用户名: 密码: 验证码:
基于LC-MS/MS方法的喹诺酮类药物的杂质谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统地开展了基于LC-MS/MS方法的喹诺酮类药物杂质谱研究。首先在正离子模式下,对喹诺酮类化合物的质谱裂解行为与结构特征之间的相关性进行了系统研究,发现并总结出喹诺酮类化合物的质谱裂解规律。在此基础上,将高效的数据采集方法与快速自动的数据挖掘方法相结合,建立了整合性的药物中微量杂质的LC-MS/MS定性分析方法,用于快速、可靠地发现与识别杂质。采用该方法对喹诺酮类药物原料药及强制破坏试验样品进行分析,明确了药物中杂质的种类、数量和来源。基于药物杂质的定性分析方法,建立了喹诺酮类药物杂质的LC-MS/MS定量分析方法,并通过对市售药品中杂质的分析,掌握了杂质在制剂中的存在状况。对于原料药和制剂中存在的工艺杂质和可能呈增长趋势的降解产物,通过化学合成方法获取杂质纯品,开展了杂质的质量研究和细胞毒性评价。
     本论文的研究内容主要包括以下三个部分:
     1.喹诺酮类化合物的质谱裂解规律研究
     在正离子检测模式下,采用(+) ESI-MSn与(+) ESI-HRMS/MS相结合的手段,系统地研究了不同结构类型喹诺酮类化合物[M+H]+离子的质谱裂解行为,考察了各化合物结构与质谱裂解行为的相关性。研究发现,喹诺酮类化合物的4-喹诺酮母核结构比较稳定,质谱裂解特征的多样性主要取决于化合物取代基种类和取代位置。例如,N-1位烷基取代基的主要裂解反应是丢失烷基自由基或烯烃分子;C-3位取代基主要通过脱羧或脱水反应,C-6或C-8的卤素原子通过卤化氢中性丢失产生相应的一系列特征离子。当C-7被哌嗪环或其衍生物取代时,通过取代基裂解产生43Da、57Da等奇数质量的中性丢失或直接产生m/z70等子离子,这些特征离子可以用于药物或杂质的分析鉴定。本研究结果为喹诺酮类药物中杂质的筛查及结构鉴定等提供了重要的分析依据。
     2.基于LC-MS/MS技术的喹诺酮类药物中微量杂质的整合性定性分析方法研究
     本研究以上述喹诺酮类化合物的质谱裂解规律为主要依据,以左氧氟沙星为模型药物,采用LC-DAD-MS/MS技术,并将高效的数据采集方法与快速自动的数据挖掘方法有效地整合起来,建立了快速、可靠和自动的发现与鉴定药物杂质的定性分析新方法。采用该方法可通过一次进样同时获取包含UV光谱、色谱、MS和MS/MS谱的综合性数据;运用多重质量亏损过滤(Multiple mass defect filters, MMDFs)与背景扣除(Background subtraction, BS)相结合的数据挖掘方法,可以实现在药物主成分、背景离子或未知信号干扰下快速、自动挖掘可能的杂质信息。进一步利用保留时间、UV吸收特征、HRMS和MS/MS谱分析相结合的手段,通过与喹诺酮类药物的特征质谱裂解行为系统比较,完成了相关杂质的结构鉴定。研究结果表明,建立的整合性杂质定性分析方法具有快速、灵敏度高、专属性好以及高效地采集数据和挖掘杂质信息的优势,适用于药物中微量或未知杂质的分析和检测。
     采用该分析方法,对不同批次原料药和强制破坏试验不同时间的样品进行了分析,掌握了喹诺酮类药物中杂质的来源、种类和数量。根据药物中杂质随强制破坏时间动态变化的趋势对药物的降解途径进行了研究,阐明了原料药和制剂生产、储存及流通等环节中影响药物稳定性的化学和环境因素。此外,为了验证上述杂质定性分析方法的适用性,采用本方法对临床使用广泛的代表性喹诺酮药物的原料药和强制破坏试验样品进行分析,结果表明本研究建立的整合性杂质定性分析方法具有很好的适用性和推广应用的潜力。
     3.喹诺酮类药物杂质的定量分析方法及杂质的细胞毒性评价
     在上述研究基础上,通过系统优化质谱参数和方法学验证与考察,建立了基于LC-MS/MS的稳定、可靠的杂质定量分析方法。采用该方法对市售喹诺酮类药物制剂中的杂质进行定量分析,结果发现该类药物制剂中的杂质主要是由药物本身降解产生,而且不同厂家相同制剂中的杂质控制水平存在明显差异。对于发现的部分工艺杂质和随时间呈增长趋势的降解产物,采用化学合成方法制备了5个杂质,并通过杂质的结构确证及纯度检查对其进行了质量评价。杂质的结构确认进一步证明了上述杂质分析方法及其结果的可靠性和准确性。此外,利用L929小鼠成纤维细胞对杂质进行了细胞毒性评价,结果表明上述杂质没有明显的细胞毒性。
The impurity profiles of quinolones were systematically investigated using liquid chromatography coupled with tandem mass spectrometry. In order to investigate the relationship between the structural characteristics and the mass spectrometric behavior of quinolones, a number of quinolones with several structural skeletons were studied in detail by electrospray ionization tandem mass spectrometry in positive ion mode. An integrated approach on basis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the rapid, automatic and efficient detection and identification of impurities from quinolone antibiotics using the data acquisition method and automatic impurity screening method. Some process-related impurities and degradation products were found by analyzing the different batches of drug substances and degradation samples under various stress tests using the integrated approach, and the degradation pathway was also elucidated by analyzing the trends of degradation products with time. A validated quantitative method for the impurities in the quinolone formulations was established, it was estimated to be sensitive, stable and accurate for the detection and monitoring of trace impurities. The impurities in different formulations from different pharmaceutical plants were determined using this approach, and the degradation products were the major impurities in the formulations which were generated by the degradation of drug ingredient. Some process-related impurities and degradation products in the drug substances and formulations were synthesized, their quality and cytotoxity were evaluated.
