用户名: 密码: 验证码:
内燃机增压离心压气机多工况通流设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过涡轮增压缩小发动机排量,是汽车节能与CO_2减排的主要技术途径之一。增压导致发动机工况适应性差,是车用发动机缩小排量所面临的主要难点和技术瓶颈。当前增压压气机设计与发动机循环性能研究相互独立,压气机设计在改进发动机工况适应性中的重要作用没有充分体现。
     论文针对增压发动机工况适应性差,无法满足汽车节能减排对车用发动机增压技术要求这个主要难点,提出了从压气机多工况设计角度改进增压发动机工况适应性的新思路。以某型车用增压汽油机为研究对象,研究了压气机全工况特性对发动机性能的影响,建立了压气机全工况通流模型,并对提高发动机工况适应性的压气机多工况通流设计方法等进行了探讨。论文工作主要包括以下几个部分。
     论文跨越增压压气机设计与发动机循环性能研究的界限,探讨了压气机全工况特性对发动机循环全工况性能的影响。研究表明,非匹配工况的压气机特性对发动机性能影响较大,改进发动机低速和中小负荷工况的压气机效率,可有效提高发动机全工况性能。
     论文研究了压气机全工况内部流动规律及性能影响机制,探讨了压气机进出口主要几何设计参数对压气机全工况性能的影响。叶轮进口相对直径、进口叶尖叶片角、出口相对宽度与出口后弯角等是影响压气机全工况性能的关键几何参数。论文建立了以关键几何设计参数为变量的压气机全工况通流模型。设计、试制加工了9个反映关键几何设计参数变化的压气机样机,利用试验数据对压气机全工况通流模型进行了标定与试验验证。
     论文基于压气机全工况通流模型,发展了以增压发动机全工况性能为设计目标、压气机关键几何参数为设计变量的压气机多工况通流设计新方法,突破了压气机设计优化与增压发动机循环性能优化相互独立的限制。
     论文采用压气机多工况通流设计方法,对某型1.8升增压汽油机压气机进行了设计改型。改型压气机的性能试验表明,多工况通流设计扩大了压气机的高效区范围,且使其高效区明显偏向低速小流量区域,并拓宽了喘振边界。仿真研究表明,压气机改型设计可使发动机低速转矩提高21%,部分负荷常用工况燃油消耗率下降2.4%,验证了压气机多工况通流设计方法的有效性。
Much greater emphasis of turbocharging technology is being placed on downsizing the internal combustion engine (ICE) to increase fuel economy and reduce CO_2 emissions. But the fundamentally difference between rotating turbomachines and reciprocating piston engines lead to poor engine performance at off-design conditions, which is the main difficulty for engine downsizing. Traditionally, the turbocharger compressor design is independent from the engine system development process and the compressor is not usually designed for the improvement of ICE’s performance on all operation conditions.
     According to the key, a centrifugal compressor multi-point through-flow design approach was developed to improve the ICE’s overall performance. The influence of compressor characteristics on turbocharged engine system, sophisticated flow mechanism on different operation conditions and compressor multi-point design optimization was discussed. The thesis work contains contents as follows:
     The influence of different compressor characteristics on ICE’s performance on all operation conditions was investigated. The results show that the compressor off-design characteristics have great effect on engine performance. The location of compressor high efficiency island was the most influential factor for the ICE’s performance on low speed and part-load conditions.
     Through the detail research on a small turbocharger compressor internal flow mechanism, the acting factors which changed the compressor MAP characteristics were investigated. The main compressor geometrical parameters were discussed and it was found that four impeller structures, including inlet tip diameter, inlet tip blade angle, outlet width and outlet backsweep angle, have the greatest influence on compressor overall performance.
     Based on the inside flow mechanisms of centrifugal compressors, a through-flow model was developed to predict the compressor overall performance with various structure parameters. The model was calibrated and validated with the test data of nine different compressors.
