用户名: 密码: 验证码:
辐射对称仿生柔体机器人协同推进机理及实现技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过千百万年的自然演变和优化选择,生物体获得了高效的运动能力和对环境的高度适应性。从海洋到大陆的过渡地带,存在着沙滩、礁岩、泥淖、乱石、沼泽等多种介质环境,仿照栖息于此的柔体动物结构特性及运动步态,研制出具有仿生结构的柔体机器人,探索其与自然环境良好的交互适应性及在多介质地形中的运动推进机理,以期在资源勘探、排险救援、环境监测、军事侦察等应用领域发挥重要作用。本文围绕多环境介质下辐射对称结构的柔体机器人推进机理及实现方法展开仿生运动学、柔性体建模分析、形状记忆合金(SMA)材料特性研究、柔体机器人制备方法、多模步态控制等一系列工作,主要研究内容及成果归纳如下:
     (1)辐射对称柔体仿生研究及两侧对称机器人探索。通过对典型辐射对称型动物深入调研分析,归纳出其基本结构特点及步态运动模式。参照深红海星仿生学参数,研制出辐射对称型柔体机器人,并选取了高功重比、变形大、易控制的SMA弹簧作为致动器以满足柔性大变形需求。在3D打印快速成型平台基础上,发展了仿生柔体机器人制备方法,不仅大大缩短了研制周期而且有效促进了仿生结构的改进优化。同时,以蜥蜴和乌龟为仿生对象,对具有连续型柔性足的两侧对称型机器人推进性能开展了初步的研究探索。由凸轮绳索机构驱动的机器人具备以三角步态、对角步态在草地等地形环境通过性能,为完全柔性的辐射对称型机器人多介质环境推进机理探索研究奠定了基础。
     (2)柔体机器人建模分析与SMA特性研究。归纳总结了柔性足常见的变形描述和建模方法,并对柔性足端工作空间进行初步建模。通过对两种辐射对称型柔体机器人单足综合性能的对比分析发现,在非水下环境中,采用非密封式SMA致动器内嵌驱动布置可使机器人获得更大的柔性变形和更快的动作响应。此外,将柔性足弯曲变形过程等效简化为平面悬臂梁的弯曲变形,进而建立起伪刚体模型,并给出自由末端位置求解的公式。通过Brayan修正D-H法建立了多足辐射对称柔体机器人的运动学模型,基于外部测量技术获得变形过程中驱动器长度与柔性足弯曲变形角度的对应变化关系。对SMA准静态热/力耦合特性和本构模型的研究探索,获取了SMA马氏体、奥氏体相变发生过程以及相变温度和相变热焓值,并观测到其不完全相变过程中所特有的“温度记忆”效应。同时,SMA弹簧的变位分析获取了柔体机器人控制所需的必备数据信息。
     (3)柔体机器人多模步态控制研究。借助于路径规划中广泛采用的人工势场法及其改进方法,重点开展了柔体机器人在固定障碍环境和移动障碍环境下朝目标点前进中的路径规划避障问题,并进行仿真验证。在辐射对称动物基本运动步态的归纳总结基础上,探讨了柔体机器人运动机理,给出了辐射对称型柔体机器人平坦地形爬行、越障、避障、滚动等步态的运动策略及控制模式。对中枢模式发生器(CPG)的生物学机制、控制模型进行了详尽的归纳总结,探讨了CPG节律产生的细胞机制以及其与动作执行系统的全局携带关系。同时,基于Wilson-Cowan模型开展五足辐射对称柔体机器人的CPG控制探索,进行了柔性足等幅等频变形和变幅变频变形的仿真实验,设计了柔性足弯曲运动的神经元估计器和仿生神经网络闭环控制系统。
     (4)多介质地形环境推进机理研究。描述了典型介质环境特性,并选取平地、沙地、乱石、泥地、障碍和岩石这六种介质开展五足辐射对称型柔体机器人推进性能实验,通过对应的仿生运动步态、控制策略、动作切换,机器人均可顺利穿行不同的地形环境到达目标位置。实验结果表明,五辐对称型柔体机器人具备完全的多介质环境协同推进及地形适应性能;同时,在固定时长内,机器人在沙地爬行的距离最远,其速度是在乱石环境下和平地爬行速度的6.5倍与2.2倍。此外,对机器人抵抗挤压变形和冲击性能测试结果也验证了其良好的鲁棒性。更进一步地,根据柔体动物形态学参数,研制了单足、三足、四足、五足和六足等五种足型的柔体机器人,来开展在多足型柔体机器人运动机理和推进性能探索,并得出了不同足数量的柔体机器人运动性能与其本体物理参数(质量、体长)之间的对应关系。实验结果表明六足型机器人在固定时长内具有最大的位移和平均运动步长,分别达到了251mm和20.8mm,体长较为接近的四足型和五足型机器人在相同地形条件下的运动性能较为接近,而单足型则和三足型机器人的运动性能比较接近。
Animals possess efficient athletic ability and high adaptability to the environment through millions of years of natural evolution and optimization options. There is a variety of environmental media in the transition zone from the ocean to the continent, such as beach, reef, quagmire, rocks, swamps etc. Soft animals living in this zone are supplied with plentiful bionic structure and moving gaits for the development of soft robots. The bionic robot prototype is built to explore its interactive adaptability with natural environments and propulsion mechanism under multi-media, with a view to playing an important role in several applications, such as resource exploration, risk rescue, environmental monitoring, and military reconnaissance etc. This dissertation focuses on the propulsion mechanism and realization method of the radial symmetry soft robot under multiple environmental medias, including bionic kinematics, flexible body modeling and analysis, the material properties of shape memory alloy (SMA), manufacturing method for soft robot, multi-gait control etc. The main research contents and results are summarized as followings:
     (1) Bionic research on actinomorphic soft animals and exploration of bilaterally symmetrical robot. We summarized the basic structural features and gait patterns of typical radiation symmetrical animals via comprehensive investigations. The radial symmetry soft robot was constructed according to the bionic parameters of Fromia milleporella. The SMA spring worked as the actuator of the robot owing to its advantage of high power weight ratio, large deformation and easy control. The manufacturing method for soft bionic robot was developed on the basis of3D printing rapid prototyping platform, benefiting from which we not only greatly shorten the development cycle of a new robot but also effectively promote the improvement and optimization of biomimetic structures. Meanwhile, imitating the lizard and turtle, a bilaterally symmetrical robot with continuous limb was built to explore its propulsion mechanism. The robot actuated by cam-rope mechanism was able to pass through different terrain environment with tripod gait and diagonal gait, which prepared strong foundation for researching on the propulsion mechanism of radial symmetry robot.