     1. The fragmentation behavior of quinolones using electrospray ionization tandem mass spectrometry
     The relationship between the structural characteristics and the fragmentation behavior of quinolones were investigated in positive ion mode using QTRAP and Q-TOF mass spectrometers. It was found that the quinolone moiety was stable in collision induced dissociation (CID) mode, and the fragment ions were generated by the fragmentation of the substituents. The product ions were generated by the fragmentation of the substituent at N-1through the loss of alkyl radical or the neutral loss of alkene. The product ions were formed by the loss of H2O or CO2due to the fragmentation of carboxyl group at C-3and were always observed in the MS/MS spectra. Dehydrohalogenation can take place when the halogen atom is at C-6or C-8.7-piperazinyl-quinolones could generate characteristic ions by the neutral loss of43Da,57Da and so on, or the fragment ions at m/z70, et al, which can be used for the sensitive class-specific screening of7-piperazinyl-quinolones. The present study supplemented the gas-phase ion chemistry of quinolones and should be valuable in the structural identification of impurities.
     2. Integrated LC-MS/MS approach for the identification and characterization of the trace impurity of quinolones
     Based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), an approach integrating efficient data acquisition method and automatic impurity screening method using MMDFs and BS was developed. This approach was used to acquire the structural and semi-quantitative information related to UV and MS data in a single sample run, and even to discover the impurity signals submerged by background and drug ions. Structural characterization was performed through accurate mass measurement and comparison of fragmentation behaviors of impurities with the parent drug. This approach was illustrated by the comprehensive impurity analysis of levofloxacin, and was demonstrated to be rapid, sensitive and automatic for the detection, characterization and monitoring of impurities, especially those unknown or at trace levels.
     Process-related impurities and degradation products were screened from the test samples including different batches of quinolone drug substances and degradation samples using the integrated approach. And the degradation pathway was postulated by analyzing the trends of degradation products with time under various chemistry or environmental factors. The approach was estimated to have the widespread application by determining other quinolone antibiotics drug substances and degradation samples to find the impurities.
