用户名: 密码: 验证码:
睾丸酮丛毛单胞菌teiR基因功能及表达调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
睾丸酮丛毛单胞菌(Comamonas testosteroni)具有降解许多难降解化合物的能力,在污染物的生物修复上具有很高的应用价值。但是,该菌对甾类物质的代谢酶并不是组成型表达的,其表达受到环境中甾类化合物的诱导。因此,该菌对污染物的消化降解速度很慢,限制了该菌在生物修复中的大规模应用。睾丸酮丛毛单胞菌中受睾丸酮诱导表达的调节因子称为teiR基因(testosterone-inducible regulator, teiR),teiR基因在类固醇代谢过程中具有十分重要的意义,可以激活或抑制相关代谢酶基因的表达。因此,本研究通过对teiR基因的克隆及功能分析,从基因转录调控的角度入手,对睾丸酮丛毛单胞菌进行定向调控,提高其降解能力,揭示睾丸酮丛毛单胞菌包括关键酶3a-HSD/CR在内的一系列基因的表达调控机制。该研究对于改造睾丸酮丛毛单胞菌,开发利用睾丸酮丛毛单胞菌进行污染物的环境生物修复等都具有十分重要的意义。研究结果如下:
     1.根据已报道的睾丸酮丛毛单胞菌调节因子序列设计引物,从睾丸酮丛毛单胞菌ATCC11996菌株中克隆了teiR基因(GenBank登录号:FJ890932)。序列分析表明,其核苷酸序列与已发表的teiR基因(GenBank登录号:AY363220)和tesR基因(GenBank登录号:AB186487)的同源性分别为99 %和95 %。保守结构分析表明,该基因编码蛋白属于LuxR转录调控因子,C末端含有一个HTH DNA结合结构域。
     2.构建了teiR基因表达载体pET28a-teiR ,在大肠杆菌里进行了诱导表达,并根据重组蛋白的组氨酸特性,利用Qiagen公司的Ni-NTA Spin Column进行TeiR融合蛋白的分离纯化。以分离纯化的TeiR融合蛋白为抗原,制备兔抗TeiR多克隆抗体。该抗体特异性良好,效价可达1:10000。
     3.以质粒pKtac2和pK18为载体,构建了两个teiR基因重组质粒:pKteiR100和pKtac2-teiR。将重组质粒分别转化或与p6(含3a-HSD/CR基因)共转化大肠杆菌(Escherichia coli) HB101中,酶联免疫吸附实验(ELISA)测定TeiR或3a-HSD/CR的表达量。结果表明含tac强启动子的质粒具有更高的转录活性;在大肠杆菌中,teiR基因能够明显诱导3a-HSD/CR的表达。
     4.构建teiR基因插入失活突变体的同源重组打靶载体pKmut,并根据同源重组原理电击转化野生型睾丸酮丛毛单胞菌,筛选获得睾丸酮丛毛单胞菌teiR基因插入失活突变体C. mut。应用酶联免疫吸附实验(ELISA)和高效液相色谱法(HPLC)分别分析了突变体蛋白表达及其降解特性。结果发现突变体抑制了teiR基因和关键降解酶3a-HSD/CR的表达,同时突变体丧失了以睾丸酮作为碳源进行生长的能力。
     5.根据同源重组原理,将pKtac2-teiR电穿孔转化野生型睾丸酮丛毛单胞菌,筛选获得睾丸酮丛毛单胞菌teiR基因高效表达菌AMP8,该菌株已提交中国微生物菌种保藏管理委员会普通微生物中心保存,保存号为CGMCC No. 2365,并申请了一项国家发明专利(专利申请号:2008100724597)。
     1)利用荧光定量PCR检测了3a-HSD/CR和teiR基因的转录水平。从荧光定量PCR检测的结果来看,睾丸酮均能诱导提高AMP8和野生型菌株3a-HSD/CR和teiR基因的转录水平,但同等条件下AMP8基因转录水平要明显高于野生型菌株。普通RT-PCR结果表明,AMP8在提高teiR基因表达的同时也能显著提高关键酶3a-HSD/CR、4-羟基-2-氧戊酸盐醛缩酶(TIP4)和2-羟基戊-2,4-二烯酸盐水合酶(TIP8)的表达,这些酶都与睾丸酮丛毛单胞菌的类固醇代谢途径有关。
     2)提取不同培养条件下的AMP8细菌总蛋白,酶联免疫吸附实验(ELISA)测定3a-HSD/CR和TeiR的表达量。结果表明,高效表达菌AMP8 TeiR和3a-HSD/CR的表达量都得到了提高,TeiR表达量最高可达野生型菌株TeiR表达量的5.8倍,3a-HSD/CR表达量最高可达野生型菌株3a-HSD/CR表达量的20倍。进一步说明构建的高效表达菌AMP8在大幅提高TeiR表达量的同时,也能显著地提高关键降解酶3a-HSD/CR的表达量。
     3)根据双向电泳分析结果,从双向电泳凝胶上挖取15个点,进行MALDI-TOF-MS/MS分析,共有8个蛋白得到鉴定,其中6个点为上调表达,2个点为下调表达。绝大部分鉴定蛋白都与睾丸酮丛毛单胞菌类固醇代谢有关。说明加强teiR表达的高效表达菌AMP8与原始菌相比,能够增加类固醇代谢酶的表达。
     4)对AMP8进行连续传代培养50代,每隔5代提取细菌总蛋白进行3a-HSD/CR和TeiR蛋白的表达检测。结果表明:在添加抗生素培养时,AMP8 TeiR和3a-HSD/CR的表达均稳定在较高的水平;而不添加抗生素进行培养时,其TeiR和3a-HSD/CR的表达起伏较大,总体表达水平比添加抗生素时低。
     5)利用HPLC和分光光度法对AMP8的睾丸酮和土壤中甾类物质的降解能力进行分析。结果发现AMP8对睾丸酮和土壤中甾类物质的降解能力均优于野生型菌株。
Gram-negative bacterium Comamonas testosteroni has the ability to utilize various steriods as a sole carbon and energe source. Therefore it plays an important role in the bioremediation of these stable compounds in the environment. Insterestingly, the steriod metabolic enzymes were not constitutively expressed, but induced by their respective substrates. This limits its wide use in environmental bioremediation. Testosterone inducible regulator, teiR gene controls a wide variety of activities in various biological processes, some as transcriptional activators, but some as repressors. In the present work, we cloned teiR gene and studyed the function to reveal the relationship between the teiR gene and 3a-HSD/CR. Directionally control the Comamonas testosteroni on gene transcriptional regulation level to empower its degradation ability. The results benefit for applying genetically engineered bacteria of C. testosteroni to assimilate stable hormonally active compounds effectively. The results were as follows:
     1. teiR gene was cloned from genomic DNA of Comamonas testosteroni. Sequence analysis showed that teiR gene (GenBank accession No. FJ890932) shared highest similarity with teiR (GenBank accession No. AY363220) and tesR gene (GenBank accession No. AB186487), 99 % and 95 %, respectively. teiR gene encoding protein was a putative LuxR-type transcriptional regulator, its domain distribution as N-terminal autoinducer binding domain and C-terminal HTH DNA binding domain.