     Based on the through-flow model, a compressor multi-point through-flow design approach was developed with the objective of ICE’s performance for all operation conditions. During the through-flow design process, the direct influence of compressor geometry parameters on ICE’s overall performance can be considered.
     The multi-point through-flow design approach was successfully applied to a 1.8L turbocharged gasoline engine to develop a new turbocharger compressor. The efficiency has been improved obviously on low flow rate conditions of the new designed compressor. Simulation resultes show that the low-end torque of the turbocharged gasoline engine matched with the new compressor has been increased by 21% and part-load fuel consumption has been decreased by 2.4%.
引文
[1]中国国家统计局.国家统计年鉴1995–2008.北京:中国统计出版社. 1995-2008.
    [2] European Environment Agency. EMEP/EEA air pollutant emission inventory guidebook 2009. 2009. ISSN 1725-2237.
    [3] Schulte H, Wirth M. Internal combustion engines for the future. Ford Motor Company.
    [4]刘国卿.“十一五”规划建设与汽车工业的节能.汽车与配件, 2005(45):18-21.
    [5] Kasseris E P, Heywood J B. Comparative analysis of automotive powertrain choices for the next 25 years. SAE Paper 2007-01-1605, 2007.
    [6] Lecointer B, Monnier G. Downsizing a gasoline engine using turbocharging with direct injection. SAE Paper 2003-01-0542, 2003.
    [7] Lake T, Stokes J, Murphy R. Turbocharging concepts for downsized DI gasoline engines. SAE Paper 2004-01-0036, 2004.
    [8] Petitjean D, Bernardini L, Middlemass C. Advanced gasoline engine turbocharging technology for fuel economy improvements. SAE Paper 2004-01-0988, 2004.
    [9] Leduc P, Dubar B, Ranini A. Downsizing of gasoline engine: an efficient way to reduce CO2 emissions. Oil & Gas Science and Technology, 2003, 58(1):115-127.
    [10] Uchida H. Trend of turbocharging technologies. R&D Review of Toyota CRDL, 2007, 41(3):1-8.
    [11] Watson N, Janota M S. Turbocharging the Internal Combustion Engine. MacMillan, 1982.
    [12] Japikse D, Baines N C. Introduction to Turbomachinery. Concepts NREC, Wilder, Vt, 1997.
    [13]中外专家谈先进汽车动力与能源技术.趋势科技, 2007(1):29-40.
    [14] Geiger J, Habermann K, Lang O.增压和直接喷射对未来汽油机的协同作用.国外内燃机, 2005(5):36-40.
    [15] Heywood J B, Welling O Z. Trends in performance characteristics of modern automotive SI and diesel engines. SAE Paper 2009-01-1892, 2009.
    [16]何铀.国内未来车用汽油机技术的发展趋势.装备制造技术, 2005(3):26-27.
    [17]钱人一.车用小排量增压汽油机(传统汽油机动力总成CO2减排的有效方案).汽车工程师, 2010(4):45-49.
    [18]闻卫东.大众的双增压发动机技术.轻型汽车技术, 2007(3):35-36.
    [19]相贺正一,横山富治,辛德正信. 2.3L直喷式涡轮增压发动机的最新技术.国外内燃机, 2007(1):16-20.
    [20]顾宏中.涡轮增压柴油机性能研究.上海:上海交通大学出版社, 1998.4.
    [21]朱会田,彭生辉,戴启清.车用汽油机废气涡轮增压存在的障碍及对策.小型内燃机与摩托车, 2002, 31(4):38-40.
    [22] Korakianitis T, Sadoi T. Turbocharger-design effects on gasoline engine performance. Journal of Engineering for Gas Turbines and Power, 2005, 127:525-530.
    [23]郑北生,徐宏明.涡轮增压器与车用汽油机匹配的一种改进方案.内燃机学报, 1985, 3(3):233-242.
    [24]王应红,郑国璋.废气涡轮增压与发动机匹配的理论计算研究.内燃机, 2004(1):1-7.
