用户名: 密码: 验证码:
无人机主推进高力能密度永磁电动机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人机主推进永磁电动机(Main Propulsion Permanent-magnet Motor,简称MPPM)要求具有较高的力能密度(包括功率密度和转矩密度)。同时无人机的飞行工况复杂,分为地面滑跑、起飞爬升、巡航、降落和着陆五个阶段。电机在爬升阶段时力能密度最高,在巡航阶段初期时温升值最高。高力能密度及复杂工况给电机设计和分析带来新问题,本文围绕无人机主推进高力能密度永磁电动机的关键技术展开研究,主要内容如下:
     根据MPPM对体积和重量的要求以及热负荷达到普通电机5倍的特殊性,本文着重研究了超高力能密度永磁电动机设计方法。在理论上,研究了电机结构参数对电机力能密度影响,对比不同极数、极弧系数、永磁体厚度和电机尺寸对气隙磁密、交直轴电抗和齿槽转矩的影响。对MPPM磁路结构进行了优化设计,分析对比不同隔磁桥、转子外圆的不均匀气隙、永磁体位置对电机的气隙磁密、空载感应电势的影响,给出了MPPM基本优化设计方法。并研究了高频高磁密下MPPM铁心损耗计算方法,重点考虑局部磁滞回环对磁滞损耗的影响,引入设定局部磁滞环的损耗系数K min,给出高电磁负荷下铁心损耗修正系数计算公式。
     高力能密度将导致电机温升提高,温升将成为考核主推进电机的重要指标。为提高力能密度MPPM采用开启式结构,通风散热效果好,但冷却空气雷诺数超过10000,流体强紊流特点增加了温度场计算的复杂性。本文针对电动机开启式结构特点,根据流体力学及传热学理论,考虑了高频下的集肤效应对铜耗的影响,建立强风冷却条件下流固耦合物理模型与数学模型,研究了MPPM温度场给出主要固体部件及流体的温度分布,并分析主要部件温升随工况变化曲线。研究给出了不同热负荷状态下,不同爬升时间和爬升角度,MPPM温升特性,从理论和实践上,给出了无人机MPPM热负荷设计范围为30005500A2/cm·mm2,为主推进电动机热负荷设计提供理论参考。
     MPPM的超高力能密度,对机械强度和振动提出了更高的要求。本文基于弹性力学理论,建立了主要部件的机械强度计算模型,并分析了不同飞行工况下的应力分布。根据应力分析结构,研究了端盖支撑筋对机壳机械强度的影响,基于模态分析理论对MPPM进行振动特性分析,基于弹性矩阵理论对不同频率下的振型进行了分析。从系统的角度,考虑无人机实际运行中气流波动造成振动的频率,研究MPPM的振动频率和质量参与系数,给出避免发生共振的方法。
     成功研制MPPM样机,完成首飞试验测试。对样机进行了地面、风洞与飞行试验。样机性能指标:重量20kg,功率25kW,转矩100N·m,力能密度6.25kW·N·m/kg2,远远高于国内水平。飞行试验中温升最高值出现在巡航初期,机壳最高温升89.49K,铁心最高温升105.07K。对比分析MPPM各飞行工况下仿真结果、风洞试验数据和飞行试验数据,证明了理论分析的正确性。
UAV Main Propulsion Permanent-magnet Motor (MPPM) requires high energy density(power and torque density), and the UAV flight condition is complex, divided into groundtaxiing, take-off and climb, cruise, descent and landing five stages. The energy density ofmotor is the highest in the climbing stage while the temperature of motor is the highest in theearly cruise. New problems of the motor design and analysis are appeared due to high energydensity and complex working condition. This doctoral thesis focuses on the key technology ofMPPM for UAV. The main contents are as follows:
     For MPPM, according to the requirements of volume and weight and the particularity ofheat load that is5times to heat load of ordinary motor, this doctoral thesis particularlyresearches the design method of ultra-high energy density permanent magnet motor. The effectof structural parameters on motor energy density is researched in theory. The different poles,pole arc coefficient, thickness of permanent magnet and motor size are compared to researchthe effect on air gap flux density, the d-axis and q-axis reactance and cogging torque. TheMPPM magnetic circuit structure is optimized. Different rib, non-uniform air gap duo to rotorout arc, length between permanent magnet and rotor inner diameter is analyzed to research theeffect on air gap flux density and EMF. The basic MPPM optimization design method is given.The core loss calculation method of MPPM is researched at high frequency and high fluxdensity, especially considering the impact of local hysteresis loop on hysteresis loss. Thehysteresis loss factor Kminfor each local loop is set according to the empirical formula, and thecalculation formula for correction coefficient of core loss is given under high electrical load.