     (2) Modeling and analysis of the soft robot and material properties of SMA. We summarized the common deformation description and modeling methods for soft limb, and preliminary modeling of the action space of soft limb tip. By comparing the comprehensive performance of two kinds of soft limbs, the unsealed design of soft limb allowed the robot to acquire larger deformation and faster action response. In addition, the pseudo-rigid-body model of soft limb could be built through simplifying its bending process as equal to bending process of cantilever in plane. The kinematics model of radial symmetry soft robot was built by the amended Brayan D-H method. The exploring study on the quasi-static thermo-mechanical coupling characteristics and constitutive model of SMA resulted in acquiring the temperature and enthalpy in martensite transformation and "temperature memory effect" in the SMA incomplete martensite-reverse-transformation process. Meanwhile, the deformation analysis of SMA spring prepared the basic information for the control of soft robot.
     (3) Research on multi-gait control of soft robot. The issue of path planning for avoidance of both static and dynamic obstacles was solved by the improved artificial potential field method, which was certified by simulation experiment. On the basis of the summary of basic moving gaits of radial symmetry animals, we discussed the mechanism of soft robot movement and presented the movement strategy and control mode for multi-gait, such as crawling, navigating, bypassing, rolling etc. the biological mechanisms and control model of central pattern generator (CPG) was discussed in this dissertation, including the cellular mechanisms for generating rhythmic. Meanwhile, the Wilson-Cowan CPG model was employed to control the radial symmetry soft robot. The motion estimator and neurons bionic neural network closed-loop control system were designed for the control of soft limb.
     (4) Study on the propulsion mechanism under multi-media environments. Six kinds of environmental media (e.g. flat ground, sand, rock, riprap, mud and rock) were selected for the experiments of propulsion performance of the radial symmetry soft robot. The robot prototype was able to reach the target positions with multi-gait in proposed environmental media via corresponding bionic gait, control strategy and motion changes. Experimental results showed that the actinomorphic robot possesses the performance of the cooperative propulsion and terrain adaptability. Meanwhile, within the fixed duration, the robot moved ahead on the sand with the most displacement, and its speed on the sand was6.5times of the speed on riprap ground and2.2times of flat ground. In addition, the test of extrusion resistance and impact resistance results also verified the robot's good robustness. Furthermore, the soft robots with multi-limb (single limb, three limbs, four limbs, five limbs and six limbs) were designed according to the morphological parameters of soft animals for exploring their movement mechanism and propulsion performance. The relationship between the movement performance and the physical parameters (mass, body length) of multi-limb robot were obtained through many groups of experiments. The results showed that the six-limb robot acquired maximum displacement and average step length within the fixed duration, were up to251mm and20.8mm respectively. Five-limb robot and four-limb robot with similar body length showed approximate movement, and the same phenomenon between three-limb robot and one-limb robot.
引文
[1]Inoue K, Takei Y. Diverse adaptability in Oryzias species to high environmental salinity [J]. Zoological science,2002,19(7):727-734.
    [2]Robilliard J J, Wilson A M. Prediction of kinetics and kinematics of running animals using an analytical approximation to the planar spring-mass system [J]. Journal of experimental biology,2005,208(23):4377-4389.
    [3]Seyfarth A, Geyer H, Herr H. Swing-leg retraction:a simple control model for stable running [J]. Journal of Experimental Biology,2003,206(15):2547-2555.
    [4]Goldberg N P, Stanghellini M E. Ingestion-egestion and aerial transmission of Pythium aphanidermatum by shore flies (Ephydrinae:Scatella stagnalis)[J]. Phytopathology,1990, 80(11):1244-1246.
    [5]Mathis W N. Studies of Psilopinae (Diptera:Ephydridae), Ⅰ:A revision of the shore fly genus Placopsidella Kertesz[M]. Smithsonian Institution Press,1986.
    [6]Tadakuma K, Tadakuma R, Maruyama A, et al. Armadillo-inspired wheel-leg retractable module[C]//Robotics and Biomimetics (ROBIO),2009 IEEE International Conference on. IEEE,2009:610-615.
    [7]Shepard E L C, Wilson R P, Quintana F, et al. Identification of animal movement patterns using tri-axial accelerometry[J]. Endangered Species Research,2008,10(47-60):2.1.
    [8]Powell R A, Proulx G. Trapping and marking terrestrial mammals for research:integrating ethics, performance criteria, techniques, and common sense [J]. Ilar Journal,2003,44(4): 259-276.
    [9]Hadj-Chikh L Z, Steele M A, Smallwood P D. Caching decisions by grey squirrels:a test of the handling time and perishability hypotheses [J]. Animal Behaviour,1996,52(5):941-948.
    [10]Wei W, Long-chao Z. A method to reduce the sliding force on adhering points of caterpillar climbing robot[C]//Information and Automation (ICIA),2012 International Conference on. IEEE,2012:715-720.
    [11]Kihlstrom K P, Narasimhan P. The Starfish system:Providing intrusion detection and intrusion tolerance for middleware systems[C]//Object-Oriented Real-Time Dependable Systems,2003.(WORDS 2003). Proceedings of the Eighth International Workshop on. IEEE, 2003:191-199.
    [12]Jones B A, Walker I D. Three-dimensional modeling and display of continuum robots[C]//Intelligent Robots and Systems,2006 IEEE/RSJ International Conference on. IEEE,2006:5872-5877.
    [13]Anderson E J. The mechanics of squid locomotion [D]. St. Francis Xavier University,1998.
    [14]Cole L J. Direction of locomotion of the starfish (Asterias forbesi)[J], Journal of Experimental Zoology,1913,14(1):1-32.
    [15]Huffard C L, Boneka F, Full R J. Underwater bipedal locomotion by octopuses in disguise [J]. Science,2005,307(5717):1927-1927.
    [16]侯继平.仿变形虫机器人控制系统设计[D].合肥:中国科学技术大学,2010.
    [17]Hamilton W F. Coordination in the Starfish. Ⅱ. Locomotion [J]. Journal of Comparative Psychology,1922,2(1):61.
    [18]O'dor R K. The forces acting on swimming squid [J]. Journal of Experimental Biology,1988, 137(1):421-442.
    [19]Iida F, Laschi C. Soft robotics:Challenges and perspectives [J]. Procedia Computer Science, 2011,7:99-102.
    [20]Albu-Schaffer A, Eiberger O, Grebenstein M, et al. Soft robotics [J]. Robotics & Automation Magazine, IEEE,2008,15(3):20-30.
    [21]Trivedi D, Rahn C D, Kier W M, et al. Soft robotics:Biological inspiration, state of the art, and future research[J]. Applied Bionics and Biomechanics,2008,5(3):99-117.
    [22]Iida F, Laschi C. Soft robotics:Challenges and perspectives [J]. Procedia Computer Science, 2011,7:99-102.