    [25]常思勤,倪计民,谭幼林.车用高速柴油机增压匹配的数值模拟.车用发动机, 2000(3):16-18.
    [26] Otobe T, Grigoriadis P, Sens M. Method of performance measurement for low turbocharger speeds. Proceedings of IMechE, 2010:409-419.
    [27] Chen Hua. Recent challenges in the aerodynamic development of turbocharger compressor for gasoline passenger cars. Proceedings of IMechE, 2010:125-133.
    [28] Bozza F, Gimelli A, Strazzullo L. Steady-state and transient operation simulation of a downsized turbocharged SI engine. SAE Paper 2007-01-0381, 2007.
    [29]刘蕴星.带废气放气阀涡轮增压器与柴油机匹配时影响低速性能的因素分析.柴油机设计与制造, 2005(2):25-28.
    [30] Capobianco M, Marelli S. Waste-gate turbocharging control in automotive SI engines: effect on steady and unsteady turbine performance. SAE Paper 2007-01-3543, 2007.
    [31] Karnic A Y, Buckland J H, Freudenberg J S. Electronic throttle and wastegate control for turbocharged gasoline engines. 2005 American Control Conference, Portland, 2005:4434-4439.
    [32] Okazaki Y, Matsudaira N, Hishikawa A. A Case of Variable Geometry Turbocharger Development. Turbocharging and turbochargers. Inst Mech Engrs, 1986:191-196.
    [33] Okazaki Y, Matsuo E, Matsudaira N, et al. Development of A Variable Aera Radial Turbine for Small Turbochargers. ASME paper 88-GT-102, 1988.
    [34] Toussaint M, Descombes G, Pluvoise M. Research into Variable Geometry Turbochargers without Wastgates. Third European Conf. on Turbomachinery: Fluid Dynamics and Thermodynamics. Inst Mech Engrs, 1999:883-891.
    [35] Rogo C, Hajek T. Varaible Stator Radial Turbine. 1984, NASA CR-174663.
    [36] Baets J, Bernard O, Gamp T, Zehnder M. Design and Performance of ABB Turbocharger TPS57 with Variable Turbine Geometry. Turbocharging and Air Management Systems. Inst Mech Engrs, 1998:315-325.
    [37] Matsumoto K, Jinnai Y, Suzuki H. Development of Variable Geometry Turbocharger for Diesel Passenger Car. Turbocharging and Air Management Systems. Inst Mech Engrs, 1998:329-346.
    [38] Okimoto H, Ohira T, Yoshimura S, et al. Development of Sequential Twin Turbocharging Systems. Proc 1991 Yokohama Int Gas Turbine Congress, Vol I:263-268.
    [39] Tashima S, Taqdokoro T, Okimoto H, et al. Development of Sequential Twin Turbo System for Rotary Engine. SAE Paper 910624, 1991.
    [40] Tennant D W H. A Compact Two-stage Turbocharger module. Turbocharging and turbochargers. Inst Mech Engrs, 1991:269-274.
    [41] Pfluger F. Regulated Two-stage Turbocharging—KKK’s New Charging System for Commercial Diesel Engines. Turbocharging and Air Management Systems. Inst Mech Engrs, 1998:127-141.
    [42]赵永生,张虹,王绍卿.车用电辅助涡轮增压技术发展.车辆与动力技术, 2010(2):54-57.
    [43] Ulrich H, Marcelo C A. Diesel engine electric turbo compound technolgy. SAE paper 2003-01-2294, 2003.
    [44] Hoecker P. EBooster: key component of a new BorgWarner turbocharging System for passenger cars. International Wiener Motorensymposium, 2001:333–352.
    [45] Aungier R H. Mean streamline aerodynamic performance analysis of centrifugal compressors. ASME Journal of Turbomachiney, 1995, 117:360-366.
    [46] Baines N C. Axial and radial turbines, radial turbine design. Concepts NREC, 2003.