     High energy density will cause the increase of motor temperature rise. The temperature risewill be an important indicator of assessment on main propulsion motor. MPPM uses openstructure to improve energy density, which has good ventilation; However, Reynolds numberof the cooling air is over10000, and the strong turbulence characteristics of fluid increasecomplexity for calculating temperature field. In this doctoral thesis, according to fluidmechanics and heat transfer theory, considering the effect of high frequency skin effect oncopper loss, the fluid solid coupling physical models and mathematical models to study theMPPM temperature field are established under strong wind cooling conditions for thecharacteristics of motor open architecture. The temperature distribution of main components and fluid is given, and the temperature rise of main components in different workingconditions is analyzed. The temperature rise characteristics of MPPM under different thermalload conditions, different climb time and climb angle are researched. The suitable heat loadrange is3000-5500A2/cm·mm2for MPPM of UAV, which provides theoretical reference fordesigning heat load of main propulsion motors.
     MPPM has characteristics of extra-high energy density, which asks a higher requirementfor mechanical strength and vibration. Based on elasticity theory, the calculation model ofmechanical strength for main components is established and the stress distribution of motorunder different flight conditions of UAV is analyzed. According to the stress analysis structure,the influence of motor cover support ribs on mechanical strength of motor house is analyzed.Based on the modal analysis theory, the vibration characteristic of rotor body is analyzed.Based on the elasticity matrix theory, modes at different frequencies are analyzed. Consideringthe vibration frequency caused by the flow fluctuations of actual operation of UAV, thevibration frequency and quality participation factor of MPPM are researched, and some waysto avoid the occurrence of resonance are given.
     The MPPM prototype was developed successfully and the first flight test was completed.The ground tests, wind tunnel tests and flight tests were performed for MPPM prototype.MPPM prototype performance indicators were: weight20kg, power25kW, torque100N·m,energy density6.25kW·N·m/kg2, which were much higher than the national level. The highesttemperature rise is appeared in the early cruise during flight test, and the maximumtemperature rise was89.49K while the maximum core temperature was105.07K. Thesimulation results, wind tunnel test data and flight test data of MPPM were compared amongeach flight conditions, which provided the correctness of theoretical analysis.
引文
[1]康炳南,唐硕.有动力通用航空飞行器的概念研究[J].西北工业大学学报,2009,27(2):184-189.
    [2]刘建林,冯垚径,高磊等.电动汽车用内置式永磁无刷直流电机设计研究[J].湖南大学学报(自然科学版),2013,40(9):63-69.
    [3]赵长辉,卢黎波,陈立玮等.飞机的电动力系统技术概述[J].航空工程进展,2011,2(4):449-458.
    [4]李欢,马伯宁,孔龙星等.军事任务推演的时空模型与驱动机制[J].国防科技大学学报,2013,35(3):138-143.
    [5] EITH BARRY.2010年震撼世界的十大交通发展趋势[J].美国《连线》,2010,12.
    [6] Eid A, Kishky H, Abdel S M, et al. On Power Quality of Variable-Speed Constant-Frequency AircraftElectric Power Systems[J].IEEE Transactions on Power Delivery,2010,25(1):55-65.
    [7]吴铭.探索通用航空发展之路[J].中国军转民,2011,(9):28-37.
    [8]隋宏亮,梁得亮,丁文等.互感耦合开关磁阻电机的等效磁路模型与有限元分析[J].西安交通大学学报,2010,44(4):71-75.
    [9] Phyu H N, Chao B. Effect of magnetization on high-speed permanent magnet synchronous motordesign[J].201215th International Conference on Electrical Machines and Systems,2012.
    [10] Chen J T, Zhu Z Q. Influence of the rotor pole number on optimal parameters in flux-switching PMbrushless AC machines by the lumped-parameter magnetic circuit model[J]. IEEE Transactions onIndustry Applications,2010,46(4):1381-1388.