     2. Plasmid pET28a-teiR was constructed and performed in E. coli to overexpress TeiR protein. The recombinant protein was purified by its His-tag sequence using Ni-NTA Spin Column supplied by Qiagen. TeiR protein, as assessed by SDS-polyacrylamide gel electrophoresis, was used to prepare antibodies against rabbits. The antibodies reacted very well with the native recombinant protein, and the dilution could be 1:10000.
     3. Then the teiR gene was sucloned into plasmids pKtac2 and pK18 to yield plasmids pKtac2-teiR and pKteiR100. The recombinant plasmids were transformed into competent Escherichia coli HB101, respectively, or with plasmid p6 (containing 3a-HSD/CR gene) to detect the TeiR and 3a-HSD/CR expression levels by enzyme-linked immunosorbent assay (ELISA). Our results proved that tac promoter was much more efficient than the lacZ promoter and that teiR gene could act as an activator for 3a-HSD/CR expression.
     4. Recombinant plasmid pKmut was integrated into Comamonas testosteroni chromosome DNA through homologous recombination to generate teiR gene knock-out mutant. Protein expression levels and its degradation ability were determined by enzyme-linked immunosorbent assay (ELISA) and high performance liquid chromatography (HPLC), respectively. teiR-disrupted mutant inhibited the 3a-HSD/CR and TeiR expression, using the wild type of Comamonas testosteroni as a control. Finally, the mutant lost the ability to use testosterone as a carbon source. Our results confirmed that the teiR gene mediates the steroid metabolism in Comamonas testosteroni and was necessary for the 3a-HSD/CR expression.
     5. Recombinant plasmid pKtac2-teiR was integrated into Comamonas testosteroni chromosome DNA through homologous recombination to generate teiR gene overexpression mutant AMP8. AMP8 was already stored at China General Microbiological Culture Collection Center (CGMCC NO.2365), and was made a national patent application (Application No. 2008100724597)
     1) Real time fluorescence quantitative RT-PCR for detecting the expression of teiR and 3a-HSD/CR had been established, in which the wild type of Comamonas testosteroni treated as a control. The results showed that testosterone could increase this two genes expression in the wild type of Comamonas testosteroni as well as AMP8. AMP8 expressed more than that in the wild type of Comamonas testosteroni under the same conditions. Furthermore, the RT-PCR results indicated that AMP8 constitutively expressed 3a-HSD/CR, but also expressed the enzymes involved in the degradation of steroids, such as 4-hydroxy-2-oxovalerate aldolase and 2-hydroxypenta-2,4-dienoate hydratase.
     2) AMP8 was cultured in different conditions, and proteins were extracted to detect the TeiR and 3a-HSD/CR expression levels by ELISA using the wild type of Comamonas testosteroni as a control. The results showed that AMP8 could produce several folds of TeiR and 3a-HSD/CR compared to that of the wild type of Comamonas testosteroni, and the best was 5.8-folds of TeiR and 20-folds of 3a-HSD/CR compared to the control. Our results confirmed that AMP8 could widely increase TeiR expression, also increase 3a-HSD/CR expression.
     3) 8 of 15 differentially expressed proteins were identified by MALDI-TOF-MS and database searching, including 6 up-expressed proteins, 2 down-expressed proteins. The most of the identified proteins were founctioned in the catabolism of steroids.
     4) AMP8 was cultured for 50 days and total cell lysate was extracted per five days to detect the expression level of 3a-HSD/CR and TeiR using ELISA. The results indicated that TeiR and 3a-HSD/CR were in high and stable expression when inoculated with antibiotic in LB medium, but unstable without antibiotic.
     5) A HPLC and spectrophotometry assays were established to investigate the dagradation ability between AMP8 and the wild type of Comamonas testosteroni. The results showed that AMP8 had better degradation ability than the wild type of Comamonas testosteroni.