    [47] Japikse D. Centrifugal compressor design and performance. Concepts ETI, Wilder, 1996.
    [48] Rajoo S, Martinez-Botas R. Experimental study on the performance of a variable geometry mixed flow turbine for automotive turbocharger. Proc. 8th International Conference on Turbochargers and Turbocharging, Woodhead Publishing Limited, 2006.
    [49] Dean R, Senoo Y. Rotating wakes in vaneless diffusers. ASME Journal of Basic Engineering, 1960, 82:563-574.
    [50] Acosta A, Bowerman R. An experimental study of centrifugal-pump impellers. Transactions of the ASME, 1957, 79:1821-1839.
    [51] Eckardt D. Instantaneous measurements in the jet-wake discharge flow of a centrifugal compressor impeller. ASME Journal of Engineering for Power, 1975, 97(3):337-345.
    [52] Eckardt D. Detailed flow investigations within a high-speed centrifugal compressor impeller. ASME Journal of Fluid Engineering, 1976, 98(3):390-402.
    [53] Johnson M W, Moore J. The development of wake flow in a centrifugal impeller. ASME Journal of Engineering for Power, 1980, 102:382-389.
    [54] Johnson M W, Moore J. The influence of flow rate on the wake in a centrifugal impeller. ASME Journal of Engineering for Power, 1983, 105:33-39.
    [55] Johnson M W, Moore J. Secondary flow mixing losses in a centrifugal impeller. ASME Journal of Engineering for Power. 1983, 105:24-32.
    [56] Krain H. A Study on Centrifugal Impellor and Diffuser Flow. ASME Paper 81-GT-9, 1981.
    [57] Krain H. Swirling impeller flow. ASME Journal of Turbomachinery, 1988, 110:122-128.
    [58] Japikse D. Optimization of industrial centrifugal compressors part 6A: studies in component performance--eight design cases from 1972 to 1982. ASME paper 86-GT-221, 1986.
    [59] Hah X, Krain H. Secondary flow and vortex motion in a high efficiency at design and off-design condions. ASME Journal of Turbomachinery, 1990, 112(1):7-13.
    [60] Moore J, Moore J G. A prediction of 3-D viscous flow and performance of the NASA low speed centrifugal compressor. ASME Paper 90-GT-234, 1990.
    [61] Hathaway M D, Woof J R, Wasserbauer C A. NASA low speed centrifugal compressor for three dimensional viscous code assessment and fundamental flow physics research. ASME Journal of Turbomachinery, 1992, 114(2):295-303.
    [62] Rain D A. Tip clearance flows in axial flow compressor and pumps. California Insitute of Technology, Hydrodynamics and Mechanical Engineering Laboratories, Report No.5, 1954.
    [63] Chen G T, Greitzer E M, Tan C-s, Marble F E. Similarity analysis of compressor tip clearance flow structure. ASME Journal of Turbomachinery, 1991, 113(2):260-271.
    [64] Senoo Y, Ishida M. Deterioration of compressor performance due to tip clearance of centrifugal impellers. ASME Journal of Turbomachinery, 1987, 109(1):55-61.
    [65]彭森,杨策,马朝臣.离心压气机叶尖间隙泄漏流动数值研究.工程热物理学报, 2005, 26(6):935-937.
    [66] Backman J H, Reunanen A. Effects of impeller tip clearance on centrifugal compressor efficiency. ASME Paper GT2007-28200, 2007.
    [67] Sato K, He L. Effect of rotor-stator interaction on impeller performance in centrifugal compressors. ISROMAC-7, 1998:1359-1368.
    [68]刘立军,徐忠,张玮.叶顶间隙泄漏时离心压气机模型级内流动的数值模拟.西安交通大学学报, 2001, 35(9):908-913.
    [69] Wei? C, Grates D R. Numerical investigation of the influence of the tip clearance on wake formation inside a radial impeller. ASME Paper GT2003-38279, 2003.
    [70] Rodgers C. High specific speed high inducer tip mach number centrifugal compressor. ASME Paper GT2003-38949, 2003.