    [23]Hirai S, Shimizu K, Kawamura S. Vision-based motion control of pneumatic group actuators[C]//Robotics and Automation,2002. Proceedings. ICRA'02. IEEE International Conference on. IEEE,2002,3:2842-2847.
    [24]Kier W M, Smith K K. Tongues, tentacles and trunks:the biomechanics of movement in muscular-hydrostats [J]. Zoological Journal of the Linnean Society,1985,83(4):307-324.
    [25]Filippini R, Sen S, Bicchi A. Toward soft robots you can depend on [J]. Robotics & Automation Magazine, IEEE,2008,15(3):31-41.
    [26]Lane D M, Davies J B C, Robinson G, et al. The AMADEUS dextrous subsea hand:design, modeling, and sensor processing [J]. Oceanic Engineering, IEEE Journal of,1999,24(1): 96-111.
    [27]Pfeifer R, Lungarella M, Iida F. Self-organization, embodiment, and biologically inspired robotics [J]. Science,2007,318(5853):1088-1093.
    [28]Bongard J, Zykov V, Lipson H. Resilient machines through continuous self-modeling [J]. Science,2006,314(5802):1118-1121.
    [29]Fei Y, Shen X. Nonlinear analysis on moving process of soft robots [J]. Nonlinear Dynamics, 2013,73(1-2):671-677.
    [30]Nakabo Y, Mukai T, Asaka K. Kinematic modeling and visual sensing of multi-DOF robot manipulator with patterned artificial muscle[C]//Robotics and Automation,2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE,2005:4315-4320.
    [31]Chirikjian G S, Burdick J W. Kinematically optimal hyper-redundant manipulator configurations [J]. Robotics and Automation, IEEE Transactions on,1995,11(6):794-806.
    [32]Chirikjian G S. A general numerical method for hyper-redundant manipulator inverse kinematics[C]//Robotics and Automation,1993. Proceedings.,1993 IEEE International Conference on. IEEE,1993:107-112.
    [33]Saunders F, Golden E, White R D, et al. Experimental verification of soft-robot gaits evolved using a lumped dynamic model [J]. Robotica,2011,29(6):823-830.
    [34]Martinez R V, Fish C R, Chen X, et al. Elastomeric Origami:Programmable Paper-Elastomer Composites as Pneumatic Actuators [J]. Advanced Functional Materials,2012,22(7): 1376-1384.
    [35]Daltorio K A, Boxerbaum A S, Horchler A D, et al. Efficient worm-like locomotion:slip and control of soft-bodied peristaltic robots [J]. Bioinspiration & biomimetics,2013,8(3): 035003.
    [36]Chirikjian G S, Burdick J W. An obstacle avoidance algorithm for hyper-redundant manipulators[C]//Robotics and Automation,1990. Proceedings.,1990 IEEE International Conference on. IEEE,1990:625-631.
    [37]Fahimi F, Ashrafiuon H, Nataraj C. An improved inverse kinematic and velocity solution for spatial hyper-redundant robots [J]. Robotics and Automation, IEEE Transactions on,2002, 18(1):103-107.
    [38]Bicchi A, Tonietti G. Fast and" soft-arm" tactics [robot arm design][J]. Robotics & Automation Magazine, IEEE,2004,11(2):22-33.
    [39]Jung K, Koo J C, Lee Y K, et al. Artificial annelid robot driven by soft actuators[J]. Bioinspiration & biomimetics,2007,2(2):S42.
    [40]Bogue R. Artificial muscles and soft gripping:a review of technologies and applications [J]. Industrial Robot:An International Journal,2012,39(6):535-540.
    [41]Haga Y, Esashi M, Maeda S. Bending, torsional and extending active catheter assembled using electroplating[C]//Micro Electro Mechanical Systems,2000. MEMS 2000. The Thirteenth Annual International Conference on. IEEE,2000:181-186.
    [42]Robinson G, Davies J B C. Continuum robots-a state of the art[C]//Robotics and Automation, 1999. Proceedings.1999 IEEE International Conference on. IEEE,1999,4:2849-2854.
    [43]Chirikjian G S, Burdick J W. A modal approach to hyper-redundant manipulator kinematics [J]. Robotics and Automation, IEEE Transactions on,1994,10(3):343-354.
    [44]Deepak Pokhrel, Nutan Raj Luitel, et al. Design and development of a spherical robot (SpheRobot)[C]//Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013),2013:18-20.
    [45]McMahan W, Jones B A, Walker I D. Design and implementation of a multi-section continuum robot:Air-Octor[C]//Intelligent Robots and Systems,2005.(IROS 2005).2005 IEEE/RSJ International Conference on. IEEE,2005:2578-2585.
    [46]Nguyen L A, Walker I D, Defigueiredo R J P. Dynamic control of flexible, kinematically redundant robot manipulators [J]. Robotics and Automation, IEEE Transactions on,1992, 8(6):759-767.
    [47]Walker I D, Hannan M W. A novel elephant's trunk'robot[C]//Advanced Intelligent Mechatronics,1999. Proceedings.1999 IEEE/ASME International Conference on. IEEE, 1999:410-415.
    [48]Braganza D, Dawson D M, Walker I D, et al. A neural network controller for continuum robots [J]. Robotics, IEEE Transactions on,2007,23(6):1270-1277.
    [49]Jones B A, Walker I D. A new approach to Jacobian formulation for a class of multi-section continuum robots[C]//Robotics and Automation,2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE,2005:3268-3273.
    [50]Tatlicioglu E, Walker I D, Dawson D M. Dynamic modelling for planar extensible continuum robot manipulators[C]//Robotics and Automation,2007 IEEE International Conference on. IEEE,2007:1357-1362.
    [51]Moore K S, Rodes W M, Csencsits M A, et al. Interface evaluation for soft robotic manipulators[C]//Proceedings of the SPIE Defense & Security Symposium.2006,6230: 62301C1-62301C11.
    [52]Walker I D, Dawson D M, Flash T, et al. Continuum robot arms inspired by cephalopods[C]//Defense and Security. International Society for Optics and Photonics,2005: 303-314.
    [53]Trivedi D, Lotfi A, Rahn C D. Geometrically exact models for soft robotic manipulators [J]. Robotics, IEEE Transactions on,2008,24(4):773-780.
    [54]Jones B A, Walker I D. Kinematics for multisection continuum robots [J]. Robotics, IEEE Transactions on,2006,22(1):43-55.
    [55]Jones B A, Walker I D. Limiting-case analysis of continuum trunk kinematics[C]//Robotics and Automation,2007 IEEE International Conference on. IEEE,2007:1363-1368.
    [56]Gravagne I A, Walker I D. Manipulability, force, and compliance analysis for planar continuum manipulators [J]. Robotics and Automation, IEEE Transactions on,2002,18(3): 263-273.