引文
1. Ahmad D, Masse R, Sylvestre M. Cloning and expression of genes involved in 4-chlorobiphenyl transformation by Pseudomonas testosteroni: homology to polychlorobiphenyl-degrading genes in other bacteria [J]. Gene, 1990, 86: 53-61
    2. Andersen H R, Siegrist H, Halling-S?rensen B, Temes T. Fate of estrogens in a municipal sewage treatment plant [J]. Environ Sci Technol, 2003, 37: 4021-4026
    3. Arai H, Akahira S, Ohishi T, Maeda M, Kudo T. Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation [J]. Microbiol, 1998, 144: 2895- 2903
    4. Arai H, Yamamoto T, Shimzu T, Shimizu T, Nakata T, Kudo T. Genetic organization and characteristics of the 3-(3-hydroxyphenyl) propionic acid degradation pathway of Comamonas testosteroni TA441 [J]. Microbiol, 1999, 145: 2813- 2820
    5. Barbaro D J, Mackowiak P A, Barth S S. Pseudomonas testeosteoni infection: Eighteen recent cases and a review of the literature [J]. Rev Infectt Dis, 1987, 9: 124- 129
    6. Berg A, Ingelman-Sunoberg M, Gustafsson J A. Purification and characterization of cytochrome P-450 meg [J]. J Biol Chem, 1979, 254: 5264-5271
    7. Birnbaum L S. Endocrine effects of prenatal exposure to PCBs, dioxins, and other xenobiotics; implications for policy and future research [J]. Environ Health Perspect, 1994, 102: 676-679
    8. Bomba A, Gancarcikova S, Nemcova R, Herich R, Kastel R, Depta A, Demeterova M, Ledeck V, Zitnan R. The effect of lactic acid bacteria on intestinal metabolism and metabolic profile in gnotobiotic pigs [J]. Dtsch Tierarztl Wochenschr, 1998, 105 (10): 384-389
    9. Bondzynski S T, Humnicki V. Ueber das schicksal des cholesterins im thierischen organismus [J]. Z Physiol Chem, 1896, 22: 396- 410
    10. Boyer J, Baron D N, Talalay P. Purification and properties of a 3-hydroxysteroid dehydrogenase from Pseudomonas testosteroni [J]. Biochem, 1965, 4: 1825- 1833
    11. Casey F X M, Larsen G L, Hakk H, Hakk H, Simunek J. Fate and transport of 17β-estradiol in soil-water systems [J]. Environ Sci Technol, 2003, 37: 2400-2409
    12. Charney W, Herzog H L. Microbial transformation of steroids. A Handbook, 2nd Ed [M]. New York: Academic Press, 1967
    13. Cho H S, Ha N C, Choi G, Kim H J, Lee D, Oh K S, Kim K S, Lee W, Choi K Y, Oh B H. Crystal structure of D5-3-ketosteroid isomerase from Pseudomonas testosteroni in complex with equilenin settles the correct hydrogen bonding scheme for transition state stabilization [J]. J Biol Chem, 1999, 274 (46): 32863-32868
    14. Choi K P, Molnar I, Murooka Y. Secretory overproduction of arthrobacter simplex 3-ketosteroid delta 1-dehydrogenase by Streptomyces lividans with a multi-copy shuttle vector [J]. Appl Microbiol Biotechnol, 1995b, 43: 1044-1049
    15. Choi K P, Molnar I, Yamashita M, Murooka Y. Purification and characterization of the 3-ketosteroid-delta 1-dehydrogenase of Arthrobacter simplex produced in Streptomyces lividans [J]. J Biochem, 1995a, 117: 1043-1049
    16. Clara M, Strenn B, Saracevic E, Kreuzinger N. Adsorption of bisphenol-A,17β-estradiole and 17α- ethinylestradiole to sewage sludge [J]. Chemosphere, 2004, 56 (9): 843- 851
    17. Clark T A, Chong R, Maddox I S. The effect of dissolvedoxygen tension on 11β- and19-hydroxylation of reichsteins’s Substance S by Pellicularia filamentosa [J]. European J Appl Microbiol Biotechnol, 1982, 14: 131
    18. Colbon T D. Our stolen future [M]. New York: Penguin Books, 1996
    19. Colborn T, Saal F S, Soto A M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans [J]. Environ Health Perspect, 1993, 101: 378-384
    20. Coleman H M, Eggins B R, Byme J A, Palmer F L, King E. Photocatalytic degradation of 17β- oestradiolon immobilized TiO2 [J]. J Applied Cataysis B:Environmental, 2000, 24 (1): 1-5
    21. Coombe R G, Tsong Y Y, Hamilton P B, Sih C J. Mechanisms of steroid oxidation by microorganisms. X. Oxidative cleavage of estrone [J]. J Biol Chem, 1966, 241, 1587-1595
    22. Coulter A W, Talalay P. Studies on the microbial degradation of steroid ring A [J]. J Biol Chem, 1968, 243: 3238-3247
    23. Cynthia M O, Niagro F, Su X, Rawlings C A. Expression of recombinant feline tumor necrosis factor is toxic to Escherichia coli [J]. Clin Diagn Lab Immunol, 1995, 2: 740- 746
    24. Davidson S J, Talalay P. Purification and mechanism of action of a steroidΔ4-5?- dehydrogenase [J]. J Biol Chem, 1966, 241: 906- 915
    25. Davis D L, Bradlow H L. Can environmental estrogens cause breast cancer? [J]. Sci Amr, 1995, 273: 166-172
    26. Dillemans M, Goossens E, Goffin O, Masschelein C A. The amplification effect of the Ilv5 gene on the production of vicinal diketones in Saccharomyces cerevisiae [J]. J Am/Berw Chem, 1987, (45): 81-84
    27. Dodson R M, Muir R D. Microbiological transformations II. Microbiological aromatization of steroids [J]. J Am Chem Soc, 1958a, 80: 5004- 5005
