用户名: 密码: 验证码:
高分散负载型纳米Pd基加氢催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负载型纳米Pd基催化剂由于其优异的催化活性和选择性,被广泛应用于芳香化合物和芳香硝基化合物的选择性催化加氢反应中。传统的浸渍法工艺,易造成Pd纳米粒子团聚和分散不均匀。与传统工艺相比,采用保护剂化学还原法制备的纳米Pd基催化剂具有Pd粒径小且分布窄的优点,但由于现在所选用的制备方法和保护剂类型的限制,得到的催化剂稳定性不好,使用寿命较短,且工艺仍十分复杂,限制了其应用。本文从寻找新的保护剂种类,简化制备工艺以提高催化性能方面进行了研究,提出了一种新型的方法。采用两种非离子表面活性剂Tween-20和Brij-35作为保护剂,NaBH_4作还原剂,以水为反应介质,不加入任何有机溶剂,根据载体的不同性质,从两种不同的合成工艺路线,制备了分别负载于活性碳、Al_2O_3、TiO_2、SiO_2几种载体上的纳米Pd基催化剂;采用TEM、XRD、ICP和SEM等对其结构特征进行了表征;考察了其在几种典型的双环芳香化合物和芳香硝基化合物的选择性催化加氢反应中的催化性能。
     以两种非离子表面活性剂Brij-35和Tween-20作为保护剂,采用合成路线一先还原后负载的方法,用NaBH_4还原制备了负载量为4%、5%和10%Pd/C的催化剂。由于Pd纳米粒子受到表面活性剂的保护,Pd纳米尺寸有效地控制在2-4 nm之间。海绵状的Pd纳米晶高度分散在活性碳载体的表面,每个Pd纳米晶均是由多个2-4 nm的Pd纳米粒子组成,并且随着Pd的负载量的增加,可以形成非晶态Pd_2B化合物。采用路线二先负载后还原的方法,制得了5%Pd/Al_2O_3和Pd/SiO_2催化剂,并且用两种制备路线制得2.5%Pd/TiO_2催化剂,这三种催化剂Pd纳米微粒均匀地分散在载体的表面和孔道中,不具有Pd/C催化剂的海绵状Pd纳米晶结构,Pd的纳米粒径在2-4 nm之间。
     以10%Pd/C作催化剂,选择性液相催化加氢对羟基联苯的制备对环己基苯酚。在优化的反应条件140℃、3.5MPa下,以THF取代了文献中报道的腐蚀性的乙酸作溶剂,对环己基苯酚的收率高达92.3%。采用浓度为1wt%-2.5wt%NaOH溶液和甲苯辅助萃取的方法可以有效地将对环己基苯酚从加氢产物中分离出来,对环己基苯酚的收率高达95%。
     以α-萘酚(NP-OH)液相选择性催化加氢反应为对象,乙醇作溶剂,考察了2.5%Pd/TiO_2催化剂的催化性能。NP-OH的加氢产物由两种四氢产物(THNol),四氢萘酮(Tetralon)和四氢萘(THN)组成,无全加氢产物十氢萘生成。反应机理研究表明该反应是一个复杂的平行连串反应。1,2,3,4-THNol证明是由中间体四氢萘酮进一步加氢后得到,1,2,3,4-THNol继续加氢后发生脱羟基反应转化为THN的速率要高于5,6,7,8-THNol转化的速率,反应条件的控制将影响NP-OH的加氢产物分布,在优化的反应条件140℃,2.6MPa下,1,2,3,4-THNol的收率高达46.3%,该值远高于当前文献报道的结果。
     以5%Pd/C作催化剂,高选择性液相催化加氢喹啉制备1,2,3,4-四氢喹啉(py-THQ),在优化的反应条件125℃,3.0MPa下,喹啉的转化率达到100%,py-THQ的选择性达到99.7%。反应过程中生成的中间产物吸附在Pd/C催化剂的活性位使其在二次循环中失活。将催化剂用溶剂反复洗涤后,活性基本可以恢复。以4%Pd/C作催化剂,温和条件下高选择性催化加氢8-羟基喹啉(8-Qol)制备8-羟基-1,2,3,4-四氢喹啉(1,2,3,4-THQol),优化的反应条件:温度100-120℃,压力2.0-2.5MPa,原料浓度3-4g/30ml MeOH,反应时间在1-2 h,原料100%转化,1,2,3,4-THQol的收率高于98.5%。
     将负载于Al_2O_3、C和TiO_2三种载体上的Pd基催化剂分别应用于4-硝基邻苯二甲腈(4-NPN)选择性还原制备4-氨基邻苯二甲腈(4-APN)的反应当中,三种催化剂对4-NPN的加氢反应的速率大小顺序为:Pd/Al_2O_3>Pd/TiO_2>Pd/C,三种催化剂的使用寿命顺序为:Pd/Al_2O_3>Pd/C>Pd/TiO_2。Pd/Al_2O_3表现出最高的催化活性,在优化的反应条件80℃、0.6Mpa、原料浓度0.64mol/L、45min下,4-APN的收率高于99.7%,催化剂连续循环14次后,仍能在80℃时使原料100%转化,采用本方法制备的Pd基催化剂可以大大提高4-APN的产率。
     将5%Pd/C催化剂用于邻、间、对氯代硝基苯的选择性加氢反应中,不需要加入任何脱氯抑制剂,氯代芳胺的选择性在第二次循环后均在99%以上,催化剂进入稳定期后选择性均保持在100%。该催化剂对邻、间、对氯代硝基苯加氢反应的速率大小为:对位>间位>邻位,在催化剂活性进入稳定期后,在反应压力2.5MPa下,反应温度分别在130℃、120℃、110℃下,反应3h,邻、间、对氯代硝基苯的转化率达到100%,氯代芳胺的选择性均保持在100%。催化剂可连续套用40次,活性保持不变。
Supported Pd catalysts are widely used in selective hydrogenation of aromatics and reduction of nitroaromatic compounds due to their excellent catalytic activity and seletivity. The traditional impreganation process for preparation of supported Pd catalysts usually resulted in aggregation of Pd nanoparticles and low dispersion.Comparing with the conventional process,chemical reduction method with protection agents can prepare smaller nanosize Pd particles with high dispersion.At present,due to the limitation of the categories of protecting agentst,the supported catalysts prepared from this method still exist some problems such as short catalytic life,instability,complicated procedures and so on.In this work,we have developed a new technical process to prepare supported nano-Pd catalysts by using mixture of laurylether(Brij-35) and sorbitanmonolaurate(Tween-20) as binary stabilizing surfactants.Pd nanoparticles were obtained by chemical reduction of chloropalladium acid(H_2PdCl_4) with sodium borohydride(NaBH_4) in aqueous solution without any organic solvent.According to the properties of different supports,the preparation procedure was typically designed by two routes.We prepared four series of supported nano-Pd catalysts on different carriers including C,Al_2O_3,TiO_2 and SiO_2.The microstructure of supported Pd catalysts was characterized by means of TEM,XRD,ICP and SEM.The catalytic activity of supported nano-Pd catalyst was tested in several typical probe reactions including selective hydrogenations of bicyclic and nitro-aromatic compounds.