    [57]McMahan W, Walker I D. Octopus-inspired grasp-synergies for continuum manipulators[C]//Robotics and Biomimetics,2008. ROBIO 2008. IEEE International Conference on. IEEE,2009:945-950.
    [58]McMahan W, Jones B, Walker I, et al. Robotic manipulators inspired by cephalopod limbs [J]. Proceedings of the Canadian Engineering Education Association,2011.
    [59]Shi L, Guo S, Li M, et al. A novel soft biomimetic microrobot with two motion attitudes [J]. Sensors,2012,12(12):16732-16758
    [60]Jones B A, Walker I D. Practical kinematics for real-time implementation of continuum robots [J]. Robotics, IEEE Transactions on,2006,22(6):1087-1099.
    [61]Mikey77, Soft Robots:Make an Artificial Muscle Arm and Gripper,2007-05-07, http://www.instructables.com/id/Soft-Robots-Make-An-Artificial-Muscle-Arm-And-Gri/.
    [62]Peacock A, Boyce R. Biomimetic robotics heralds new era in dairy farming [J]. Industrial Robot:An International Journal,2003,30(5):414-416.
    [63]Inspired by nature, http://www.festo.com/net/startpage/.
    [64]Li C, Rahn C D. Design of continuous backbone, cable-driven robots [J]. Journal of Mechanical Design,2002,124(2):265-271.
    [65]Cianchetti M, Arienti A, Follador M, et al. Design concept and validation of a robotic arm inspired by the octopus[J]. Materials Science and Engineering:C,2011,31(6):1230-1239.
    [66]Laschi C, Mazzolai B, Mattoli V, et al. Design of a biomimetic robotic octopus arm [J]. Bioinspiration & Biomimetics,2009,4(1):015006.
    [67]Grissom M D, Chitrakaran V, Dienno D, et al. Design and experimental testing of the OctArm soft robot manipulator[C]//Defense and Security Symposium. International Society for Optics and Photonics,2006:62301F-62301F-10.
    [68]Renda F, Cianchetti M, Giorelli M, et al. A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm [J]. Bioinspiration & biomimetics, 2012,7(2):025006.
    [69]Kuppuswamy N, Carbajal J P. Learning a curvature dynamic model of an octopus-inspired soft robot arm using flexure sensors [J]. Procedia Computer Science,2011,7:294-296.
    [70]McMahan W, Chitrakaran V, Csencsits M, et al. Field trials and testing of the OctArm continuum manipulator[C]//Robotics and Automation,2006. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE,2006:2336-2341.
    [71]Mazzolai B, Laschi C, Cianchetti M, et al. Biorobotic investigation on the muscle structure of an octopus tentacle[C]//Engineering in Medicine and Biology Society,2007. EMBS 2007. 29th Annual International Conference of the IEEE. IEEE,2007:1471-1474.
    [72]Guglielmino E, Tsagarakis N, Caldwell D G. An octopus anatomy-inspired robotic arm[C]//Intelligent Robots and Systems (IROS),2010 IEEE/RSJ International Conference on. IEEE,2010:3091-3096.
    [73]Margheri L, Mazzolai B, Ponte G, et al. Methods and tools for the anatomical study and experimental in vivo measurement of the Octopus vulgaris arm for biomimetic design[C]//Biomedical Robotics and Biomechatronics (BioRob),2010 3rd IEEE RAS and EMBS International Conference on. IEEE,2010:467-472.
    [74]Hou J, Bonser R H C, Jeronimidis G. Design of a biomimetic skin for an octopus-inspired robot-Part I:Characterising octopus skin[J]. Journal of Bionic Engineering,2011,8(3): 288-296.
    [75]Calisti M, Giorelli M, Levy G, et al. An octopus-bioinspired solution to movement and manipulation for soft robots [J]. Bioinspiration & biomimetics,2011,6(3):036002.
    [76]Laschi C, Mazzolai B, Mattoli V, et al. Design and development of a soft actuator for a robot inspired by the octopus arm[C]//Experimental Robotics. Springer Berlin Heidelberg,2009: 25-33.
    [77]Nakajima K, Hauser H, Kang R, et al. A soft body as a reservoir:case studies in a dynamic model of octopus-inspired soft robotic arm [J]. Frontiers in computational neuroscience,2013, 7.
    [78]Neppalli S, Jones B A, McMahan W, et al. OctArm-A soft robotic manipulator[C]//IROS. 2007:2569.
    [79]Calisti M, Arienti A, Giannaccini M E, et al. Study and fabrication of bioinspired octopus arm mockups tested on a multipurpose platform[C]//Biomedical Robotics and Biomechatronics (BioRob),2010 3rd IEEE RAS and EMBS International Conference on. IEEE,2010:461-466.
    [80]Mazzolai B, Margheri L, Cianchetti M, et al. Soft-robotic arm inspired by the octopus:Ⅱ. From artificial requirements to innovative technological solutions [J]. Bioinspiration & biomimetics,2012,7(2):025005.
    [81]Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics,2012,26(7):709-727.
    [82]Margheri L, Mazzolai B, Cianchetti M, et al. Tools and methods for experimental in-vivo measurement and biomechanical characterization of an octopus vulgaris arm[C]//Engineering in Medicine and Biology Society,2009. EMBC 2009. Annual International Conference of the IEEE. IEEE,2009:7196-7199.
    [83]Sfakiotakis M, Kazakidi A, Pateromichelakis N, et al. Octopus-inspired eight-arm robotic swimming by sculling movements[C]//Robotics and Automation (ICRA),2013 IEEE International Conference on. IEEE,2013:5155-5161.
    [84]Godage I S, Nanayakkara T, Caldwell D G. Locomotion with continuum limbs[C]//Intelligent Robots and Systems (IROS),2012 IEEE/RSJ International Conference on. IEEE,2012:293-298.
    [85]Simaan N. Snake-like units using flexible backbones and actuation redundancy for enhanced miniaturization[C]//Robotics and Automation,2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE,2005:3012-3017.
    [86]Xu K, Simaan N. An investigation of the intrinsic force sensing capabilities of continuum robots [J]. Robotics, IEEE Transactions on,2008,24(3):576-587.
    [87]Choi D G, Yi B J, Kim W K. Design of a spring backbone micro endoscope[C]/Intelligent Robots and Systems,2007. IROS 2007. IEEE/RSJ International Conference on. IEEE,2007: 1815-1821.
    [88]Chen G, Pham M T, Redarce T. Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy [J]. Robotics and autonomous systems,2009,57(6):712-722.
    [89]Reynaerts D, Peirs J, Van Brussel H. Shape memory micro-actuation for a gastro-intestinal intervention system [J]. Sensors and Actuators A:physical,1999,77(2):157-166.
    [90]Peirs J, Van Brussels H, Reynaerts D, et al. A flexible distal tip with two degrees of freedom for enhanced dexterity in endoscopic robot surgery[C]//Proceedings of the 13th micromechanics europe workshop.2002:271-274.