    28. Dodson R M, Muir R D. Microbiological transformations III. The hydroxylation of steroids at C-9 [J]. J Am Chem Soc, 1958b, 80: 6148
    29. Dodson R M, Muir R D. Microbiological transformations VI. The microbiological aromatization of steroids [J]. J Am Chem Soc, 1961, 83: 4627- 4631
    30. Ducros V M A, Lewis R J, Verma C S, Dodson E J, Leonard G, Turkenburg J P. Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis [J]. J Mol Biol, 2001, 306: 759- 771
    31. Egland K A, Greenberg E P. Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine scanning mutagenesis [J]. J Bacteriol, 2001, 183: 382- 386
    32. Fahrbach M, Kuever J, Meinke R, Kampfer P, Hollender J. Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteobacterium [J]. Int J Syst Evol Microbiol, 2006, 56: 1547- 1552
    33. Florin C, Kohler T, Grandguillot M, Plesiat P. Comamonas testosteroni 3-ketosteroid-?4(5a)- dehydrogenase: gene and protein characterization [J]. J Bacteriol, 1996, 178: 3322- 3330
    34. Frederick M, Ausubel M (颜子颖,王海林等译).精编分子生物学实验指南(第三版)[M].北京:科学出版社, 1998
    35. Fujii K, Kikuchi S, Satomi M, Ushio S N, Morita N. Degradation of 17β-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan [J]. Appl Environ Microbiol, 2002, 68: 2057- 2060
    36. Fujii K, Satomi M, Morita N, Motomura T, Tanaka T, Kikuchi S. Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo [J]. Int J Syst Evol Microbiol, 2003, 53, 47- 52
    37. Fuqua C, Parsek M R, Greenberg E P. Regulation of gene expression by cell-to-cellcommunication: acyl-homoserine lactone quorumsensing [J]. Annu Rev Genet, 2001, 35: 439– 468
    38. Futamata H, Watanabe K, Harayama S. Relationships between the trichloroethylene- degrading activities and the amino acid sequences of phenol hydroxylases in phenol-degrading bacteria, p. 99–104. In G. B. Wickramanayake and R. E. Hinchee (ed.), Natural attenuation: chlorinated and recalcitrant compounds [M]. Ohio: Battelle Press, 1998
    39. Gale P H, Page A C, Stoudt T H, Folkers K. Identification of vitamin K2, and apparent cofactor of a steroidal1-dehydrogenase of Bacillus sphaericus MB431 [J]. Biochemistry, 1962, 35 (1): 778
    40. Garcia-Valdes E, Cozar E, Rotger R. New naphthalene degradingmarine Pseudomonas strains [J]. Appl Environm Microbiol, 1988, 54: 2478- 2485
    41. Geize R, Hessels G I, Gerwen R, Meijden P, Dijkhuizen L. Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid-1-dehydrogenase in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker [J]. FEMS Microbiol Lett, 2001, 205: 197- 202
    42. Geize R, Hessels G I, Gerwen R, Vrijbloed J W, Meijden P D, Dijkhuizen L. Targeted disruption of the kstD gene encoding a 3-ketosteroid-1-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1 [J]. Appl Environ Microbiol, 2000, 66: 2029- 2036
    43. Ghosh D, Samanta T B J. 11 alpha-Hydroxylation of progesterone by cell free preparation of Aspergillus ochraceus TS [J]. J Steroid Biochem, 1981, 14: 1063-1067
    44. Gibsos D T, Wang K C, Sih C J, Whitlock H J. Mechanisms of steroid oxidation by microorganisms IX. on the mechanism of ring a cleavage in the degradation of 9,10-seco steroids by microorgamisms [J]. J Biol Chem, 1966, 241 (3): 551- 559
    45. G?hler A, Xiong G, Paulsen S, Trentmann G, Maser E. Testosterone-inducible regulator is a kinase that drives steroid sensing and metabolism in Comamonas testosteroni [J]. J Biol Chem, 2008, 25: 17380– 17390
    46. Goyal A K, Zylstra G J. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39 [J]. Appl Environ Microbiol, 1996, 62 (1): 230- 236
    47. Grimm C, Maser E, M?bus E, Klebe G, Reuter K, Ficner R. The crystal structure of 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family [J]. J Biol Chem, 2000, 275 (52): 41333- 41339
    48. Groh H, Schade K, Horhold-Schubert C. Steroid metabolism with intestinal microorganisms [J]. J Basic Microbiol, 1993, 33: 59- 72
    49. Habe H, Kimura T, Nojiri H, Yamane H, Omori T. Cloning and nucleotide sequence of the genes involved in the meta-cleavage pathway of cumene degradation in Pseudomonas fluorescens [J]. J Ferment Bioeng, 1996, 81: 247- 254
    50. Hanisch W H, Dunnill P, Lilly M D. Optimisation of the. production of progesterone lla-hydroxylase by Rhizopus nigricans [J]. Biotechnol Bioeng, 1980, 22: 555- 570
    51. Harder J, Probian C. Anaerobic mineralization of cholesterol by a novel type of denitrifying bacterium [J]. Arch Microbiol, 1997, 167: 269- 274
    52. Hayano M. Oxygenases in lipid and steroid metabolism, In Oxygenases [M]. New York: Academic Press Inc, 1962
    53. Hofer B, Backhaus S, Timmis K N. The biphenyl/polychlorinated biphenyl-degradation locus(bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes [J]. Gene, 1994, 144: 9-16
    54. Holthaus K I E, Johnson A C, Jürgens M D, Williams R J, Smith J J L, Carter J E. The potential for estradiol and ethinylestradiol to sorb to suspended and bed sediments in some English revers [J]. Environ Toxicol Chem, 2002, 21: 2526- 2535