     Pd/C catalysts with different Pd loading amount 4wt%,5wt%and 10wt%were prepared from Route No.1 first reduction then support using Brij-35 and Tween-20 as protection agents. Well-dispersed Pd particles measuring 2-4nm were successfully prepared without aggregation. Both Tween-20 and Brij-35 were proved to be suitable for our purposes.Sponge-like nano-Pd crystals were highly dispersed on the surface of active carbon.Simultaneously,the spong-like Pd nanocrystals consist of several nano-Pd particles in the nanometric size rang 2-4nm.The amorphous Pd_2B compound may be formed with increasing Pd loading amount of Pd/C catalyst.5%Pd/Al_2O_3 and 5wt%Pd/SiO_2 were prepared from Route No.2 first support then reduction and 2.5wt%Pd/TiO_2 from both routes.Pd nanoparticles with the average size of 2-4nm in above three catalysts were highly dispersed on the surface and inside pores of the support without the formation of sponge-like nano-Pd crystals.
     The hydrogenation of p-phenylphenol(p-PP) can be regioselectively performed to produce p-cyclohexylphenol(p-CP) by using 10wt%Pd/C catalyst.The selectivity of p-CP can be as high as 92.3%at 413 K,3.5 MPa when the conversion of p-PP is 100%.THF is an effective solvent for the reaction which can successfully replace the corrosive acetic acid as reported in previous patent,p-CP can be separated and purified by using aqueous NaOH solution and toluene extraction,giving rise to 95%yield of separation and 99.9%high purity p-CP.
     2.5wt%Pd/TiO_2 was examined for the partial hydrogenation of 1-naphthol(NP-OH) in EtOH solvent.The hydrogenation products consist of tetrahydronaphthols(THNols),tetralone and tetralin(THN) without the formation of decaline.Kinetic study proved that the reaction was a complicated one containing multi-step parallel and consecutive hydrogenations. Tetralone was an intermediate for the hydrogenation of NP-OH to 1,2,3,4-THNol.Further hydrogenation of THNol to THN occur faster from 1,2,3,4-THNol than from 5,6,7,8-THNol. The 1,2,3,4-THNol selectivity can be up to 46.3%under 140℃,2.6MPa with 100% conversion of NP-OH.It is very important to optimize the pressure,reaction temperature, reaction time as well as catalyst in order to reach high 1,2,3,4-THNol selectivity.
     Selective hydrogenation of quinoline over 5wt%Pd/C catalyst in liquid phase gave rise mainly to 1,2,3,4-tetrahydroquinoline(py-THQ).High regioselectivity of py-THQ was up to 99.7%under 125℃,3.0MPa,3h when the conversion was 100%.The reaction intermediates were responsible for the catalyst deactivation in the second run.However,catalytic activity of the catalyst could be almost recovered through washing it repeatedly with organic solvent. Partial hydrogenation of 8-quinolinol(8-Qol) to 1,2,3,4-tetrahydroquinolinol(1,2,3,4-Qol) was performed over 4wt%Pd/C catalyst under mild conditions.Selectivity of 1,2,3,4-Qol 98.5%was obtained under optimized conditions of 100-120℃,2.0-2.5MPa,concentration of raw material 3-4g/30ml MeOH within reaction time 1-2h with 100%conversion.
     Hydrogenation of 4-nitrophthalonitrile(4-NPN) was studied under mild conditions over supported Pd catalysts.The influence of various reaction parameters and the effect of different support were investigated.The hydrogenation rate was dramatically affected by the property of supports.The hydrogenation rate increases in the order:Pd/Al_2O_3>Pd/TiO_2>Pd/C and the catalytic life increases in the order:Pd/Al_2O_3>Pd/C>Pd/TiO_2.Pd/Al_2O_3 catalyst exhibited the best activity and longest lifetime.Under optimized conditions of 80℃,0.6 MPa and concentration of raw material 0.64 mol/L,45min,the yield of 4- aminophthalonitrile (4-APN) was up to 99.7%with 100%conversion of 4-NPN.The Pd/Al_2O_3 was repeatedly used for 12 times and kept 100%conversion of 4-NPN and high yield of 4-APN,indicating excellent stability.
     5wt%Pd/C catalyst was applied in selective hydrogenation of chloronitrobenzenes(CNBs) with no addition of dechlorine inhibitors.An induction period of the catalyst performance was observed.The hydrogenation rates of different CNBs over Pd/C were dramatically affected by the position of substituent -Cl group.The reaction rates increased in the order of p->m->o-Effects of various reaction parameters were investigated after the induction period.When the reaction pressure was set to 2.5MPa and reaction time of 3h,the conversion of o-,m- and p-CNB were all up to 100%at different temperature of 403K,393K,383K,and selectivity to the corresponding CANs were 100%.The catalyst can be repeatedly used for 40 runs with 100%conversion of the CNBs.
引文
[1]Jardine F H,Osborn J A,Wilkinson G.Further studies on the homogeneous hydrogenation of olefins using tris(triphenylphosphine)halorhodium(I)catalysts.Journal of Chemical Society,1967,(10):1574-1578.
    [2]Aramendia M A,Borau V,Jimenez C,et al.Hydrogenation of xylenes over supported platinum catalysts:influence of different variables on their catalytic activity.Reaction Kinetics and catalysts letters,1992,46(2):305-312.
    [3]Leon C A,Albert V M.Adsorption and catalytic properties of palladium/silica,copper/silica,and palladium-copper/silica systems.Ⅲ.Carbon monoxide and benzene hydrogenation over palladium-copper/silica catalysts.Applied Catalysis A:General,1991,69(2):305-321.
    [4]牛玉舒,李保山,全名秀等.发泡非晶态合金对苯加氢的催化性能.石油化工高等学校学报,2001,14(1):6-9.
    [5]杜曦.活性炭负载Ru,Pd,Co等单金属或双金属催化剂对不同芳环液相加氢反应的研究:(硕士学位论文).四川:四川大学,2004.
    [6]Schmitz A D,Grainne B,Song C S.Shape-selective hydrogenation of naphthalene over zeolite-supported Pt and Pd catalysts.Catalysis Today,1996,31(1-2):45-56.
    [7]Shawn D,Song C S,Noble metal catalysts for low-temperature naphthalene hydrogenation in the presence of benzothiophene.Catalysis Today.1996.31(1-2):93-104.
    [8]熊前政,刘智凌,廖文文等.对叔丁基苯酚催化加氢制备顺式对叔丁基环己醇.精细化工中间体,2002,32(2):25-30.
    [9]黎耀忠,程傅明,陈华.硝基苯锌粉法合成对氨基苯酚的研究.石油化工,1998,27(8):557-560.
    [10]孙令衔等.燃料中间体化学及工艺学.北京:高等教育出版社,1958:134.
    [11]Roll.Preparation of 2,2'-dichlorohydrabenzene.US2794046,1957.
    [12]Holly.Preparation of high yield 2,2'-dichlorohydrobenzene.US3831190,1974.