    [11] Chen J T, Zhu Z Q, Iwasaki S, et al. A novel hybrid-excited switched-flux brushless AC machine forEV/HEV applications[J]. IEEE Transactions on Vehicular Technology,2011,60(4):1365-1373.
    [12] Park S C, Kwon B I, Hcc-Soo Yoon.Analysis of exterior-rotor BLDC on motor considering the eddycurrent effect in the rotor steel shell[J].IEEE Transactions Magnetics,1999.
    [13] Keller S, Mai T X, Simond J J. Computation of the no-load voltage waveform of laminated salient-polesynchronous generators[J].IEEE Transactions on Industry Applications,2006,42(3):681-687.
    [14]李琛,章跃进,井立兵等.Halbach阵列半闭口槽永磁电机全局解析法研究[J].中国电机工程学报,2013,(33):85-94.
    [15] Lubin T, Mezani S, Rezzoug A. Two-Dimensional Analytical Calculation of Magnetic Field andElectromagnetic Torque for Surface-Inset Permanent-Magnet Motors[J].IEEE Transactions onMagnetics,2012,48(6):2080-2091.
    [16] Chen J T, Zhu Z Q, Iwasaki S, et al. A Novel Hybrid-Excited Switched-Flux Brushless AC Machine forEV/HEV Applications[J], IEEE Transactions on Vehicular Technology,2011,60(4):1365-1373.
    [17]杨玉波,王秀和,朱常青等.电枢槽口宽度对内置式永磁同步电机齿槽转矩的影响[J].电机与控制学报,2011,15(7):21-25.
    [18]常正峰,黄文新,胡育文等.基于二维解析法的光滑表面实心转子感应电机附加损耗的研究[J].中国电机工程学报,2007,27(21):83-88.
    [19]邱洪波,李伟力,张晓晨等.背绕式定子绕组高速永磁电机三维端部区域电磁场分析与计算[J].中国电机工程学报,2012,32(24):80-87.
    [20]李立毅,郭杨洋,曹继伟等.高速高功率密度风洞电机磁—热特性的研究[J].电机与控制学报,2013,17(10):46-51.
    [21]郭伟,赵争鸣.新型同步磁阻永磁电机的转矩特性和控制分析[J].电工技术学报,2005,20(1):54-59.
    [22]刘瑞芳,严登俊,胡敏强等.永磁无刷直流电动机场路耦合运动时步有限元分析[J].中国电机工程学报,2007,27(12):59-64.
    [23]彭兵,夏加宽,董婷等.不等齿宽提高多槽少极隔齿隔相绕组永磁电机转矩的方法[J].中国电机工程学报,2012,32(z1):242-248.
    [24]白海军,张凤阁.外永磁转子爪极电机转矩研究[J].电机与控制学报,2011,15(5):78-82.
    [25]丁文,梁得亮.一种开关磁阻电机非线性磁链与转矩建模方法[J].电机与控制学报,2008,12(6):659-665.
    [26] Zhao F, Lipo T A, Kwon B I. A Novel Two-Phase Permanent Magnet Synchronous Motor Modeling forTorque Ripple Minimization[J], IEEE Transactions on Magnetics,2013,49(5):2235-2358.
    [27]孔晓光,王凤翔,徐云龙等.高速永磁电机铁耗的分析和计算[J].电机与控制学报,2010,14(9):26-30.
    [28]韩力,王华,马南平等.无刷双馈电机谐波铜耗与铁耗的分析与计算[J].电机与控制学报,2012,16(3):22-29.
    [29] Liang Y P, Liu J P, Ch J. Calculation of iron loss and stray losses for high-voltage induction motor usingtime-stepping finite element method[J].Mechanic Automation and Control Engineering,2010:4081-4084.
    [30]程树康,李翠萍,柴凤.不同冷却结构的微型电动车用感应电机三维稳态温度场分析[J].中国电机工程学报,2012,32(30):82-90.
    [31]张晓晨,李伟力,邱洪波等.超高速永磁同步发电机的多复合结构电磁场及温度场计算[J].中国电机工程学报,2011,31(30):85-92.
    [32]陈卫杰,苗立杰,丁树业.屏蔽电机定子齿压板局部温升过高分析[J].中国电机工程学报,2010,30(6):69-74.