    [91]Camarillo D B, Milne C F, Carlson C R, et al. Mechanics modeling of tendon-driven continuum manipulators[J]. Robotics, IEEE Transactions on,2008,24(6):1262-1273.
    [92]Camarillo D B, Carlson C R, Salisbury J K. Configuration tracking for continuum manipulators with coupled tendon drive [J]. Robotics, IEEE Transactions on,2009,25(4): 798-808.
    [93]Webster R J, Romano J M, Cowan N J. Mechanics of precurved-tube continuum robots [J]. Robotics, IEEE Transactions on,2009,25(1):67-78.
    [94]Rucker D C, Webster R J. Parsimonious evaluation of concentric-tube continuum robot equilibrium conformation [J]. Biomedical Engineering, IEEE Transactions on,2009,56(9): 2308-2311.
    [95]胡海燕,王鹏飞,孙立宁,等.线驱动连续型机器人的运动学分析与仿真[J].机械工程学报,2010(19):1-8.
    [96]Xu K, Simaan N. An investigation of the intrinsic force sensing capabilities of continuum robots [J]. Robotics, IEEE Transactions on,2008,24(3):576-587.
    [97]卢永奎,许旻,吴月华,杜华生,杨杰.微型机器人蛇行游动机构的系统仿真[J].光学精密工程,2001,9(6):542-547.
    [98]张世武,吴月华,许旻,杨杰,杜华生.管道微型机器人系统运动的力学分析和控制[J].中国科学技术大学学报,2001,31(1):79-84.
    [99]杨凯,严新荣.基于内嵌式SMA电机的柔性机械手研制[J].中国电机工程学报,2002,22(12):74-79.
    [100]Quillin K J. Ontogenetic scaling of hydrostatic skeletons:geometric, static stress and dynamic stress scaling of the earthworm Lumbricus terrestris[J]. The Journal of experimental biology,1998,201(12):1871-1883.
    [101]Quillin K J. Kinematic scaling of locomotion by hydrostatic animals:ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris[J]. Journal of Experimental Biology,1999, 202(6):661-674.
    [102]Trueman E R. locomotion of soft-bodied animals [J].1975.
    [103]Mangan E V, Kingsley D A, Quinn R D, et al. Development of a peristaltic endoscope[C]//ICRA.2002:347-352.
    [104]Seok S, Onal C D, Wood R, et al. Peristaltic locomotion with antagonistic actuators in soft robotics[C]//Robotics and Automation (ICRA),2010 IEEE International Conference on. IEEE,2010:1228-1233.
    [105]Kim S, Hawkes E, Cho K, et al. Micro artificial muscle fiber using NiTi spring for soft robotics[C]//Intelligent Robots and Systems,2009. IROS 2009. IEEE/RSJ International Conference on. IEEE,2009:2228-2234.
    [106]Seok S, Onal C D, Cho K. J, et al. Meshworm:a peristaltic soft robot with antagonistic nickel titanium coil actuators [J]. Mechatronics, IEEE/ASME Transactions on,2013,18(5): 1485-1497.
    [107]Boxerbaum A S, Chiel H J, Quinn R D. Softworm:A soft, biologically inspired worm-like robot[C]//Neuroscience Abstracts.2009.
    [108]Koh J S, Cho K J. Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators [J]. Mechatronics, IEEE/ASME Transactions on,2013,18(2):419-429.
    [109]Marchese A D, Onal C D, Rus D. Soft robot actuators using energy-efficient valves controlled by electropermanent magnets[C]//Intelligent Robots and Systems (IROS),2011 IEEE/RSJ International Conference on. IEEE,2011:756-761.
    [110]Onal C D, Rus D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot [J]. Bioinspiration & biomimetics,2013,8(2):026003.
    [111]Correll N, Onal C D, Liang H, et al. Soft autonomous materials-using active elasticity and embedded distributed computation[C]//Experimental Robotics. Springer Berlin Heidelberg, 2014:227-240.
    [112]Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot [J]. Proceedings of the National Academy of Sciences,2011,108(51):20400-20403.
    [113]Morin S A, Shepherd R F, Kwok S W, et al. Camouflage and display for soft machines [J]. Science,2012,337(6096):828-832.
    [114]Ilievski F, Mazzeo A D, Shepherd R F, et al. Soft robotics for chemists[J]. Angewandte Chemie,2011,123(8):1930-1935.
    [115]Shepherd R F, Stokes A A, Freake J, et al. Using Explosions to Power a Soft Robot [J]. Angewandte Chemie,2013,125(10):2964-2968.
    [116]Steltz E, Mozeika A, Rembisz J, et al. Jamming as an enabling technology for soft robotics[C]//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics,2010:764225-764225-9.
    [117]Maeda S. A study on self-oscillating gel actuator for chemical robot [D]. Waseda University, 2008.
    [118]Menciassi A, Dario P. Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives [J]. Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,2003,361(1811):2287-2298.
    [119]Menciassi A. Gorini S, Pernorio G, et al. Design, fabrication and performances of a biomimetic robotic earthworm[C]//Robotics and Biomimetics,2004. ROBIO 2004. IEEE International Conference on. IEEE,2004:274-278.
    [120]Saunders F, Trimmer B A, Rife J. Modeling locomotion of a soft-bodied arthropod using inverse dynamics [J]. Bioinspiration & Biomimetics,2011,6(1):016001.
    [121]Kim S, Laschi C, Trimmer B. Soft robotics:a bioinspired evolution in robotics [J]. Trends in biotechnology,2013,31(5):287-294.
    [122]Lin H T, Leisk G G, Trimmer B. GoQBot:a caterpillar-inspired soft-bodied rolling robot [J]. Bioinspiration & biomimetics,2011,6(2):026007.
    [123]Otake M, Kagami Y, Kuniyoshi Y, et al. Inverse dynamics of gel robots made of electro-active polymer gel [C]//Robotics and Automation,2003. Proceedings. ICRA'03. IEEE International Conference on. IEEE,2003,2:2299-2304.
    [124]Matsuyama Y, Hirai S. Analysis of circular robot jumping by body deformation[C]//Robotics and Automation,2007 IEEE International Conference on. IEEE, 2007:1968-1973.
    [125]Nakanishi H, Hirai S. Passive Crawling of a soft robot[C]//Advanced intelligent mechatronics,2007 IEEE/ASME international conference on. IEEE,2007:1-6.
    [126]Shiotsu A, Yamanaka M, Matsuyama Y, et al. Crawling and jumping soft robot KOHARO [J]. Experimental Robotics I X Springer Tracts in Advanced Robotics 21,2006:281-290.
    [127]Suzumori K, Endo S, Kanda T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot[C]//Robotics and Automation,2007 IEEE International Conference on. IEEE,2007:4975-4980.