    [13]Somo T,Vogel U.2,2'-dichlorohydrazobenzene.EP05211,1979.
    [14]胡拖平.二氯代(2,5;3,4-)硝基苯的催化加氢制二氯代苯胺的研究:(硕士学位论文).大连:大连理工大学,2000.
    [15]井口帮敏.芳香族氢化偶氮苯的制造方法.JP6396166,1988.
    [16]Toda M,Tao K Y.Process for preparation of 2,2'-dicholorohydrazobenzene.JP6339848,1988.
    [17]Zguchi K,Senba H.Process for preparation of hydrazobenzens by reductive dimeriization of nitrobenzenes.JP6339848,1988.
    [18]Beck F,Wear mechanisms of anodes.Electrochem.Acta,1989,34(6):811-822.
    [19]Noel M,Anantharaman P N,Udupa H V K.An electrochemical technique for the reduction of aromatic nitro compounds.Journal of Applied Electrochemistry,1982,12(3):291-298.
    [20]Okuda H;Saji K.Electrolytic reduction of chloronitrobenzene.I.Effect of additives.Science and Ind.1954,28:314-317.
    [21]Udupa K S,Subrarnanian G S.Rotating cathode type cell for reduction of o-chloronitrobenzene to 2,2'-dichlorohydrazobenzene.Bulletin de l'Academie Polonaise des Sciences,Serie des Sciences Chimiques.1961,9(9):541-6.
    [22]Tafesh A,Beller M.First selective reduction of aromatic nitro compounds using water-soluble catalysts.Tetrahedron Letters.1995,36(51):9305-9308.
    [23]Nomura K,Efficient selective reduction of aromatic nitro compounds by ruthenium catalysis under CO/H_2O conditions.Journal of Molecular Catalysis A Chemical,1995,95(3):203-210.
    [24]彭爱东.硒催化芳香硝基物还原制芳胺的反应研究:(中国科学院大连化学物理研究所硕士论文).大连:大连化学物理研究所,2002.
    [25]Jin Z L,Zheng X L,Fell B.Thermoregulated phase transfer ligands and catalysis.I.Synthesis of novel polyether-substituted triphenylphosphines and application of their rhodium complexes in two-phase hydroformylation.Journal of Molecular Catalysis,1997,116(1-2):55-28.
    [26]Xi Z W,Ning Z,Yu Sun,et al.Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide.Science,2001,292(5519):1139-1141.
    [27]Werner,Preparation of 2,2'-dichlorohydrazobenzene.US Pat AppI,US3156724,1996.
    [28]Zguchi K,Senba H.Preparation of aromatic hydraro compound.JP0264753,1990.
    [29]Herrmann,Hans J.Hydrazo by catalytic hydrogenation of nitrobenzenes.DE2833605,1980.
    [30]Greuter H,Martin P,Preparation of 3-3'-dicholorobenzidine.DE2733741,1978.
    [31]Maki H.Preparation of aromatic hydraro compounds.EP391606,1990.
    [32]姚蒙正,程侣柏等.精细化工合成原理.北京,中国石化出版社,1992,353.
    [33]Kuemmerle K,Albers A.Aminobenzenes,Ger Often.2240849,1974.
    [34]徐善利.Pd/C催化加氢法制备2,2',5,5'-四氯联苯胺:(硕士学位论文).大连:大连理工大学,2006.
    [35]贾志刚.液相催化加氢法制取芳胺:(硕士学位论文).南京:南京工业大学,2004.
    [36]周春晖.贵金属钯催化剂的研究现状和发展前景.化工生产与技术,2001,7(1):12-16.
    [37]王法强.丙烯腈常压气相加氢氢氧化铝负载钯、镍催化剂及动力学研究:(硕士学位论文).上海:上海师范大学,2003.
    [38]方岩雄等.Pd/C催化剂制备条件对一步合成对乙酰氨基酚的影响.科研开发,2000,8(2):20-22
    [39]尹桂林等.CO在Pd/Y分子筛上吸附性能的考察.天然气化工,1991,16(2):13-17.
    [40]张明珠等.Pd/Al_2O_3-SiO_2催化剂在丙酮一步合成MIBK反应重的寿命与再生.精细石油化工,1998,(2):15-18.
    [41]廖辉生等.钯层粘土加氢裂化催化剂及其性能.石油炼制与化工,1999,30(17):35-38.
    [42]刘雪暖等.Pd/HZSM催化剂异构化反应特性的研究.石油化工高等学校学报,2000,13(3):9-12.
    [43]江琦.担载型催化剂CO加H_2甲烷化反应的催化性能.贵金属,1998,(2):17-22.
    [44]Lunsford J M.The catalytic conversion of methane to higher hydrocarbons.Studies in Surface Science and Catalysis,1991,61:3-13.
    [45]周碧.Pd-Pt/HM催化剂上含氮化合物的氧化降解.现代化工,1997,(12):28-29.
    [46]施介华等.Pd-Cu/Al2O3双金属及其单金属催化剂的TPR特性.石油化工,1994,23(7):426-431.
    [47]刘菁等.(PdCl_2-PVP)/Al_2O_3催化剂中Pd的状态探讨.分子催化,1992,6(1):32-37.
    [48]张振权等.纤维素氮磷-钯络合物合成及催化加氢的研究.东北师大学报,1990,11(4):61-66.
    [49]李增敏.Pd-Bi/吸附树脂催化剂催化氧化L-山梨糖的性能.催化学报,1990,11(2):106-114.
    [50]赖伍江等,Pd-SiO_2-碱土金属M++间作用本质及其对CO加氢作用,化学物理学报,1990,3(2):85-93.
    [51]宗惠娟等.马来酸-苯乙烯共聚物-钯络合物催化剂在加氢反应中的变化及钯的研究.功能高分子学报,1990,3(2):143-148.
    [52]高燕等.PVP负载Pd-Co催化剂催化六氯苯的加氢脱氢.催化学报,1999,20(3):236-238.
    [53]周仁贤等,氧化铈对Pd/Al_2O_3表面上CO氧化性能的影响.高等化学学报,1996,117(3):443-446.
    [54]王幸宜等.钯铜锰铈三效催化剂性能研究.环境科学学报,1994,(14):403-408.
    [55]Unnikrishnan R P,Endalkachew S D,Strontium as an efficient promoter for supported palladium hydrogenation catalysts.Applied Catalyst A General.,2005,281(1-2):31-38.
    [56]N Marin-Astorga,Pecchi G,Fierro J L G,et al.A comparative study of Pd supported on MCM-41 and SiO_2 in the liquid phase hydrogenation of phenyl alkyl acetylenes mixtures.Journal of Molecular Catalyst A Chemical.,2005,231(1-2):67-74.
    [57]杨永辉,林彦军,冯俊亭等,超生浸渍法制备Pd/Al_2O_3催化剂及其催化蒽醌加氢性能.催化学报,2006,27(4):304-308.
    [58]金荣华,陈一飞,李和兴等,负载Pd氢化催化剂及其制备方法,使用该催化剂的苯酚制备环己酮的方法,中国,CN1519052,2004.
