
    Williams C M.2000. Dietary fatty acids and human health. Ann Zootech.49:165–180.
    Witkowska I M, Wever C, Gort G, Elgersma A.2008. Effects of nitrogen rate and regrowth interval onperennial ryegrass fatty acid content during the growing season. Agron J.100:1371-1379.
    Woolford M K.1984. The Silage Fermentation. Vol.14. Microbiology Series ed. Marcel Dekker, Inc.,New York, NY.
    Wright D E.1959. Hydrogenation of lipids by rumen protozoa. Nature.184:875–876.
    Wright D E.1960. Hydrogenation of chloroplast lipids by rumen bacteria. Nature.185:546–547.
    Yá ez-Ruiz D R, Scollan N D, Merry R J, Newbold C J.2006. Contribution of rumen protozoa toduodenal flow of nitrogen, conjugated linoleic acid and vaccenic acid in steers fed silages differing intheir water-soluble carbohydrate content. Br J Nutr.96:861–869.
    Yá ez-Ruiz D R, Williams S, Newbold C J.2007. The effect of absence of protozoa on rumenbiohydrogenation and the fatty acid composition of lamb muscle. Br J Nutr.97:938-948.
    Yokoyama M T, Davis C L.1971. Hydrogenation of unsaturated fatty acids by Treponema (Borrelia) strainB5, a rumen spirochete. J Bacteriol.107:519-527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700