    [71] Cumpsty N A. Compressor aerodynamics. Longman scientific & technical, 1989.
    [72]朱大鑫.涡轮增压与涡轮增压器.北京:机械工业出版社, 1992.
    [73] Hildebrandt A, Genrup M. Numerical investigation of the effect of different back sweep angle and exducer width on the impeller outlet flow pattern of a centrifugal compressor with vaneless diffuser. ASME Paper GT2006-90622, 2006.
    [74] Mahdi N, Durari M. Experimental & numerical investigation of a centrifugal compressor and numerical study of the area ratio and tip clearance effects on the performance characteristic. ASME Paper GT2008-50969, 2008.
    [75]杨策,马朝臣,老大中.几何参数变化对离心压气机性能影响的仿真研究.动力工程, 2002, 22(4):272-276.
    [76]张虹,马朝臣.车用涡轮增压器压气机叶轮几何参数优化设计与性能分析.北京理工大学学报, 2005(1):22-25.
    [77]刘瑞韬,徐忠.叶片数及分流叶片位置对压气机性能的影响.工程热物理学报, 2004, 25(2):223-225.
    [78] Anderson M B, Gebert G A. Using pareto genetic algorithms for preliminary subsonic wing design. AIAA 96-4023-cp, 1996.
    [79] Vicini A, Qungliarella D. Inverse and direct airfoil design using a multiobjective genetic algorithm. AIAA Journal, 1997, 35(9):1499-1505.
    [80] Oyama A, Liou M S. Multiobjective optimization of a multi-state compressor using evolutionary algorithm. AIAA 2002-3535, 2002.
    [81] Benini E. Three dimensional multi-objective design optimization of a transonic compressor rotor. Journal of Propulsion and Power, 2004, 20(3):559-565.
    [82] Demeulenaere A, Ligout A, Hirsch C. Application of multipoint optimization to the design of turbomachinery blades. ASME Paper GT2004-53110, 2004.
    [83] Vo? C, Aulich M, Kaplan B, et al. Automated multiobjective optimization in axial compressor blade design. ASME Paper GT2006-90420, 2006.
    [84] Demeulenaere A, Ligout A, Hirsch C. Application of multipoint optimization to the design of turbomachinery blades. ASME Paper GT2004-53110, 2004.
    [85] Li Jun, Feng Zhenping. Multiobjective optimization approach to turbomachinery blades design. ASME Paper GT2005-68303, 2005.
    [86] Song Liming, Feng Zhengping, Li Jun. Shape optimization of turbine stage using adaptive range differential evolution and three-dimensional Navier-Stokes solver. ASME Paper GT2005-68280, 2005.
    [87]宋立明,李军,丰镇平,等.基于多目标优化的透平叶栅变工况设计方法.航空动力学报, 2007, 22(9):1499-1504.
    [88]赵洪雷,王松涛,韩万金,等.多级涡轮多工况气动优化设计研究.航空动力学报, 2008, 23(1):106-11.
    [89]何坤,陈志鹏,袁新.离心压气机叶片三维气动优化设计.工程热物理学报, 2009, 30(3):393-396.
    [90]刘峥,张扬军.内燃机一维非定常流动.北京:清华大学出版社, 2007.
    [91]任玉新.计算流体力学基础.北京:清华大学出版社, 2006.
    [92] Wilcox D C. Turbulence modeling: An overview. AIAA Paper 2001-0724, 2001.
    [93] Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes. AIAA Paper 81-1259, 1981.
    [94] Arnone A. Viscous analysis of three-dimensional rotor flow using a multigrid method. ASME Paper 93-GT-19, 1993.
    [95] Martinelli. Calculation of viscous flows with multigrid methods [PhD Thesis]. Princeton University, MAE Department, 1987.
    [96] Jameson A, Baker T J. Solutions of the Euler equations for complex configurations. AIAA Paper 83-1929, 1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700