    [59]Barrio V L,Arias P L,Cambra J F,et al.Modification of the Pd/SiO2-Al2O3 catalyst's thioresistance by the addition of a second metal(Pt,Ru,and Ni).Catalysis Communication.,2004(5):173-178.
    [60]周玲玲,肖述章,徐祖辉等.镧系元素对Pd/Al_2O_3的修饰及其与丙烯腈气相加氢的关联.化学研究与应用,2006,18(7):812-817.
    [61]Junitsu S,Hirotoshi S,Nobuo T,et al.Comparison of dinitrodiamminepalladium with palladium nitrate as a precursor for Pd/SiO_2 with respect to catalytic behavior for ethane hydroformylation and carbon monoxide hydrogenation.Catalyst Letters,2005,99(3-4):257-261.
    [62]南军,柴永明,李彦鹏等.重整生成油选择性加氢脱烯烃Pd基催化剂的研究.石油学报,2006,22(5):20-25.
    [63]Narayanan S,Krishna,K.K.Hydrotalcite-supported palladium catalysts.Part Ⅰ.Preparation,characterization of hydrotalcites and palladium hydrotalcites for CO chemisorption and phenol hydrogenation.Applied Catalysis,A:General,2000,174(1):221-229-21.
    [64]Narayanan S,Krishna,K.Hydrotalcite-supported palladium catalysts.Part Ⅱ.Preparation,characterization of hydrotalcites and palladium hydrotalcites for CO chemisorption and phenol hydrogenation.Applied Catalysis,A:General,2000,198(1,2):13-21.
    [65]Narayanan S,Krishna,K.Stucture activity relationship in Pd/hydrotalcite:effect of calcination of hydrotalcite on palladium dispersion and phenol hydrogenation.Catalysis Today,1999,49(1-3):57-63.
    [66]Nagendranath M,Vishwanathan V.Gas phase hydrogenation of phenol over supported palladium catalysts.Catalysis Today,1999,49(1-3):65-69.
    [67]Mahata N,Raghavan K V,Vishwanathan V.Influence of alkali promotion on phenol hydrogenation activity of palladium/alumina catalysts.Applied Catalysis A:General,1999,182(1):183-187.
    [68]Chen Y Z,Liaw C W,Lee L I.Selective hydrogenation of phenol to cyclohexanone over palladium supported on calcined Mg/Al hydrotalcite.Applied Catalysis A:General,1999,177(1):1-8.
    [69]In Young Ahn,Woo J K,Sang H M.Performance of La2O3-or Nb2O5-added Pd/SiO_2.catalysts in acetylene hydrogenation.Applied Catalysis A:General,2006,308:75-81.
    [70]Song J R,Wen L X,Shao L,et al.Preparation and characterization of novel Pd/SiO_2 andCa-Pd/SiO2egg-shell catalysts with porous hollow silica.Applied Surface Science,2006,253(5):2678-2684.
    [71]Joongjai P,Kanda P,James G G J,et al.A comparative study of Pd/SiO_2 and Pd/MCM-41 catalysts in liquid-phase hydrogenation.Catalysis Communications,2004,5(10):583-590.
    [72]Joongjai P,Kunnika P,Piyasan P,et al.A comparative study of liquid-phase hydrogenation on Pd/SiO_2in organic solvents and under pressurized carbon dioxide:Activity change and metal leaching/sintering.Journal of Molecular Catalysis A:Chemical,2006,253(1-2):20-24.
    [73]Joongjai P,Orathai t,Piyasan P,et al.Effects of Pd precursors on the catalytic activity and deactivation of silica-supported Pd catalysts in liquid phase phydrgenation.Applied Catalysis A:General,2005,292:322-327.
    [74]罗雄军,严新焕,孙军厌等.非晶态Pd-B/Al_2O_3催化剂用于邻氯硝基苯加氢合成邻氯苯胺的研究.高校化学工程学报,2006,20(3):476-480.
    [75]Patricia A R-D,Marcelo G S,Edesia M B S,et al.Selective hydrogenation of myrcene catalyzed by sol-gel Pd/SiO_2.Applied Catalysis A:General,2005,295(1):52-58.
    [76]Bendaoud N,Catherine E,Gwendoline L,et al.Palladium supported catalysts for the selective hydrogenation of sunflower oil.Journal of Molecular Catalysis A:Chemical,2005,229(1-2):117-126.
    [77]夏树伟,高林娜.高分子保护金属铜胶体催化剂的制备.中国海洋大学学报,2006,36(1):131-134.
    [78]Takafumi T,Kunio E,Kenjiro M.Preparation of organopalladium sols by thermal decomposition of palladium acetate.Journal of Colloid and Interface Science,1989,133(2):530-537.
    [79]John S B,Ernestine H,Michaele E L,et al.Clusters,Colloids and Catalysis.Journal of Molecular Catalysis,1987,41(1-2):59-74.
    [80]Enoston B V,Turkevich J.Coagulation of colloid gold.Journal of American Chemical Society,1963,85(21):3317-3328.
    [81]Yanase A,Komiyama H.In situ observation of oxidation and reduction of small supported copper particles using optical absorption and X-ray diffraction.Surface Science,1991,248(1):11-19.
    [82]Kralik M,Biffis A.Catalysis by metal nanoparticles supported on functional organic polymers.Journal of Molecular Catalysis A:Chemical,2001,177(1):113-138.
    [83]Rideal E K.Catalytic hydrogenation with protected hydrosols.Journal of American Chemical Society,1920,42:749-756.
    [84]Louis D,Rampino,F.F.Nord.Preparation of Palladium and Platinum Synthetic High Polymer Catalysts and the Relationship between Particle Size and Rate of Hydrogenation.Journal of the American Chemical Society,1941,63(10):2745-2749.
    [85]Kavanagh K E,Nord F F.Systematic studies on Pd-synthetic high-polymer catalysts.Journal of American Chemical Society,1943,65:2121-2125.
    [86]Turkevich J,Hubbell H H.Low-angle x-ray diffraction of colloidal gold and carbon black.Journal of American Chemical Society,1951,73:1-7.
    [87]Hirai H,Chawanya H,Toshima H.Colloidal palladium protected with poly(N-vinyl-2-pyrrolidinone)for selective hydrogenation of cyclopentadiene.Reactive Polymers,1985,3(2):127-141.
    [88]Hirai H,Yakura N,Seta Y,et al.Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst.Reactive & Functional Polymers,1998,37(1-2):121-131.
    [89]Toshima N,Yonezawa T,Kushihashi K.Polymer-protected palladium-platinum bimetallic clusters:preparation,catalytic properties and structural considerations.Journal of the Chemical Society,Faraday Transactions,1993,89(14):2537-2543.
    [90]Harada M,Asakura K,Toshima N.Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(Ⅲ) and palladium dichloride.Journal of Physical Chemistry,1993,97(19):5103-5114.
    [91]Toshima N,Wang Y.Preparation and Catalysis of Novel Colloidal Dispersions of Copper/Noble Metal Bimetallic Clusters.Langmuir,1994,10(12):4574-4580.