    55. Horinouchi M, Hayashi T, Koshino H, Kudo T. ORF18-disrupted mutant of Comamonas testosteroni TA441 accumulates significant amounts of 9,17-dioxo-1,2,3,4,10,19-hexanor androstan-5-oic acid and its derivatives after incubation with steroids [J]. J Steroid Biochem Mol Biol, 2006, 101: 78- 84
    56. Horinouchi M, Hayashi T, Koshino H, Kurita T, Kudo T. Identification of 9,17-dioxo- 1,2,3,4,10,19-hexanorandrostan-5-oic acid, 4-hydroxy-2-oxohexanoic acid, and 2-hydroxyh exa-2,4-dienoic acid and related enzymes involved in testosterone degradation in Comamonas testosteroni TA441 [J]. Appl Environ Microbiol, 2005, 71: 5275- 5281
    57. Horinouchi M, Hayashi T, Koshino H, Malon M, Yamamoto T, Kudo T. Identification of genes involved in inversion of stereochemistry of a C-12 hydroxyl group in the catabolism of cholic acid by Comamonas testosteroni TA441 [J]. J Bacteriol, 2008, 190 (16): 5545- 5554
    58. Horinouchi M, Hayashi T, Koshino H, Yamamoto T, Kudo T. Gene encoding the hydrolase for the product of the meta-cleavage reaction in testosterone degradation by Comamonas testosteroni [J]. Appl Environ Microbiol, 2003a, 69: 2139- 2152
    59. Horinouchi M, Hayashi T, Kudo T. The genes encoding the hydroxylase of 3-hydroxy-9,10- secoandrosta-1,3,5(10)-triene-9,17-dione in steroid degradation in Comamonas testosteroni TA441 [J]. J Steroid Biochem Mol Biol, 2004, 92: 143- 154
    60. Horinouchi M, Hayashi T, Yamamoto T, Kudo T. A new bacterial steroid degradation gene cluster in Comamonas testosteroni TA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes [J]. Appl Environ Microbiol, 2003b, 69 (8): 4421- 4430
    61. Horinouchi M, Kurita T, Yamamoto T, Hatori E, Hayashi T, Kudo T. Steroid degradation gene cluster of Comamonas testosteroni consisting of 18 putative genes from meta-cleavage enzyme gene tesB to regular gene tesR [J]. Biochem Biophys Res Commun, 2004a, 324, 597- 604
    62. Horinouchi M, Yamamoto T, Taguchi K, Arai H, Kudo T. Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441 [J]. Microbiol, 2001a, 147: 3367-3375
    63. Horinouchi M, Yamamoto T, Taguchi K, Arai H, Kudo T. Testosterone degradation genes in Comamonas testosteroni TA441 II: ORF12 and tesD, E, F, G [J]. RIKEN Review, 2001b, 42: 31- 34
    64. Hurlock B, Talalay P. 3α-hydroxysteroids as coenzymes of hydrogen transfer between di-and triphosphopyridine nucleotides [J]. J Biol Chem, 1958, 233: 886- 893
    65. Hurlock B, Talalay P. Principles of the enzymatic measurement of steroids [J]. J Biol Chem, 1957, 227: 37- 52
    66. Hwang I, Cook D M, Farrand S K. A new regulatory element modulates homo serine lactone2mediated autoinduction of Tiplasm id conjugal transfer [J]. J Bacteriol, 1995, 177: 449- 458
    67. Hwang Y S, Kim E S, Biro S, Choi C Y. Cloning and analysis of a DNA fragment stimulatingavermectin production in various Streptomyces avermitilis strains [J]. Appl Environ Microbiol, 2003, 69 (2): 1263
    68. Hylemon P B and Harde J. Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems [J]. FEMS Microbiol Rev, 1999, 22, 475- 488
    69. Ikeda M, Katsumata R. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterinm glutamicum strain [J]. Appl Environ Microbiol, 1992, 58: 781- 785
    70. Itagaki E, Wakabayashi T, Hatla T. Purification and characterization of 3-ketosteroid-delta 1-dehydrogenase from Nocardia corallina [J]. Biochim Biophys Acta, 1990, 1038: 60- 67
    71. Jayarao B M, Wang L. A study on the prevalence of gram-negative bacteria in bulk tank milk [J]. J Dairy Sci, 1999, 82 (12): 2620- 2624
    72. Jiang J Q, Yin Q, Zhou J L, Pearce P. Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters [J]. Chemosphere, 2005, 61 (4): 544- 550
    73. Joss A, Andersen H, Ternes T, Richle P R, Siegrist H. Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization [J]. Environ Sci Technol, 2004, 38, 3047- 3055
    74. Kaufmann G, Thole H, Kraft R, Atrat P. Steroid-1-dehydrogenase of Rhodococcus erythropotis: purification and N-terminal amino acid sequence [J]. J Steroid Biochem Molec Biol, 1992, 43: 297- 301
    75. Kavlock R J. Overview of endocrine disruptor research activity in the fifth Nord-UTTE network meeting. The future EU chemicals policy and implications for development of test methods and testing strategies (Abstracts) [A]. Sep 2002
    76. Khosla C, Bailey J E. Heterologous expression of B bacterial haemoglobin improves growth properties of recombinant E.coli [J]. Nature, 1988, 331: 633
    77. Kieslich K. Microbial side-chain degradation of sterols [J]. J Basic Microbiol, 1985, 25: 461- 474
    78. Kniemeyer O, Probian C, Rosselló-Mora A, Harder J. Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on dimethylmalonate [J]. Appl Environ Microbiol, 1999, 65, 3319- 3324
    79. Kondo E, Masue E.“Pseudo-crystallofermentation”of steroids: a new process for preparing prednisolone by a microorganism [J]. Appl Microbiol, 1961, 7: 113