     3. A LC-MS/MS quantitative method for the impurities in quinolone antibiotics and the evaluation of cytotoxcity of impurities
     A validated quantitative LC-MS/MS method for the impurities in the formulations of quinolones was developed. The performance characteristics of the method in terms of robustness and information content clearly showed that this approach was adequate for the reliable detection, identification, and quantitative determination of trace levels of impurities in quinolones. Degradation products were the major impurities in formulations and there was remarkable difference in the impurity contents among the different pharmaceutical plants. The pure impurities were synthesized to obtain more enough to perform the quality evaluation and the evaluation of cytotoxicity. The cytotoxicity test was performed using L929mouse fibroblasts.
引文
[1]Betto P, Turchetto L, Longinotti L. Allergenic impurities in medicinal preparations containing aminopenicillin. I. Ampicillin sodium [J]. Annali Dell'Istituto Superiore Di Sanita,1989,25(2):315-7.
    [2]Guerrini M, Beccati D, Shriver Z, et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events [J]. Nature Biotechnology,2008,26(6):669-75.
    [3]Hu C Q, Xu M Z, Ma Y, et al. Determination of the allergic impurities in the parenteral injection of Chinese traditional medicines containing Salvia miltiorrhiza [J]. Acta Pharmaceutica Sinica,2008,43(5):518-22.
    [4]Kim S H, Suk E H, Kil S H, et al. Hypotension in patients administered indigo carmine containing impurities-A case report [J]. Korean Journal of Anesthesiology, 2011,61(5):435-8.
    [5]Pan C, Liu F, Motto M. Identification of pharmaceutical impurities in formulated dosage forms [J]. Journal of Pharmaceutical Sciences,2011,100(4):1228-59.
    [6]ICH Guidelines Q3B (R2). Impurities in new drug products [M]. IFPMA, Geneva (Switzerland).2006.
    [7]ICH Guidelines Q3D (R2). Impurities Guideline for metal impurities [M]. IFPMA, Geneva (Switzerland).2009.
    [8]ICH guidelines M7. Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk (final concept paper) [M]. IFPMA, Geneva (Switzerland).2010.
    [9]ICH Guidelines Q3C (R5). Impurities:Guideline for Residual Solvents [M]. IFPMA, Geneva (Switzerland).2011.
    [10]Singh S, Handa T, Narayanam M, et al. A critical review on the use of modern sophisticated hyphenated tools in the characterization of impurities and degradation products [J]. Journal of Pharmaceutical and Biomedical Analysis,2012,69:148-73.
    [11]《化学药物杂质研究的技术指导原则》课题研究组.化学药物杂质研究的技术指导原则[M].2005.
    [12]张哲峰.我国药物研发中杂质研究面临的挑战与思考[J].药品评价,2010,7(18):12-9.
    [13]US FDA. AND As Impurities in Drug Substances (Revision 1) [M]. Food and Drug Administration, Silver Spring, MD (USA).2009.
    [14]USA FDA. Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches(draft) [M]. Food and Drug Administration, Silver Spring, MD(USA).2008.
    [15]EMEA. Guideline on the Limits of Genotoxic Impurities (CPMP/SWP/5199.02 and EMEA/CHMP/QWP/251344/2006) [M]. Committee for Proprietary Medicinal Products, EMEA, London (UK).2007.
    [16]TPD. Impurities in Existing Drug Substances and Products (draft) [M]. Therapeutic Products Directorate, Health Canada, Ontario (Canada).2005.
    [17]TGA. Australian Regulatory Guidelines for Prescription Medicines, Appendix 18: Impurities in Active Pharmaceutical Ingredients and Finished Products [M]. Therapeutic Goods Administration, Woden ACT (Australia).2004.
    [18]ICH Guidelines Q3A(R2). Impurities in new drug substances[M]. IFPMA, Geneva (Switerland).2006.
    [19]Pilaniya K, Chandrawanshi H K, Pilaniya U, et al. Recent trends in the impurity profile of pharmaceuticals [J]. Journal of Advanced Pharmaceutical Technology & Research,2010,1(3):302-10.
    [20]Yu X, Warme C, Lee D, et al. Characterization of a low-level unknown isomeric degradation product using an integrated online-offline top-down tandem mass spectrometry platform [J]. Analytical Chemistry,2013,85(19):8964-7.