    [92]William W Yu,Liu H F.Singular modification effects of metal cations and metal complex ions on the catalytic properties of metal colloidal nanocatalysts.Journal of Molecular Catalysis A:Chemical,2006,243(1):120-141.
    [93]Yu W Y,Liu M H,Liu H F et al.Preparation of Polymer-Stabilized Noble Metal Colloids.Journal of colloid and interface science,1999,210(1):218-221.
    [94]Liu M H,Yu W Y,Liu H F et al.Preparation and characterization of polymer-stabilized ruthenium-platinum and ruthenium-palladium bimetallic colloids and their catalytic properties for hydrogenation of o-chloronitrobenzene.Journal of Colloid and Interface Science,1999,214(2):231-237.
    [95]Boutonnet M J,Kizling J.Monodiseperse colloidal metal particles from aqueous solutions.Journal of Catalyst,1987,103(1):95-104.
    [96]Boutonnet M J,Kizling J.The properation of monodisperse colloidal metal particles from microemulsions.Colloidal and surfaces.1982.5(3):209-225.
    [97]康保安,胡翠英,张明慧.微乳法制备负载型胺化催化剂的研究.精细石油化工,2002,5:11-13.
    [98]Persson K,Thevenin P O,Jansson K,et al.Preparation of alumina-supported palladium catalysts for complete oxidation of methane.Applied Catalysis A:General,2003,249(1):165-174.
    [99]王笃金,吴瑾光,徐光宪.反胶团或微乳液法制备超细颗粒的研究进展.化学通报,1995,9:1-5.
    [100]Carter J L,Cusumano J A,Sinfelt J H.Catalysis over supported metals.V.The effect of crystallite size on the catalytic activity of nickel.Journal of Physical Chemistry,1966,70(7):2257-2263.
    [101]Kinge S,Bonnemann H.Optimization of colloidal nanoparticle synthesis via NR_4(Bet_3H) reduction.Applied Organometallic Chemistry,2005,19(6):750-758.
    [102]Bonnemann H,Brijoux W,Siepen K,et al.Surfactant stabilized palladium colloids as precursors for cis-selective alkyne-hydrogenation catalysts.Applied Organometallic Chemistry,1997,11(10-11):783-790.
    [103]Srividhya K,Dai J H,Li J,et al.Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers.Journal of American Society,2004,126(9):2658-2659.
    [104]Srividhya K,Merlin L B.Multilayered polyelectrolyte films containing palladium nanoparticles:synthesis,characterization,and application in selective hydrogenation.Chemistry Material,2005, 17(2):301-307.
    [105]Kratky V,Kralik M,Mecarova M et al.Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes.Applied Catalysis A:General,2002,235(1-2):225-231.
    [106]John T,Gwan K.Palladium:Preparation and catalytic properties of particles of uniform size.Science,1970,169(3948):873-879.
    [107]Wang Y,Liu H F,Jiang Y Y.A.New method for immobilization of poly-protective colloidal platinum metals via co-ordination capture with anchored ligands synthesis of the first example of a mercapto-containing supported metallic catalyst for hydrogenation of alkenes with high activity.Journal of the Chemical Society,Chemical Communications,1989,(24):1878-1879.
    [108]Yu W Y,Liu M H,Liu H F et al.Immobilization of polymer-stabilized metal colloids by a modified coordination capture:preparation of supported metal colloids with singular catalytic properties.Journal of Molecular Catalysis A:Chemical,1999,142(2):201-211.
    [109]Bonnemann H,G A Braun.Enantioselective hydrogenations on platinum colloids.Angewandte Chemie,International Edition in English,1996,35(17):1992-1997.
    [110]Bonneman n H,Braun G A.nantioselectivity control with metal colloids as catalysts.Chemistry—A European Journal,1997,3(8):1200-1202.
    [111]Huck W,Mallt T,Baiker A.Non-linear effect of modifier composition on enantio selectivity in asymmetric hydrogenation over platinum metals.Advanced Synthesis & Catalysis,2003,345(1-2):255-260.
    [112]Studer M,Enantioselective hydrogenation using heterogeneous modified catalysts:An update.Advanced Synthesis & Catalysis,2003,354(1-2):45-65.
    [113]骆成才.可回收过渡金属催化剂的制备及其在Heck反应中的应用研究:(博士学位论文).浙江:浙江大学,2007.
    [114]郭方.纳米钌/炭催化剂的制备表征及应用研究:(硕士学位论文).大连:大连理工大学.2007
    [115]Arena B J.Hydrogenating aqueous solutions of carbohydrates.US Pat Appl,US4380680,1983.
    [116]Arena B J.Hydrogenation in aqueous solutions.US Pat Appl,US4413152,1983.
    [117]Pannetier,Guy;Hoogewys,Marcel.Ruthenium chloride catalyst for hydrogenation.Fr.Demande.FR 2526782,1983.
    [118]Backman L B,Rautiainen A,Lindbald M,et al.Effect of support and calcination on the properties of cobalt catalysts prepared by gas phase deposition.Applied Catalysis A:General,2000,191(1-2):55-68.
    [119]Takeshi K,Mitsuyoshi Y,Tadashi Y.Selective nuclear hydrogenation of naphthalene,anthracene and coal-derived oil over Ru supported on mixed oxide.Applied Catalysis A:General,1997,164(1-2):323-3332.
    [120]Lin S D,Vannice M A.Hydrogenation of aromatic hydrocarbons over supported platinum catalysts.Ⅱ.Toluene hydrogenation.Journal of Catalysis.1993,143(2):554-62.
    [121]史泰尔斯等.催化剂载体与负载催化剂.中国石化出版社,1989.
    [122]Juentgen H.Activated carbon as catalyst support.A review of new research results.Fuel 1986,65(10):1436-46.
    [123]Baetzold R C.Semiempirical calculations for metal clusters.Isolated and adsorbed to carbon and silicon dioxide models.Journal of Physical Chemistry 1976,80:1504-1509.
    [124]Engelhard Industries,Process for the selective hydrogenation of phenylphenols and biphenyl lower alkyl ethers.GB Patent,GB 1068264,1967.
    [125]H.E.Ungnade,A.D.McLaren,The preparation of cyclohexanols by catalytic reduction of phenols.Journal of American Chemical Society,1944,66:118-122.
    [126]Musser D M,Adkins H.The selective hydrogenation of derivatives of naphthalene and diphenyl.Journal of American Chemical Society,1938,60:664-669.
    [127]Liu G B,Tsukinoki T,Kanda T,et al.Organic reaction in water.Part 2.A new method for dechlorination of chlorobiphenyls using a Raney Ni-al alloy in dilute aqueous alkaline solution.Tetrahedron Letters.1998,39:5991-5994.
    [128]Rylander P N,Steel D R.Process for the selective hydrogenation of biphenyl and dipyridyl and derivatives thereof.US Pat Appl,US3387048,1968.
    [129]Sakural H,Tsukuda T H,Hirao Y.Pd/C as a reusable catalyst for the coupling reaction of halophenols and arylboronic acids in aqueous media.Journal of Organic Chemistry,2002,67:2721-2722.