    80. Kosono S, Maeda M, Fuji F, Arai H, Kudo T. Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation [J]. Appl Environ Microbiol, 1997, 63: 3282- 3285
    81. Kulakov L A, Delcroix V A, Larkin M J, Ksenzenko V N, Kulakova A N. Cloning of new Rhodococcus extradiol dioxygenase genes and study of their distribution in different Rhodococcus strains [J]. Microbiol, 1998, 144: 955- 963
    82. Lai K M, Johnson K L, Serimshaw M D, Lester J N. Binding of waterborne steroid estrogens to solid phases in river and estuarine systems [J]. Environ Sci Technol, 2000, 34 (18) 2890- 3894
    83. Lee L S, Strock T J, Sarmah A K, Rao P S C. Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment [J]. Environ Sci Thechol, 2003, 37: 4098- 4105
    84. Leppik R A. Deoxycholic acid degradation by a Pseudomonas sp.: acidic intermediates with A-ring unsaturation [J]. Biochem J, 1983, 210: 829- 836
    85. Levy H R, Talalay P. Bacterial oxidation of steroidsI. Ring a dehydrogenations by intact cells [J]. J Biol Chem, 1959a, 234: 2009- 2013
    86. Levy H R, Talalay P. Bacterial oxidation of steroidsII. Studies on the enzymatic mechanism of ring a dehydrogenation [J]. J Biol Chem, 1959b, 234: 2014- 2021
    87. Linares M, Pruneda-Paz J L, Reyna L, Genti S. Regulation of testosterone degradation in Comamonas testosteroni [J]. J Steroid Biochem Mol Biol, 2008, 112 (1-3): 145- 150
    88. Lybarger S R, Maddock J R. Differences in the polar clustering of the high- and low-abundance chemoreceptors of Escherichia coli [J]. J Bacteriol, 2001, 183: 3261- 326
    89. Maddock J R, Shapiro L. Polar location of the chemoreceptor complex in the Escherichia coli cell [J]. Science, 1993, 259: 1717– 1723
    90. Martin R, Sterner O, Alvarez M A, Clercq E, Bailey J E, Minas W. Collinone, a new recombinant angular polyketide antibiotic made by an engineered Streptomyces strain [J]. J Antibiot, 2001, 54: 239- 249
    91. Maser E, M?bus E, Xiong G. Functional expression, purification, and characterization of 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni [J]. BBRC, 2000, 272: 622- 628
    92. Maser E, Xiong G, Grimm C, Ficner R, Reuter K. 3α-hydroxysteroid dehydrogenas/ carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation [J]. Chemico-Biological Interactions, 2001, 130- 132: 707- 722
    93. Megges R, Mueller-Frohne M, Pfeil D, Ruckpaul K. Microbial steroid hydroxylating enzymes in glu- cocorticoid production [J]. In: Frontiers in Biotransformation, 1990, 50: 204- 243
    94. Miller M B, Bassler B L. Quorum sensing in bacteria [J]. Annu Rev Microbiol, 2001, 55: 165- 199
    95. M?bus E, Jahn M, Schmid R, Jahn D, Maser E. Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni [J]. J Bacteriol, 1997, 179 (18): 5951- 5955
    96. M?bus E, Maser E. Cloning and sequencing of a new Comamonas testosteroni gene encoding 3 alpha-hydroxysteroid dehydrogenase/carbonyl reductase [J]. Adv Exp Med Biol, 1999, 463: 395- 402
    97. M?bus E, Maser E. Molecular cloning, overexpression and characterization of steroid- inducible 3α-hydroxysteroid dehydrogenase/ carbonyl reductase from Comamonas testosteroni [J]. J Biol Chem, 1998, 273 (47): 30888- 30896
    98. Molnar I, Choi K P, Yamashita M, Murooka Y. Molecular cloning, expression in Streptomyces lividans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-Δ1-dehydrogenase, 3-ketosteroid-Δ5-isomerase and a hypothetical regulatory protein [J]. Mol Microbiol, 1995, 15: 895- 905
    99. Morgan C A, Wyndham R C. Isolation ang characterization of resin acid degrading bacteria found in effluent from a bleached kraft puip mill [J]. Can J Microbiol, 1996, 42: 423- 430
    100. Oppermann U C T, Maser E. Characterization of a 3a-hydroxysteroid dehydrogenase/ carbonyl reductase from the Gram-negative bacterium Comamonas testosteroni [J]. Eur J Biochem, 1996, 241: 744- 749
    101. Otto C M, Frank N, Su X Z, Rawlings C A. Expression of recombinant feline tumor necrosis factor is toxic to Escherichia coli [J]. Clin Diagn Lab Immunol, 1995, 2 (6): 740- 746
    102. Ourisson G, Rohmer M, Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates [J]. Annu Rev Microbiol, 1987, 41: 301- 333
    103. Peoples C P, Sinskey A J. Poly-β-hydroxybutyrata (PHB) biosynthesis in Alcaligenes eutrophus H16 [J]. Biol Chem, 1989, 264: 15298- 15303
    104. Plesiat P, Grandguillot M, Harayama S, Vragar S, Michel B Y. Cloning, sequencing, and expression of the Pseudomonas testosteroni gene encoding 3-oxosteroid ?1-dehydrogenase [J]. J Bacteriol, 1991, 173: 7219- 7227
    105. Pristovsek P, Sengupta K, Lohr F, Schafer B, Trebra M W, Ruterjans H, Bernhard F. Structural analysis of the DNA-binding domain of the Erwinia amylovora RcsB protein and its interaction with the RcsAB box [J]. J Biol Chem, 2003, 278: 17752- 17759