    [128]辐射对称,http://baike.baidu.com/link?url=YAti-DAiWyY9tL2p2yBTJCFGSM4t6pjMiWy NETaFShJCOq3iRCeux71MMO8-5t22
    [129]海星,http://baike.sogou.com/vl69215.htm
    [130]Starfish,http://en.wikipedia.org/wiki/Starfish
    [131]海星,http://www.techcn.com.cn/index.php7doc-view-107817.html
    [132]Haesaerts D, Jangoux M, Flammang P. Adaptations to benthic development:functional morphology of the attachment complex of the brachiolaria larva in the sea star Asterina gibbosa[J]. The Biological Bulletin,2006,211(2):172-182.
    [133]Cole L J. Direction of locomotion of the starfish (Asterias forbesi)[J]. Journal of Experimental Zoology,1913,14(1):1-32.
    [134]Thomas L A, Hermans C O. Adhesive interactions between the tube feet of a starfish, Leptasterias hexactis, and substrata [J]. The Biological Bulletin,1985,169(3):675-688.
    [135]Shahinpoor M. Soft plastic robots and artificial muscles [J].2013.
    [136]Yamakita M, Sera A, Kamamichi N, et al. Integrated design of IPMC actuator/sensor[C]//Robotics and Automation. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE,2006:1834-1839.
    [137]Wang Z, Hang G, Wang Y, et al. Embedded SMA wire actuated biomimetic fin:a module for biomimetic underwater propulsion [J]. Smart Materials and Structures,2008,17(2): 025039.
    [138]Otsuka, Kazuhiro, and Clarence Marvin Wayman, eds. Shape memory materials [M]. Cambridge University Press,1999.
    [139]Cho K J, Koh J S, Kim S, et al. Review of manufacturing processes for soft biomimetic robots [J]. International Journal of Precision Engineering and Manufacturing,2009,10(3): 171-181.
    [140]Kim M S, Chu W S, Lee J H, et al. Manufacturing of inchworm robot using shape memory alloy (SMA) embedded composite structure [J]. International Journal of Precision Engineering and Manufacturing,2011,12(3):565-568.
    [141]Kim J S, Lee J Y, Lee K T, et al. Fabrication of 3D soft morphing structure using shape memory alloy (SMA) wire/polymer skeleton composite[J]. Journal of Mechanical Science and Technology,2013,27(10):3123-3129.
    [142]Kim H J, Song S H, Ahn S H. A turtle-like swimming robot using a smart soft composite (SSC) structure [J]. Smart Materials and Structures,2013,22(1):014007.
    [143]胡迪,利普森,梅尔芭,等.3D打印:从想象到现实[J].2013.
    [144]Lipson H, Kurman M. Fabricated:The new world of 3D printing [M]. John Wiley & Sons, 2013.
    [145]王雪莹.3D打印技术与产业的发展及前景分析[J].中国高新技术企业,2012,26:006.
    [146]Bassoli E, Gatto A, Iuliano L, et al.3D printing technique applied to rapid casting [J]. Rapid Prototyping Journal,2007,13(3):148-155.
    [147]Bak D. Rapid prototyping or rapid production? 3D printing processes move industry towards the latter[J]. Assembly Automation,2003,23(4):340-345.
    [148]Chua C K, Leong K F, Lim C S. Rapid prototyping:principles and applications [M]. World Scientific,2010.
    [149]Taboas J M, Maddox R D, Krebsbach P H, et al. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds [J]. Biomaterials, 2003,24(1):181-194.
    [150]Landers R, Hubner U, Schmelzeisen R, et al. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering [J]. Biomaterials,2002,23(23):4437-4447.
    [151]Video:Lizard Kings, http://video.pbs.org/video/1300615533
    [152]Smith K K, Kier W M. Trunks, tongues and tentacles:moving with skeletons of muscle [J]. American Scientist,1989,77:28-35.
    [153]Robinson G, Davies J B C. Continuum robots-a state of the art[C]//Robotics and Automation, 1999. Proceedings.1999 IEEE International Conference on. IEEE,1999,4:2849-2854.
    [154]Uzmay I, Burkan R, Sarikaya H. Application of robust and adaptive control techniques to cooperative manipulation [J]. Control Engineering Practice,2004,12(2):139-148.
    [155]Lian K Y, Chiu C S, Liu P. Semi-decentralized adaptive fuzzy control for cooperative multirobot systems with H∞ motion/internal force tracking performance[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2002,32(3):269-280.
    [156]Gueaieb W, Karray F, Al-Sharhan S. A robust adaptive fuzzy position/force control scheme for cooperative manipulators [J]. Control Systems Technology, IEEE Transactions on,2003, 11(4):516-528.
    [157]窦建武,余跃庆.柔性机器人协调操作闭链负载机构的一般模型[J].机器人,2001,23(1):6-10.
    [158]张成新,余跃庆.柔性机器人协调操作的动力学建模与分析[J].机械工程学报,2004,39(5):49-54.
    [159]Matsuno F, Hatayama M. Quasi-static cooperative control of two two-link flexible manipulators[C]//Robotics and Automation,1995. Proceedings.,1995 IEEE International Conference on. IEEE,1995,1:615-620.
    [160]Matsuno F, Yamamoto K, Kasai S. Robust cooperative control of two one-link flexible arms[C]//Robotics and Automation,1995. Proceedings.,1995 IEEE International Conference on. IEEE,1995,1:925-930.
    [161]Yamano M, Kim J S, Konno A, et al. Cooperative control of a 3d dual-flexible-arm robot[J]. Journal of Intelligent and Robotic Systems,2004,39(1):1-15.
    [162]Yamano M, Kim J S, Uchiyama M. Hybrid position/force control of two cooperative flexible manipulators working in 3D space[C]//Robotics and Automation,1998. Proceedings.1998 IEEE International Conference on. IEEE,1998,2:1110-1115.
    [163]顾仲权,马扣根,陈卫东,等.振动主动控制[M].国防工业出版社,1997.
    [164]Mohamed Z, Martins J M, Tokhi M O, et al. Vibration control of a very flexible manipulator system [J]. Control Engineering Practice,2005,13(3):267-277.
    [165]Kuppuswamy N, Carbajal J P. Learning a curvature dynamic model of an octopus-inspired soft robot arm using flexure sensors [J]. Procedia Computer Science,2011,7:294-296.
    [166]徐祖耀,形状记忆材料[M].上海:上海交通大学出版社,2000.
    [167]杨杰,吴月华,形状记忆合金及其应用[M].合肥:中国科学技术大学出版社,1993.
    [168]Song G, Chaudhry V, Batur C. Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller[J]. Smart materials and structures,2003,12(2):223.