    [130]Schüth C,Reinhard M.Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water.Applied Catalysis B:Environmental,1998,18:215-221.
    [131]Tsukinoki T,Kanda T,Liu G B,et al.Organic reaction in water.Part 3:A facile method for reduction of aromatic rings using a Raney Ni-Al alloy in dilute aqueous alkaline solution under mild conditions.Tetrahedron Letters,2000,41:5865-5868.
    [132]Dieburg R E,Mühltal D E,Dieburg J K,et al.Cyclohexylbiphenyls,their preparation and use in dielectrics and electrooptical display elements.US Patent 4 330 426,1982.
    [133]Minabe M,Watanabe K,Ayabe Y,et al.Hydrogenation of 4-substituted biphenyls.Journal of Organic Chemistry,1987,52(9):1745-1748.
    [134]Choren E,El-Chaar L,Hernandez J O,et al.Catalyst characterization by a probe reaction.Cyclopropane hydrogenolysis and benzene hydrogenation on platinum-alumina catalysts.Journal of Molecular Catalysis,1992,72(1):85-95.
    [135]Aubert C,Durand R,Geneste P,et al.Factors affecting the hydrogenation of substituted benzenes and phenols over a sulfided nickel monoxide-molybdena/-alumina catalyst.Journal of Catalysis,1988,112(1):12-20.
    [136]Lin S D,Song C S.Noble metal catalysts for low-temperature naphthalene hydrogenation in the presence of benzothiophene.Catalysis Today,1996,31(1-2):93-104.
    [137]Shao J Y,Song C S.Regioselective hydrogenation of 1-naphthol over supported Pt and Pd catalysts for producing high-temperature jet fuel stabilizer.Catalysis Today,2001,65(1):59-67.
    [138]Jacquin M,Jones D J,Roziere J,et al.Novel supported Rh,Pt,Ir and Ru mesoporous aluminosilicates as catalysts for the hydrogenation of naphthalene.Applied Catalysis,A:General,2003,251(1):131-142.
    [139]吕连海,辛俊娜,杜文强等.一种由胶体溶液制备负载型纳米Pd/C催化剂的方法.中国,CN1966144.2007.
    [140]Xin J N,Lu L H,Wang Y,et al.Regioselective hydrogenation of p-phenylphenol to p-cyclohexylphen -ol over Pd/C catalyst.Catalysis Communication,2008(In press).
    [141]吕连海,胡爽,袁忠义等.一种高活性加氢催化剂骨架钌的制备和应用方法.中国,CN1775353,2006.
    [142]吕连海,辛俊娜,胡爽等.一种化学置换法制备纳米贵金属加氢催化剂的方法及应用.中国,CN1775361,2006.
    [143]吕连海,郭方,辛俊娜等.一种高活性加氢催化剂纳米Ru/C的制备方法.中国,CN1970143,2007
    [144]Velu S.,Kapoor M P,Inagaki S,et al.Vapor phase hydrogenation of phenol over palladium supported on mesoporous CeO_2 and ZrO_2.Applied Catalysis,A:General,2003,245(2):317-331.
    [145]Neri G,Visco A M,Donato A,et al.Hydrogenation of phenol to cyclohexanone over palladium and alkali-doped palladium catalysts.Applied Catalysis,A:General,1994,110(1):49-59.
    [146]Mahata N,Raghavan K V,Vishwanathan V,et al.Phenol hydrogenation over palladium supported on magnesia:Relationship between catalyst structure and performance.Physical Chemistry Chemical Physics,2001,3(13):2712-2719.
    [147]Xin J N,Xu Q,Zhang H,et al.GC-FTIR Analysis on Structural Isomers from Hydrogenation Products of p-Phenylphenol.Spectroscopy and Spectral Analysis,2008,28(4):784-787.
    [148]梁咏梅,刘文惠,史权等.重油催化裂化汽油中酚类化合物的分离分析[J].分析测试学报.2002.21(6):75-77.
    [149]史权.重油催化裂化柴油中酚类化合物的分离与鉴定.石油大学学报,2000,24(6):18-20.
    [150]舒元梯.取代酚酸性pKa的分子拓扑研究.西南民族大学学报(自然科学版),2003,29(6):674-475.
    [151]程倩,包伯荣,曹卫国.N-吡咯烷基—2—吡啶甲酰胺(NPPFA)对水溶液中苯酚的萃取行为.应用化学,2005,22(5):530-633.
    [152]张华,彭勤纪,李亚明等.现代有机波谱分析.化学工业出版社,2005,250-292.
    [153]Nishimura S,Ohbuchi S I,Ikeno K,et al.Hydrogenation and hydrogenolysis.ⅩⅦ.The selectivities of platinum group metals in catalytic hydrogenation of 2-naphthol and tetrahydro-2-naphthols.Bulletin of the Chemical Society of Japan,1984,57:2557-2564.
    [154]Freifelder M,Stone G R.Hydrogenation of 1-naphthol with rhodium catalyst.Journal of Pharmaceutical Sciences,1964,53:1134-1135.
    [155]Lu C M,Line Y M,Wang I.Naphthalene hydrogenation over Pt/TiO_2-ZrO_2 and behavior of strong metal-support interaction(SMSI).Applied Catalysis A:General,2000,198:223-234.
    [156]Lin S D,song C S,Noble metal catalysts for low-temperature naphthalene hydrogenation in the presence of benzothiophene.Catalysis Today,1996,31:93-104.
    [157]Park K C,Yim D J,Ihm S K.Characteristics of Al-MCM-41 supported Pt catalysts:effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation.Catalysis Today,2002,74:281-290.
    [158]Jacquin M,D.Jone J,Roziere J,et al.Novel supported Rh,Pt,Ir and Ru mesoporous aluminosilicates as catalysts for the hydrogenation of naphthalene.Applied Catalysis A:General,2003,251:131-141.
    [159]Albertazzi S,busca G,Finocchio E,et al.New Pd/Pt on Mg/Al basic mixed oxides for the hydrogenation and hydrogenolysis of naphthalene.Journal of Catalysis,2004,223,372-381.
    [160]Mine E,E.Haryu,K.Arai etc,Partial ring hydrogenation of naphthols over supported metal catalysts in supercritical carbon dioxide solvent.Chemistry Letters,2005,34(6):782-783
    [161]Koltunov K Y,Prakash G K S,Rasul G,et al.Superacid catalyzed reactions of 5-amino-1-naphthol with benzene and cyclohexane.Tetrahedron,2002,58:5423-5426.
    [162]Amer I,Amer H,Blum J,Hydrogenation of arenes by the RhCl3-aliquat 336 catalyst.Part 2.reduction of naphthalene derivatives to teralins.Journal of Molecular Catalysis,1986,34:221-228.
    [163]Radivoy G,Alonso F,Yus M.Reduction of sulfonates and aromatic compounds with the NiCl_22H_2O-Li-arene(cat.) combination.Tetrahedron.,1999,55:14479-14490.
    [164]Li C L,Xu Z R,Z.Cao A,et al.Hydrodeoxygenation of l-naphthol catalyzed by sulfided Ni-Mo/γ-Al2O3:Reaction network.AlChE Journal,1985,31:170-174.