    106. Probian C, Wülfing A, Harder J. Anaerobic mineralization of quaternary carbon atoms: Isolation of denitrifying bacteria on pivalic acid (2,2-dimethylpropionic acid) [J]. Appl Environ Microbiol, 2003, 69, 1866- 1870
    107. Pruneda-Paz J L, Linares M, Cabrera J E, Raimondi S G. TeiR, a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni [J]. J Bacteriol, 2004, 186 (5): 1430– 1437
    108. Puglisi E, Nicelli M, Capri E, Trevisan M, Attilio A M. Cholesterol,β-sitosterol, ergosterol, and coprostanol in agricultural soils [J]. J Environ Qual, 2003, 32: 466- 471
    109. Rodriguez-Saiz M, Lembo M, Bertetti L, Muraca R, Velasco J, Malc-angi A, Fuente J L, Barredo J L. Strain improvement for cephalosporin production by Acremonium chrysogenum using geneticin as a suitable transformation marker [J]. FEMS Microbiol Lett, 2004, 235 (1): 43- 49
    110. Sambrook J, Russell D W (黄培堂等译).分子克隆:实验指南(第三版)[M].北京:科学出版社, 2002
    111. Sato S I, Ouchiyama N, Kimura T, Nojiri H, Yamane H, Omori T. Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase [J]. J Bacteriol, 1997, 179: 4847- 4849
    112. Shen Y, Yoon P, Yu T, Floss H G, Hopwood D, Moore B S. Ectopic expression of the minimal whiE polyketide-syntheae generates library of aromatic polyketides of diverse sizes and shapes [J]. PNAS USA, 1999, 96: 3622- 3627
    113. Shibaeaki T, Hashimoto S, Taki W, Mori H, Ozaki A. Construction of a novel hydroxyproline producing recombinant Escherichia coli by introducing a proline-4-hydroxylase gene [J]. J Ferment Bioeng, 2000, 90 (5): 522- 525
    114. Sih C J, Lee S S, Tsong Y K, Wang K C. 3,4-Dihydroxy-9,10- secoandrosta-1,3,5(10)- triene-9,17-dione, an intermediate in the microbiological degradation of ring A of androst-4-ene-3,17-dione [J]. J Am Chem Soc, 1965b, 87: 1385- 1386
    115. Sih C J, Lee S S, Tsong Y K, Wang K C. Mechanisms of steroid oxidation by microorganisms VIII. 3,4-Dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, an intermediate in the microbiolo- gical degradation of ring A of androst-4-ene-3,17-dione [J]. J Biol Chem, 1966, 241: 540- 550
    116. Sih C J, Wang K C, Gibson D T, Whitlock H W J. On the mechanism of ring A cleavage in the degradation of 9,10-seco steroids by microorganisms [J]. J Am Chem Soc, 1965a, 87: 1386- 1387
    117. Sih C J, Wang K C. Mechanisms of steroid oxidation by microorganisms II. Isolation and characterization of 3a-H-4-[3-propi-onic acid]-7a-methylhezahydro-1,5-indanedione [J]. J Am Chem Soc, 1963, 85:2135- 2137
    118. Sih C J, Whitlook H W. Biochemistry of steroids [J]. Annu Rev Biochem, 1968, 37: 661- 694
    119. Skowasch D, M?bus E, Maser E. Identification of a novel Comamonas testosteroni gene encoding a steroid-inducible extradiol dioxygenase [J]. BBRC, 2002, 294: 560- 566
    120. Smet D I, Boever P D, Verstraete W.Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity [J]. Br J Nutr, 1998, 79 (2): 185- 94
    121. S?hngen N L. Benzin, petroleum, paraffin?l und paraffin als kohlenstoff und energiequelle für mikroben [J]. Zentr Bacteriol Parasitenk Abt II, 1913, 37: 595- 596
    122. Sondossi M, Sylvestre M, Ahmad D. Effects of chlorobenzoate transformation on the Pseudomonas testosteroni biphenyl and chlorobiphenyl degradation pathway [J]. Appl Envir Microbiol, 1992, 58: 485- 495
    123. Talalay P, Dobson M M, Tapley D F. Oxidative degradation of testosterone by adaptative enzymes [J]. Nature, 1952, 170: 620- 621
    124. Talalay P, Philip I M. Specificity, kinetics, and inhibition ofα-andβ-hydroxysteroid dehydrogenases [J]. J Biol Chem, 1956, 218: 675- 691
    125. Tamaoka J, Duk-Mo H, Komagata K. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas [J]. Int J Syst Bacteriol, 1987, 37, 52- 59
    126. Tarlera S, Denner E B M. Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol- oxidizing, denitrifying member of theβ-Proteobacteria [J]. Int J Syst Evol Microbiol, 2003, 53, 1085- 1091
    127. Taylor C D, Smith S O, Gagosian R B. Use of microbial enrichments for the study of the anaerobic degradation of cholesterol [J]. Geochem Cosmochim Acta, 1981, 45, 2161- 2168
    128. Taylor M R, Holmes P, Duarte-Davidson R, Harrison P T, Holmes P. A research strategy for investigating the ecological significance of endocrine distruption: report of a UK workshop [J]. Sci Total Environ, 1999, 233 (1-3): 181- 191
    129. Teramoto M, Harayama S, Watanabe K. PhcS represses gratuitous expression of phenol- metabolizing enzymes in Comamonas testosteroni R5 [J]. J Bacteriol, 2001, 183 (14): 4227– 4234
    130. Teramoto M, Ohnishi K, Harayama S, Watanabe K. An AraC/XylS family member at a high level in a hierarchy of regulators for phenol-metabolizing enzymes in Comamonas testosteroni R5 [J]. J Bacteriol, 2002, 184 (14): 3941– 3946
    131. Tsutsui T, Barrett J C. Neoplasstic transformation of cultured mammalian cells by estrogens and estrogen-like chemicals [J]. Environ Health Perspect, 1997, 105: 621- 623