    [169]Zakerzadeh M R, Sayyaadi H. Experimental comparison of some phenomenological hysteresis models in characterizing hysteresis behavior of shape memory alloy actuators[J]. Journal of intelligent material systems and structures,2012,23(12):1287-1309.
    [170]K. Tanaka, A phenomenological description on thermomechanical behavior of shape memory alloys [J]. Journal of Pressure Vessel Technology,1990,112(2):158-163.
    [171]Liang C, Rogers C A. Design of shape memory alloy actuators [J]. Journal of Mechanical Design,1992,114(2):223-230
    [172]Liang, Chen, and C. A. Rogers. One-dimensional thermomechanical constitutive relations for shape memory materials. [J]. Journal of intelligent material systems and structures,1990,1(2): 207-234.
    [173]L.C. Brinson, One dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions [J]. Journal of Intelligent Material Systems & Structures,1993,4(2):229-242.
    [174]Brinson L C, Lammering R. Finite element analysis of the behavior of shape memory alloys and their applications[J]. International Journal of Solids and Structures,1993,30(23): 1261-3280.
    [175]L.C. Brinson, M.S. Huang, Simplifications and comparisons of shape memory alloy constitutive models [J]. J. Intell. Matl. Syst. & Struct.,1995, (7):108-114.
    [176]董二宝.智能变形飞行器结构实现机制与若干关键技术研究[D].合肥:中国科学技术大学,2010.
    [177]Khatib O. Real-time obstacle avoidance for manipulators and mobile robots [J]. The international journal of robotics research,1986,5(1):90-98.
    [178]梁文君.机器人动态路径规划与协作路径规划研究[D].杭州:浙江大学,2010.
    [179]李奕铭.基于人工势场法的移动机器人避障研究[D].合肥:合肥工业大学,2013.
    [180]Wang S, Min H. Experience mixed the modified artificial potential field method[C]//Intelligent Robots and Systems (IROS),2013 IEEE/RSJ International Conference on. IEEE,2013:4823-4828.
    [181]Ren J, McIsaac K A, Patel R V. Modified Newton's method applied to potential field-based navigation for mobile robots[J]. Robotics, IEEE Transactions on,2006,22(2):384-391.
    [182]Tarokh M. Hybrid intelligent path planning for articulated rovers in rough terrain [J]. Fuzzy Sets and Systems,2008,159(21):2927-2937.
    [183]Cheng P Y, Chen P J. The D++ algorithm:real-time and collision-free path-planning for mobile robot[C]//Intelligent Robots and Systems (IROS),2010 IEEE/RSJ International Conference on. IEEE,2010:3611-3616.
    [184]Zhao Y, Gu J. Robot Path planning based on improved genetic algorithm[C]//Robotics and Biomimetics (ROBIO),2013 IEEE International Conference on. IEEE,2013:2515-2522.
    [185]Qu H, Yang S X, Willms A R, et al. Real-time robot path planning based on a modified pulse-coupled neural network model [J]. Neural Networks, IEEE Transactions on,2009, 20(11):1724-1739.
    [186]Dacke M, Nilsson D E, Scholtz C H, et al. Animal behaviour:insect orientation to polarized moonlight[J]. Nature,2003,424(6944):33-33.
    [187]WILSON D M. Inherent asymmetry and reflex modulation of the locust flight motor pattern [J]. Journal of Experimental Biology,1968,48(3):631-641.
    [188]LaBarbera M. Why the wheels won't go [J]. American Naturalist,1983:395-408.
    [189]Kwon E, Hayashi Y, Otsuki K, et al. Armadillo/Pangolin regulates PCNA and DREF promoter activities [J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2004,1679(3):256-262.
    [190]Ball P. Material witness:Rollobots [J]. Nature materials,2007,6(4):261-261.
    [191]Tong J, Lii T, Ma Y, et al. Two-body abrasive wear of the surfaces of pangolin scales [J]. Journal of Bionic Engineering,2007,4(2); 77-84.
    [192]Garcia-Paris M, Deban S M. A novel antipredator mechanism in salamanders:rolling escape in Hydromantes platycephalus [J]. Journal of herpetology,1995,29(1):149-151.
    [193]Terrestrial locomotion, http://en.wikipedia.org/wiki/Terrestrial_locomotion
    [194]Tenaza R R. Pangolins rolling away from predation risks [J]. Journal of Mammalogy,1975: 257-257.
    [195]Cerra A, Byrne M. Evolution of development in the sea star genus Patiriella:clade-specific alterations in cleavage [J]. Evolution & development,2004,6(2):105-113.
    [196]Blake D B. Some biological controls on the distribution of shallow water sea stars (Asteroidea; Echinodermata) [J]. Bulletin of Marine Science,1983,33(3):703-712.
    [197]Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation [J]. Biological cybernetics,1985,52(6):367-376.
    [198]Fukuoka Y, Kimura H, Cohen A H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts [J]. The International Journal of Robotics Research,2003,22(3-4):187-202.
    [199]Yang W, Chong N Y. Goal-directed imitation with self-adjusting adaptor based on a neural oscillator network[C]//Advanced Robotics,2005. ICAR'05. Proceedings.,12th International Conference on. IEEE,2005:404-410.
    [200]Yang W, Kim H, You B J. Biologically Inspired Self-Stabilizing Control for Bipedal Robots [J]. International Journal of Advanced Robotic Systems,2013,10.
    [201]Crespi A, Lachat D, Pasquier A, et al. Controlling swimming and crawling in a fish robot using a central pattern generator[J]. Autonomous Robots,2008,25(1-2):3-13.
    [202]Ijspeert A J. Central pattern generators for locomotion control in animals and robots:a review [J]. Neural Networks,2008,21(4):642-653.
    [203]Marder E, Bucher D. Central pattern generators and the control of rhythmic movements [J]. Current biology,2001,11(23):R986-R996.
    [204]Ijspeert A J, Crespi A, Ryczko D, et al. From swimming to walking with a salamander robot driven by a spinal cord model [J]. Science,2007,315(5817):1416-1420.
    [205]Golubitsky M, Stewart I, Buono P L, et al. Symmetry in locomotor central pattern generators and animal gaits [J]. Nature,1999,401(6754):693-695.
    [206]Conradt J, Varshavskaya P. Distributed central pattern generator control for a serpentine robot[C]//International Conference on Artificial Neural Networks (ICANN 2003).2003.
    [207]Ijspeert A J, Crespi A. Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model[C]//TCRA.2007:262-268.
    [208]Bassler U. On the definition of central pattern generator and its sensory control [J]. Biological Cybernetics,1986,54(1):65-69.
    [209]Rand R H, Cohen A H, Holmes P J. Systems of coupled oscillators as models of central pattern generators [J]. Neural control of rhythmic movements in vertebrates,1988:333-367.
    [210]Cazalets J R, Borde M, Clarac F. Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat[J]. The Journal of neuroscience,1995, 15(7):4943-4951.