    [33]丁树业,孙兆琼,苗立杰等.大型发电机定子主绝缘温度场数值研究[J].电机与控制学报,2010,14(7):53-58.
    [34]杜灿勋,桂卫华,周光厚等.大型全空冷水轮发电机定子线棒损耗和温度场综合计算[J].中国电机工程学报,2012,32(12):111-119.:
    [35]董宇,戈宝军,殷继伟等.基于流体相似理论和三维有限元法计算异步电动机的定子三维温度场[J].大电机技术,2012,(5):5-11.
    [36]赵伟铎,崔淑梅,刘庆等.空心补偿脉冲发电机温度场计算与分析[J].中国电机工程学报,2011,31(27):95-101.
    [37]孔晓光,王凤翔.高速永磁电机定子温度场的计算与分析[J].大电机技术,2012,(6):5-8.:
    [38]路义萍,李伟力,马贤好等.大型空冷汽轮发电机转子温度场数值模拟[J].中国电机工程学报,2007,27(12):7-13.
    [39]刘彦丰,许燕萍,李俊卿等.汽轮发电机转子风路堵塞时的温度场数值分析[J].华北电力大学学报,2011,38(1):86-91.
    [40]安蔚瑾,许红静,郭伟等.水轮发电机定子三维温度场数值模拟[J].天津大学学报,2008,41(8):967-971.
    [41]胡笳,罗应立,李志强等.永磁电动机不同运行条件下的损耗研究[J].电机与控制学报,2009,13(1):11-16.:
    [42] Bekovic M, Hamler A. Determination of the heating effect of magnetic fluid in alternating magneticfield[J]. IEEE Transactions on Magnetics,2010,46(2):552-555.
    [43]李伟力,杨雪峰,顾德宝等.多风路空冷汽轮发电机定子内流体流动与传热耦合计算与分析[J].电工技术学报,2009,12(24):24-31.
    [44]路义萍,李伟力,马贤好.大型空冷汽轮发电机转子温度场数值模拟[J].中国电机工程学报,2007,27(12):7-13.
    [45]丁树业,孙兆琼,徐殿国等.3MW双馈风力发电机传热特性数值研究[J].中国电机工程学报,2012,32(3):137-143.
    [46]丁树业,葛云中,孙兆琼等.高海拔用风力发电机流体场与温度场的计算分析[J].中国电机工程学报,2012,32(24):74-79.
    [47]丁树业,孟凡东,葛云中.核主泵屏蔽电机温度场研究[J].中国电机工程学报,2012,32(36):149-155.
    [48]丁树业,葛云中,徐殿国等.1.5MW双馈风力发电机内流体场分析[J].中国电机工程学报,2012,32(21):93-98.
    [49]丁树业,郭保成,冯海军等.变频控制下永磁同步电机温度场分析[J].中国电机工程学报,2014,34(9):1368-1376.
    [50]路义萍,郑国丽,李俊亭等.空内冷汽轮发电机的转子多路通风均匀性[J].中国电机工程学报,2010,30(3):99-104.
    [51]李伟力,陈玉红,霍菲阳等.大型水轮发电机转子旋转状态下磁极间流体流动与温度场分析[J].中国电机工程学报,2012,32(9):132-139.
    [52]霍菲阳,李勇,李伟力等.大型空冷汽轮发电机定子通风结构优化方案的计算与分析[J].中国电机工程学报,2010,30(6):69-74.
    [53]骆清国,冯建涛,刘红彬等.大功率柴油机缸内传热与热负荷分析研究[J].内燃机工程,2010,31(6):32-37.
    [54] Chen A, Liu X K, Xu F Y, et al. Design of the Cryogenic System for a400kW Experimental HTSSynchronous Motor[J]. IEEE Transactions on Applied Superconductivity,2010,20(3):2062-2065.
    [55]周兰欣,杨靖,杨祥良.300MW直接空冷机组变工况特性[J].中国电机工程学报,2007,27(17):78-82.
    [56]刘长红,姚若萍.自循环蒸发冷却电机定子铁心与绕组间的热量传递[J].中国电机工程学报,2008,28(11):107-112.
    [57]周庆生,黄苏融,张琪等.新型冷却结构超高精度平面电机定子温度场分析[J].中国电机工程,2012,32(15):134-139.