    132. Turfitt G E. Microbiological agencies in the degradation of dteroids: I. The cholesterol- decomposing organisms of soils [J]. J Bacteriol, 1944, 47 (6): 487- 493
    133. Turfitt G E. The microbiological degradation of steroids1. The sterol content of soils [J]. Biochem J, 1943, 37 (1): 115- 117
    134. Uetz T, Schneider R, Snozzi M, Egli T. Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from“Chelatobacter”strain ATCC 29600 [J]. J Bacteriol, 1992, 174: 1179- 1188
    135. Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, Francesco R D, Neddermann P, Marco S D. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA [J]. EMBO J, 2002, 21: 4393- 4401
    136. Vemuri G N, Aristidou A A. Metabolic engineering in the omics era: elucidating and modulating regulatory networks [J]. Microbiol Mol Biol Rev, 2005, 69 (2): 197- 216
    137. Watanabe M, Lefebvre D, Lefebvre Y, Posy L. Membrane-bound dehydrogenases of Pseudomonas testosteroni [J]. J Steroid Biochem, 1980, 13: 821- 827
    138. Whiters H, Swift S, Williams P. Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria [J]. Curr Opin Microbiol, 2001, 4 (2):186- 193
    139. Xiong G, Markowetz S, Maser E. Regulation of 3α-hydroxysteroid dehydrogenase/ carbonyl reductase in Comamonas testosteroni: function and relationship of two operators [J]. Chem Biol Interact, 2003c, 143-144: 411- 423
    140. Xiong G, Martin H J, Blum A, Sch?fers C, Maser E. A model on the regulation of 3α-hydroxysteroid dehydrogenase/ carbonyl reductase expression in Comamonas testosteroni [J]. Chem Biol Interact, 2001b, 130- 132: 723- 736
    141. Xiong G, Martin H J, Maser E. Characterization and recombinant expression of the translational repressor RepB of 3α-hydroxysteroid dehydrogenase/ carbonyl reductase in Comamonas testosteroni [J]. Chem Biol Interact, 2003a, 143-144: 425- 433
    142. Xiong G, Martin H J, Maser E. Identification and characterization of a translational repressor of the steroid-inducible 3α-hydroxysteroid dehydrogenase/ carbonyl reductase gene in Comammonas testeroni [J]. J Biol Chem, 2003b, 278 (48): 47400- 47407
    143. Xiong G, Maser E. Regulation of the steroid-inducible 3α-hydroxysteroid dehydrogenase/ carbonyl reductase gene in Comamonas testosteroni [J]. J Biol Chem, 2001a, 276 (13): 9961- 9970
    144. Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H, Makino T, Kimura K, Saino H, Sawada H, Omura H. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isltates from activated sludge in wastewater treatment plants [J]. Appl Environ Microbiol, 2004, 70, 5283- 5289
    145. Yun S, Jang D S, Choi G, Kim K, Choi K Y, Lee H C. Trifluoroethanol increases the stability ofΔ5-3-ketosteroid isomerase: 15N NMR relaxation studies [J]. J Biol Chem, 2002, 277 (26): 23414- 23419
    146. Zhao Q, Abeygunawardana C, Talalay P, Mildvan A S. NMR evidence for the participation of a low- barrier hydrogen bond in the mechanism ofΔ5-3-ketosteroid isomerase [J]. Proc Natl Acad Sci USA, 1996, 93: 8220- 8224
    147.陈坚.环境生物技术[M].北京:中国轻工业出版社, 2000
    148.陈建秋,潘大仁,周以飞,程晓春,张剑亮,卢文标,陈雅艳,林钿. tac启动子碱基突变对睾丸酮丛毛单胞菌(Comamonas testosteroni)降解能力的影响[J].农业生物技术学报, 2008a, 16 (2): 336- 340
    149.陈建秋,潘大仁,周以飞,卢文标,程晓春,王占成,陈雅艳,林钿.睾丸酮丛毛单胞菌teiR基因载体构建及在大肠杆菌中的表达[J].农业生物技术学报, 2008b, 16 (4): 681- 686
    150.戴艺民,潘大仁, Guangming Xiong,吴明霞,周以飞.睾丸酮丛毛单胞菌中的活化因子基因的质粒载体构建及表达[J].农业生物技术学报, 2006, 14, (3): 416- 422
    151.戴艺民,周以飞, Guangming Xiong,吴明霞,潘大仁.不同-10区保守序列的tac启动子表达睾丸酮丛毛单胞菌中的活化因子[J].农业生物技术学报, 2005, 13, (6): 747- 753
    152.戴艺民.睾丸酮丛毛单胞菌3a-HSD/CR等基因的表达调控研究[D].福建农林大学博士学位论文,福州, 2005
    153.宫倩,谢丽萍,胡又佳,朱春宝,朱宝泉.天蓝淡红链霉菌SIPI-1482中dnrV基因的克隆及应用[J].中国医药工业杂志, 2007, 38 (2): 85- 89
    154.黄国兰,庄源益,杨春晟.三丁基氯化锡紫外光催化降解的初步研究[J].南开大学学报(自然科学版), 1995, 28 (1) : 49- 53
    155.刘彬,路平,邓琳,邓南圣.水环境中内分泌干扰物的光降解行为研究Ⅳ—雌酮在水溶液中的光降解[J].武汉大学学报(理学版) , 2002 , 48 (6) : 697- 700
    156.刘先利,刘彬,吴峰,邓南圣.环境雌激素及其降解途径[J].环境科学与技术, 2003, 26 (4): 3-7
    157.谭青乔,陈宁.代谢工程的发展及其应用[J].生物技术通讯, 2001, 12 (2): 123- 127
    158.谭青乔,阵宁.逆代谢工程——基于有用表型的定向遗传工程[J].生物技术通讯, 2002, 13 (1): 87- 90
    159.特雷格L. (邹继超译).类固醇激素生物合成,代谢,作用[M].北京:科学出版社, 1980
    160.王联芝,章飞芳,薛兴亚,徐青,梁鑫淼.土壤中阴离子表面活性剂对17β-雌二醇吸附脱附的影响[J].精细化工, 2008, 25 (7): 691- 696
    161.王伟,孟超,朱平,程克棣.代谢工程酵母菌合成紫杉烯的研究[J].中国生物工程杂志, 2005, 25 (8): 103- 108
    162.杨诗家.天然及人工合成雌激素在环境中迁移转化的研究[J].有色冶金设计与研究, 2008, 29 (3): 48- 51
    163.张国华,丛爱日,徐国宾,孙立颖,严岩,夏铁安.睾丸酮丛毛单胞菌的分离和鉴定及3α-羟类固醇脱氢酶在大肠杆菌中的克隆表达[J].北京大学学报(医学版), 2005, 37 (2): 203- 207
    164.张国华,徐国宾,刘英民,夏铁安.睾酮假单胞菌3a-羟类固醇脱氢酶基因的质粒载体构建及表达[J].生物化学与生物物理进展, 2002, 29 (6): 966- 970
    165.张国华,朱立华,李志艳.睾酮假单胞3α-羟类固醇脱氢酶及其在总胆汁酸测定中的应用[J].中日友好医院学报, 2003, 17 (3): 175- 179
    166.张丽青,张恩慈,吴照华. 5α,17α-甲基-17β-羟基雄甾-3-酮的微生物转化[J].药学学报, 1981, 16 (5): 356- 360
    167.张晓琳,陈芝,赵金雷,宋渊,文莹,李季伦.阿维菌素B产生菌寡酶素合成阻断株的构建[J].科学通报, 2004, 49 (1): 90- 94
    168.赵景联.环境修复原理与技术[M].北京:化学工业出版社, 2006
    169.周庭银,赵虎,王寅,陈险峰,倪语星.痰液培养中分离出睾丸酮丛毛单胞菌[J].上海医学检验杂志, 2001, 16 (5): 298
    170.周维善,庄治平.甾体化学进展[M].北京:科学出版社, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700