    [211]Syed N I, Bulloch A G, Lukowiak K. In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea[J]. Science,1990,250(4978):282-285.
    [212]Duysens J, Van de Crommert H W A A. Neural control of locomotion; Part 1:The central pattern generator from cats to humans [J]. Gait & posture,1998,7(2):131-141.
    [213]Harris-Warrick R M, Cohen A H. Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord [J]. Journal of Experimental Biology,1985, 116(1):27-46.
    [214]Marder E, Bucher D. Central pattern generators and the control of rhythmic movements [J]. Current biology,2001,11(23):R986-R996.
    [215]Harris-Warrick R M, Cohen A H. Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord [J]. Journal of Experimental Biology,1985, 116(1):27-46.
    [216]Grillner S, Zangger P. On the central generation of locomotion in the low spinal cat[J]. Experimental Brain Research,1979,34(2):241-261.
    [217]Grillner S, Wallen P. Central pattern generators for locomotion, with special reference to vertebrates [J]. Annual review of neuroscience,1985,8(1):233-261.
    [218]Duysens J, Van de Crommert H W A A. Neural control of locomotion; Part 1:The central pattern generator from cats to humans [J]. Gait & posture,1998,7(2):131-141.
    [219]Duysens J, Van de Crommert H W A A, Smits-Engelsman B C M, et al. A walking robot called human:lessons to be learned from neural control of locomotion [J]. Journal of Biomechanics,2002,35(4):447-453.
    [220]Heinzel H G, Selverston A I. Gastric mill activity in the lobster. Ⅲ. Effects of proctolin on the isolated central pattern generator [J]. J Neurophysiol,1988,59:566-585.
    [221]Marder E, Bucher D. Central pattern generators and the control of rhythmic movements [J]. Current biology,2001,11(23):R986-R996.
    [222]Chevallier S, Jan Ijspeert A, Ryczko D, et al. Organisation of the spinal central pattern generators for locomotion in the salamander:biology and modelling [J]. Brain research reviews,2008,57(1):147-161.
    [223]Yuste R, MacLean J N, Smith J, et al. The cortex as a central pattern generator [J]. Nature Reviews Neuroscience,2005,6(6):477-483.
    [224]Iida S, Kondo T, Ito K. An environmental adaptation mechanism for a biped walking robot control based on elicitation of sensorimotor constraints [M]//From Animals to Animats 9. Springer Berlin Heidelberg,2006:174-184.
    [225]Dimitrijevic M R, Gerasimenko Y, Pinter M M. Evidence for a spinal central pattern generator in humansa[J]. Annals of the New York Academy of Sciences,1998,860(1): 360-376.
    [226]Hooper S L, Marder E. Modulation of a central pattern generator by two neuropeptides, proctolin and FMRFamide[J]. Brain research,1984,305(1):186-191.
    [227]Beer R D. A dynamical systems perspective on agent-environment interaction [J]. Artificial intelligence,1995,72(1):173-215.
    [228]Selverston A I. Are central pattern generators understandable? [J]. Behavioral and Brain Sciences,1980,3(04):535-540.
    [229]Delcomyn F. Neural basis of rhythmic behavior in animals [J]. Science,1980,210(4469): 492-498.
    [230]Konishi M. Birdsong:from behavior to neuron [J]. Annual review of neuroscience,1985, 8(1):125-170.
    [231]Rybak I A, Paton J F R, Schwaber J S. Modeling neural mechanisms for genesis of respiratory rhythm and pattern Ⅱ. Network models of the central respiratory pattern generator [J]. Journal of neurophysiology,1997,77(4):2007-2026.
    [232]Nakada K, Asai T, Amemiya Y. Design of an artificial central pattern generator with feedback controller [J]. Intelligent Automation & Soft Computing,2004,10(2):185-192.
    [233]Bay J S, Hemami H. Modeling of a neural pattern generator with coupled nonlinear oscillators[J]. Biomedical Engineering, IEEE Transactions on,1987 (4):297-306.
    [234]Marder E, Bucher D. Central pattern generators and the control of rhythmic movements [J]. Current biology,2001,11(23):R986-R996.
    [235]Cohen A H, Bard Ermentrout G, Kiemel T, et al. Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion[J]. Trends in neurosciences,1992, 15(11):434-438.
    [236]张代兵.波动鳍仿生水下推进器及其控制方法研究[D].长沙:国防科学技术大学,2007.
    [237]Cazalets J R, Borde M, Clarac F. Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat [J]. The Journal of neuroscience,1995, 15(7):4943-4951.
    [238]Grillner S, Ekeberg O, El Manira A, et al. Intrinsic function of a neuronal network-a vertebrate central pattern generator[J]. Brain Research Reviews,1998,26(2):184-197.
    [239]Williams T L, Sigvardt K A, Kopell N, et al. Forcing of coupled nonlinear oscillators:studies of intersegmental coordination in the lamprey locomotor central pattern generator [J]. J Neurophysiol,1990,64(3):862-871.
    [240]Matsuoka K. Mechanisms of frequency and pattern control in the neural rhythm generators [J]. Biological cybernetics,1987,56(5-6):345-353.
    [241]Taga G, Yamaguchi Y, Shimizu H. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment [J]. Biological cybernetics,1991,65(3):147-159.
    [242]Ermentrout G B, Kopell N. Multiple pulse interactions and averaging in systems of coupled neural oscillators [J]. Journal of Mathematical Biology,1991,29(3):195-217.
    [243]Baldi P, Meir R. Computing with arrays of coupled oscillators:An application to preattentive texture discrimination [J]. Neural Computation,1990,2(4):458-471.
    [244]Nakada K, Asai T, Amemiya Y. An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion [J]. Neural Networks, IEEE Transactions on,2003, 14(5):1356-1365.
    [245]Dickinson M H, Farley C T, Full R J, et al. How animals move:an integrative view[J]. Science,2000,288(5463):100-106.
    [246]Lejeune T M, Willems P A, Heglund N C. Mechanics and energetics of human locomotion on sand [J]. Journal of Experimental Biology,1998,201(13):2071-2080.
    [247]林承坤.泥沙与河流地貌学[M].南京大学出版社,1992.
    [248]Jaeger H M, Nagel S R, Behringer R P. Granular solids, liquids, and gases[J]. Reviews of Modern Physics,1996,68(4):1259-1273.
    [2491孙其诚,光谦.颗粒物质力学导论[M].科学出版社,2009.
    [250]Chowdhury M R, Testik F Y. Laboratory testing of mathematical models for high-concentration fluid mud turbidity currents [J]. Ocean Engineering,2011,38(1): 256-270.
    [251]王兆印,任裕民,王兴奎.宾汉体泥浆湍流的结构特征[J].水利学报,1992,12(12):9-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700