    [58] Seo J H, Kim S M, Jung H K, et al. Rotor-Design Strategy of IPMSM for42V Integrated StarterGenerator[J]. IEEE Transactions on Magnetics,2010,4(6):2458-2461.
    [59]高阳,吕硕,高凯等.动平衡实验机转子振动模态分析[J].制造业自动化,2011,33(2):160-162.
    [60]刘坚,黄守道,浦清云等.内置式永磁同步电动机转子结构的优化设计[J].微特电机,2011,39(3):21-23.
    [61]刘建林,冯垚径,高磊等.电动汽车用内置式永磁无刷直流电机设计研究[J].湖南大学学报(自然科学版),2013,40(9):63-69.
    [62]陈远扬,韩则胤,陈阳生等.高速内嵌式永磁电动机转子机械强度分析[J].微特电机,2012,40(5):5-9,18.
    [63]王华秋,刘全利,王越等.基于鲁棒最小二乘支持向量机的电机振动故障诊断[J].中国电机工程学报,2007,27(30):97-102.
    [64]王玎.基于有限元的异步电机电磁振动分析[J].振动与冲击,2012,31(2):140-144,154.
    [65]李文,赵慧敏,邓武等.变频器驱动异步电机振动频谱特征分析[J].电机与控制学报,2012,16(8):67-73.
    [66]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [67]陈玮玮,苏向辉.多电式环控系统电动机功率选定及其经济性分析[J].航空动力学报,2013,28(3):714-720.
    [68]秦大同,王禺寒,胡明辉等.考虑运行工况的纯电动汽车动力传动系统参数设计[J].重庆大学学报,2014,3(1):7-14.
    [69] Alberti L, Barcaro M, Bianchi N. Design of a Low Torque Ripple Fractional-slot Interior PermanentMagnet Motor[J].Energy Conversion Congress and Exposition,2012:509-516.
    [70] Yamazaki K. Optimization of High-Speed Motors Considering Centrifugal Force and Core Loss UsingCombination of Stress and Electromagnetic Field Analyses[J].IEEE Transactions on Magnetics,2013,49(5):2181-2184.
    [71]李延升,窦满峰,赵冬冬等.磁钢充磁方式对表贴式永磁电机磁场影响分析[J].电机与控制学报,2011,15(12):26-31.
    [72] Barcaro M, Bianchi N. Air-gap flux density distortion and iron loss in anisotropic synchronous motor[J].IEEE Transactions on Magnetics,2010,46(1):121-126.
    [73] Nerg J, Rilla P. Thermal analysis of radial-flux electrical machines with a high power density[J].IEEE Transactions on Industrial Electronics,2008,55(10):3543-3554.
    [74] Galea M, Gerada C, Raminosoa T, et al. A Thermal Improvement Technique for the Phase Windings ofElectrical Machines[J]. IEEE Transactions on Industry Applications,2012,48(1):79-87.
    [75] Takashi O, Daiki M, Kazuhiro M. Method for Evaluating the Eddy Current Loss of a PermanentMagnetin a PM Motor Driven by an Inverter Power Supply Using Coupled2-D and3-D Finite ElementAnalyses[J]. IEEE TRANSACTIONS ON MAGNETICS,2009,45(10).
    [76]张涛,朱熀秋,孙晓东等.基于有限元法的高速永磁转子强度分析[J].电机与控制学报,2012,16(6):63-68.
    [77]赵万华,杜超,张俊等.主轴转子系统动力学解析建模方法[J].机械工程学报,2013,49(6):44-51.
    [78] Schlensok C, Henneberger G. Calculation of force excitations in induction achiness with centric andexcentric positioned rotor using2D transient FEM[J].IEEE Transactions on Magnetics,2008,40(2).
    [79] Kim K T, Kim K S. Comparison of magnetic force for IPM and SPM motor with rotor eccentricity[J].IEEE Transactions on Magnetics,2001,37.
    [80]陈严,田鹏,刘雄等.水平轴风力机锥形塔筒的静动态特性研究[J].太阳能学报,2010,31(10):1359-1365.
    [81] Schlensok C, Henneberger G. Calculation of force excitations in induction achiness with centricand excentric positioned rotor using2.D transient FEM[J]. IEEE Transactions on Magnetics,2004,40(2).