    [165]Aubert C,Durand R,Geneste P,et al.Factors affectiong the hydrogenation of substituted benzenes and phenols over a sulfided NiO-MoO3/γ-Al2O3 catalyst.Journal of Catalysis,1988,112:12-20.
    [166]Curtis C W,Pellegrino J L.Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions.Energy & Fuels,1989,3:160-168.
    [167]Shao J Y,Song C S,Regioselective hydrogenation of 1-naphthol over supported Pt and Pd catalyst for producing high-temperature jet fuel stabilizer.Catalysis Today,2001,65:59-67.
    [168]Shirai M,Rode C V,Mine E,et al.Ring hydrogenation of naphthalene and 1-naphthol over supported metal catalysts in supercritical carbon dioxide solvent.Catalysis Today,2006,115:248-253.
    [169]C.V.Rode,U.D.Joshi,O.Sato,et al.Catalytic ring hydrogenation of phenol under supercritical carbon dioxide.Chemical Communication,2003,1960-1961.
    [170]Shore S G,Ding E,Park C,et al.Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts.Catalysis Communications,2001,3:77-84.
    [171]Marra A B,Francisco L L,Antida A,et al.The biphasic regioselective hydrogenation of benzo[b]thiophene and quinoline catalyzed by Ru species,deriving from the water soluble phosphine TPPTS and stabilized by nitrogen donor ligands.Journal of Molecular Catalysis A:Chemical,2002,189:211-217.
    [172]Ysaias A,Maria B,Francisco L L.Regioselective homogeneous hydrogenation of quinoline by use of pyrazolyl borate ligand and transition metal complexes.Journal of Molecular Catalysis A:Chemical,1999,142:163-167.
    [173]Gioia F,Murena F.Simultaneous catalytic hydroprocessing of chlorine-,nitrogen-,and sulphurcontaining aromatic compounds.Journal of Hazardous Materials,1998,57:177-192.
    [174] Massoth F E, Kim S C. Kinetics of the HDN of quinoline under vapor-phase conditions. Industrial & Engineering Chemistry Research, 2003, 42 : 1011-1022.
    [175] Jian M, Prins R. Mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al_2O_3 catalyst.Journal of Catalysis, 1998, 179 : 18-27.
    [176] Liu C G, Yu Y M, Zhao H J. Hydrodenitrogenation of quinoline over Ni-Mo/Al_2 O_3 catalyst modified with fluorine and phosphorus. Fuel Processing Technology, 2004, 86 : 449- 460.
    [177] Ken-ichi F, Chihiro K, Shigetoyo F, et al. Regio- and chemoselective transfer hydrogenation of quinolines catalyzed by a Cp*Ir complex. Tetrahedron Letters, 2004,45 : 3215-3217.
    [178] Frediani P, Pistolesi V, Frediani M, et al. Quinoline transfer hydrogenation by a rhodium bipyridine catalyst. Inorganica Chimica Acta, 2006, 359(9): 917-925.
    [179] Campanati M, Vaccari A, Piccolo O. Mild hydrogenation of quinoline 1. Role of reaction parameters.Journal of Molecular Catalysis A: Chemical, 2002, 179 : 287-292.
    [180] Campanati M, Casagrande M, Fagiolino I. Mild hydrogenation of quinoline 2. A novel Rh-containing pillared layered clay catalyst. Journal of Molecular Catalysis A: Chemical, 2002, 184 : 267-272.
    [181] Cavallo A S, Roje M, Barama A, et al. Partial hydrogenation of substituted pyridines and quinolines:a crucial role of the reaction conditions. Tetrahedron Letters, 2003,44 : 8501-8503.
    [182] Thomas B., Z-h Zhou, Niklaus K.and Tamas Mallat, et al. Enatioselective hydrogenation on chirally modified platinum: new insight into the adsorption mode of the modifier. Journal of Catalysis, 1999,183 : 405-408.
    [183] Wang W B, Lu S M, Yang P Y, et al. Highly enantioselective iridium-catalyzed hydrogenation of heteroaromatic coumpounds, quinolines. Journal of American Chemistry Society, 2003, 125 :10536-10537.
    [184] Jonathan M. Bonello, Robert L, Ashok K S, et al. On the orientation of quinoline on Pd {111}:implications for heterogeneous enantioselective hydrogenation. Journal of Physical Chemistry B, 2002,106:2672-2679.
    [185] Nijhuis T A, Koten G V, Moulijn J A. Optimized palladium catalyst systems for the selective liquid-phase hydrogenation of functionalized alkynes. Applied Catalysis A: General, 2003, 238 :259-271.
    [186] Nijhuis T A, Koten G V, Kapteijn F. Separation of kinetics and mass-transport effects for a fast reaction: the selective hydrogenation of functionalized alkynes. Catalysis Today, 2003, 79-80 :315-321.
    [187] Lu S M, Han X W, Y-G Zhou. Symmetric hydrogenation of quinolines catalyzed by Iridium with chiral ferrocenyloxazoline derived N, P ligands. Advanced Synthesis & Catalysis, 2004, 346 :909-912.
    [188] Istvan P. Effects of surface modifiers on the liquid-phase hydrogenation of alkenes over silica-supported platinum, palladium and rhodium catalysts I . Quinoline and carbon tetrachloride.Applied Catalysis A: General, 1995, 126 : 39-49.
    [189] Claudio B., Pierluigi B. and Michela M., et al. Hydrogenation of quinoline by rhodium catalysts modified with the tripodal polyphosphine ligand MeC(CH2PPH2)3. Helvetica Chimica Acta, 2001,84 :2895-2923.
    [190] Fache, F. Solvent dependent regioselective hydrogenation of substituted quinolines. Synlett,2004, (15): 2827-2829.
    [191] Ranu B C, Jana U, Sarkar A. Regioselective reduction of quinolines and related systems to 1,2,3,4-tetrahydro derivatives with zinc borohydride. Synthetic Communications, 1998, 28(3):485-492.
    [192] Keller P C, Marks, R L, Rund J V. Reactions of diborane with aromatic heterocycles - 2. Reactions with nitrogen-containing heterocycles related to pyridine. Polyhedron, 1983, 2(7): 595-602.
    [193] Biller S A, Misra R N. Preparation of 1,2,3,4-tetrahydro-8-quinolinol derivatives as antiallergic agents. US Pat Appl, US4843082, 1989.
    [194] Hoenel M, Vierhapper F W. Selectivity in the hydrogenation of 6- and 8-substituted quinolines.Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999),1980,(9):1933-9.
    [195]Agarajan K,Rao V R,Venkateswarlu A,et al.Condensed heterotricycles.Synthesis of pyridine-annealed dibenz[b,f][1,4]oxazepines.Indian Journal of Chemistry,1974,12(3):252-7.
    [196]Szmaragd S,Briner E.Electrolytic hydrogenation of quinoline and hydroxyquinolines.Helvetica Chimica Acta,1949,32:1278-83.