    [82] Barcaro M, Meneghetti G, Bianchi N. Structural analysis of the interior PM rotor considering both staticand fatigue loading[J]. Energy Conversion Congress and Exposition,2012:4338-4345.
    [83]崔淑梅,于天达,宋立伟等.基于ANSYS和SYSNOISE的电机噪声仿真分析方法[J].电机与控制学报,2011,15(9):63-67.
    [84]王天煜,王凤翔.大型异步电动机定子振动与模态分析[J].中国电机工程学报,2007,27(12):41-45.
    [85]王荀,邱阿瑞.笼型异步电动机径向电磁力波的有限元计算[J].电工技术学报,2012,07:109-117.
    [86]莫岳平,胡敏强,徐志科等.超声波电机振动模态有限元分析[J].中国电机工程学报,2002,22(11):92-96.
    [87]莫岳平,胡敏强,金龙等.振动模态与超声波电机性能关系的研究[J].电工技术学报,2002,17(3):7-11.
    [88]吴慧敏,贾启芬.电机定转子刚体模型非线性振动研究[J].动力学与控制学报,2011,9(3):222-226.
    [89] Kreitzer S, Obermeyer J, Mistry R. The Effects of Structural and Localized Resonances on InductionMotor Performance[J]. IEEE Transactions on Industry Applications,2008,44(5):1367-1375.
    [90] Choi J K, Lee H I, Yoo S Y, et al. Analysis and Modeling of a Voice-Coil Linear Vibration Motor Usingthe Method of Images Magnetics[J].IEEE Transactions on,2012,48(11):4164-4167.
    [91] Jung J, Kim D J, Hong J P, et al. Experimental Verification and Effects of Step Skewed Rotor TypeIPMSM on Vibration and Noise Magnetics[J].IEEE Transactions on,2011,47(10):3661-3664.
    [92] Lim S, Min S J, Hong P. Level-Set-Based Optimal Stator Design of Interior Permanent-Magnet Motorfor Torque Ripple Reduction Using Phase-Field Model,Magnetics[J]. IEEE Transactions on,2011,47(10):3020-3023.
    [93] Sung S, J.Jang G H, Lee H J. Torque Ripple and Unbalanced Magnetic Force of a BLDC Motor due tothe Connecting Wire Between Slot Windings.Magnetics[J]. IEEE Transactions on,2012,48(11):3319-3322.
    [94] Dorrell D G, Popescu M, Ionel D M. Unbalanced Magnetic Pull Due to Asymmetry and Low-LevelStatic Rotor Eccentricity in Fractional-Slot Brushless Permanent-Magnet Motors With Surface-Magnetand Consequent-Pole Rotors.Magnetics[J].IEEE Transactions on,2010,46(7):2675-2685.
    [95]赵南南,刘卫国,诸自强,等.永磁无刷电机对拖系统仿真分析[J].微特电机,2012,04:25-28.
    [96] Fakham,H, Djemai,M, Busawon,K. Design and practical implementation of a back-emf sliding-modeobserver for a brushless dc motor[J].Electric Power Applications, IET,2008,2(6):353-361.
    [97] Kim Y B, Choi H S, Koh C S, et al. A Back EMF Optimization of Double Layered Large-Scale BLDCMotor by Using Hybrid Optimization Method. IEEE Transactions on Magnetics,2011,47(5):998-1001.
    [98] Nahid M B, Meibody T F, Sargos F M. Back EMF Estimation-Based Sensorless Control of PMSM:Robustness With Respect to Measurement Errors and Inverter Irregularities[J]. IEEE Transactions onIndustry Applications,2007,43(2):485-494.
    [99] Shen G P, Qin M, Huang Q A. A Cross-Type Thermal Wind Sensor With Self-Testing Function[J].IEEE Sensors Journal,2009,10(2):340-346.
    [100] Lin C L,Huang C H,Lee C S,et al.Identification of Flight Vehicle Models Using FuzzifiedEigensystem Realization Algorithm[J].IEEE Transactions on Industrial Electronics,2011,58(11):5206-5219.
    [101] Parlak A.The effect of heat transfer on performance of the diesel cycle and energy of the exhaust gasstream in a LHR diesel engine at the optimum injection timing[J]. Energy Conversion&Management,2009(46):167-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700