    [197]Rasmussen C R,Gardocki J F,Plampin J N,et al.2-Pyrrolidinylideneureas,a new class of central nervous system agents.Journal of Medicinal Chemistry,1978,21,1044-1054.
    [198]Leznoff C C.1999 Alfred Bader Award Lecture.From early developments in multi-step organic synthesis on solid phases to multi-nuclear phthalocyanines.Canadian Journal of Chemistry,2000,78(2):167-183.
    [199]Aranyos V,Castafio A M,Grennberg H,An application of the stille coupling for the preparation of arylated phthalonitriles and phthalocyanines.Acta Chemica Scandinavica,1999,53,714-720.
    [200]Leznoff C C,Terekhov D S,McArthur C R,et al.Multisubstituted phthalonitriles,naphthalenedicarbonitriles,and phenanthrenetetracarbonitriles as precursors for phthalocyanine syntheses.Canadian Journal of Chemistry,1995,73,435-443.
    [201]Rusanova J,Pilkington M,Decurtins S.A novel fully conjugated phenanthroline-appended phthalocyanine:synthesis and characterization.Chemical Communications,2002,2236-2237.
    [202]Balakireva O V,Maizlish V E,Shaposhnikov G P.Nucleophilic substitution in 4-Bromo-5-nitro phthalodinitrile:Ⅶ.synthesis and properities of phenylthio-substituted phthalocyanine metal complexes.Russian Journal of General Chemistry,2003,73,292-296.
    [203]Balakirev A E,Maizlish V E,Shaposhnikov G P,et al.Tetraaminotetrabromo-and tetraacylaminotetrabromophthalocyanines.Russian Journal of General Chemistry,2000,70(4),623-626.
    [204]张复实,宋争林,唐应武等.氨基取代邻苯二腈的一种合成方法.中国,CN1446797.2003.
    [205]Li Y F,Li S L,Jiang K J,et al.Synthesis and spectral property of novel phthalocyanines substituted with four azo group moieties on periphery of phthalocyanine ring.Chemistry Letters,2004,33:14501451
    [206]Drew H D K,Kelly D B.Dithio-β-isoindigo.Part Ⅲ.Further members of the series.Journal of Chemical Society,1941,637-639.
    [207]Marcuccio M S,Svirskaya I P,Greenberg S,et al.Binuclear phthalocyanines covalently linked through two-and four-atom bridges.Canadian Journal of Chemistry,1985,63,3057-3069.
    [208]Shen W J,Okumura M,Matsumura Y,et al.The influence of the support on the activity and selectivity of Pd in CO hydrogenation.Applied Catalysis,A:General,2001,213(2),225-232.
    [209]Neri G,Musolino M G,Milone C,et al.Particle size effect in the catalytic hydrogenation of 2,4-dinitrotoluene over Pd/C catalysts.Applied Catalysis,A:General,2001,208(1-2),307-316.
    [210]Albers P,Pietsch J,Parker S F,Poisoning and deactivation of palladium catalysts.Journal of Molecular Catalysis A:Chemical,2001,173(1-2),275-286.
    [211]Vannice M A.The influence of MSI(metal-support interactions) on activity and selectivity in the hydrogenation of aldehydes and ketones.Topics in Catalysis,1998,4(3,4):241-248.
    [212]Shao J Y,Song C S,Regioselective hydrogenation of 1-naphthol over supported Pt and Pd catalysts for producing high-temperature jet fuel stabilizer.Catalysis Today,2001,65(1),59-67.
    [213]周海滨,陈宏博,陈琳.催化加氢法制备2,5-二氯苯胺.染料工业,2002,39(2):32-33.
    [214]孙开莲,李伟,张明慧等.负载型纳米Ni催化剂用于对氯硝基苯选择加氢.分子催化,2006,20(5):390-394.
    [215]王文静,严新焕,许丹倩等.Ni-B非晶态合金催化剂用于卤代硝基苯液相加氢制卤代苯胺.催化学报.2004,25(5):369-372.
    [216]严新焕,孙军庆,徐颖华等.Ni-Ce-P晶态合金催化剂用于氯代硝基苯液相加氢制氯代苯胺.催化学报.2006,27(2):119-123.
    [217]严新焕,孙军庆,李波等.Ni-Ce-P晶态合金催化剂用于氯代硝基苯液相加氢制氯代苯胺.催化学报.2006,27(2):178-182.
    [218]Yang X L,Deng Z L,Liu H F.Modification of metal complex on hydrogenation of o-chloronitrobenzene over polymer-stabilized platinum colloidal cluster.Journal of Molecular Catalysis A:Chemical,1999,144(1):123-127.
    [219]Tu W X,Liu H F,Tang T.The metal complex effect on the selective hydrogenation of m-and pchloronitrobenzene over PVP-stabilized platinum colloidal catalysts.Journal of Molecular Catalysis A:Chemical,2000,159(1):115-120.
    [220]Han X X,Zhou R X,Lai G H,et al.Hydrogenation catalysts based on platinum complexes with polymer.Reaction Kinetics and Catalysis Letters,2004,81(1):41-47.
    [221]韩晓祥.负载Pt催化剂上氯代硝基苯、肉桂醛选择性加氢性能的研究:(博士学位论文).浙江:浙江大学.2004.
    [222]Liu M H,Yu W Y,Liu H F.Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts.Journal of Molecular Catalysis A:Chemical,1999,138(2-3):295-303.
    [223]Yan X P,Liu M H,Liu H F,et al.Metal complex effect on the hydrogenation of o-chloronitrobenzene over polymer-stabilized colloidal ruthenium cluster.Journal of Molecular Catalysis A:Chemical,2001,170(1):203-208.
    [224]Liu M H,Yu W Y,Liu H F,et al.Praparation and characterization of polymer-stabilized ruthenium-platinum and ruthenium-palladium bimetallic colloid and their catalytic properties for hydrogenation of o-chloronitrobenzene.Journal of Colloid and Interface Science,1999,214(2):231-237.
    [225]Yu Z K,Liao S J,Xu Y,et al.Hydrogenation of nitroaromatics by polymer-anchored bimetallic palladium-ruthenium and palladium-platinum catalysts under mild conditions.Journal of Molecular Catalysis,1997,120(1-3):247-255.
    [226]Jiang H,Xu Y,Liao S J,et al.A remarkable synergic effect of water-soluble bimetallic catalyst in the hydrogenation of aromatic nitrocompounds.Journal of Molecular Catalysis,1999,142(2):147-152.
    [227]Kosak John R.Greenville Del.Catalytic Reduction of Halonitroaromatic Compounds.US4020107,1977.
    [228]Kratky V,Kralik M,Mecarova M,et al.Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes.Applied Catalysis A:General,2002,235:225-231.
    [229]刘新梅,樊光银,赵松林等.Sn~(4+)离子修饰的Pd╱γ-Al_2O_3催化卤代芳香硝基化合物选择性加氢.分子催化,2005,19(6):430-435.
    [230]吴琼,李翔,张曼征等.Pd-Sn/吸附树脂催化剂上硝基氯苯的选择性.离子交换与吸附,1997,13(4):385-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700