    [21]Korfmacher W A. Principles and applications of LC-MS in new drug discovery [J]. Drug Discovery Today,2005,10(20):1357-67.
    [22]Liu D Q, Wu L, Sun M, et al. On-line H/D exchange LC-MS strategy for structural elucidation of pharmaceutical impurities [J]. Journal of Pharmaceutical and Biomedical Analysis,2007,44(2):320-9.
    [23]Ermer J, Vogel M. Applications of hyphenated LC-MS techniques in pharmaceutical analysis [J]. Biomedical Chromatography:BMC,2000,14(6):373-83.
    [24]胡昌勤.化学药品杂质控制的现状与展望[J].中国科学:化学,2010,40(6):679-87.
    [25]Nageswara Rao R, Nagaraju V. An overview of the recent trends in development of HPLC methods for determination of impurities in drugs [J]. Journal of Pharmaceutical and Biomedical Analysis,2003,33(3):335-77.
    [26]G6rog S, Babjak M, Balogh G, et al. Drug impurity profiling strategies [J]. Talanta, 1997,44(9):1517-26.
    [27]ICH Guidelines Q3A(R1). Impurities in New Drug Substances [M]. IFPMA, Geneva (Switerland).2002.
    [28]Gorog S. Identification and Determination of Impurities in Drugs [M]. Amsterdam, The Netherlands:Elsevier,2000. pp.2.
    [29]Gorog S. The importance and the challenges of impurity profiling in modern pharmaceutical analysis [J]. Trends Anal Chem,2006,25(8):755-7.
    [30]Li W, Hu C Q. Spectral correlation of high-performance liquid chromatography-diode array detection data from two independent chromatographic runs peak tracking in pharmaceutical impurity profiling [J]. Journal of Chromatography A,2008, 1190(1-2):141-9.
    [31]Dumarey M, Sneyers R, Janssens W, et al. Drug impurity profiling:Method optimization on dissimilar chromatographic systems:Part I:pH optimization of the aqueous phase [J]. Analytica ChimicaActa,2009,656(1-2):85-92.
    [32]Neu V, Bielow C, Gostomski I, et al. Rapid and comprehensive impurity profiling of synthetic thyroxine by ultrahigh-performance liquid chromatography-high-resolution mass spectrometry [J]. Analytical Chemistry,2013,85(6):3309-17.
    [33]Wu C S, Tong Y F, Wang P Y, et al. Identification of impurities in methotrexate drug substances using high-performance liquid chromatography coupled with a photodiode array detector and Fourier transform ion cyclotron resonance mass spectrometry [J]. Rapid Communications in Mass Spectrometry:RCM,2013,27(9): 971-8.
    [34]Provera S, Martini L, Guercio G, et al. Application of LC-NMR and HR-NMR to the characterization of biphenyl impurities in the synthetic route development for vestipitant, a novel NK1 antagonist [J]. Journal of Pharmaceutical and Biomedical Analysis,2010,53(3):389-95.
    [35]Bristow T, Harrison M, Sims M. The application of gas chromatography/ atmospheric pressure chemical ionisation time-of-flight mass spectrometry to impurity identification in Pharmaceutical Development [J]. Rapid Communications in Mass Spectrometry:RCM,2010,24(11):1673-81.
    [36]Fu Z, Wang L, Wang Y. Capillary electrophoresis-electrochemiluminescent detection of N,N-dimethyl ethanolamine and its application in impurity profiling and stability investigation of meclophenoxate [J]. Analytica Chimica Acta,2009,638(2):220-4.
    [37]Hommerson P, Khan A M, Bristow T, et al. Drug impurity profiling by capillary electrophoresis/mass spectrometry using various ionization techniques [J]. Rapid Communications in MNass Spectrometry:RCM,2009,23(18):2878-84.
    [38]Bryant D K, Kingswood M D, Belenguer A. Determination of liquid chromatographic peak purity by electrospray ionization mass spectrometry [J]. Journal of Chromatography A,1996,721:41-51.
    [39]Nicolas E C, Scholz T H. Active drug substance impurity profiling part Ⅱ. LC/MS/MS fingerprinting [J]. Journal of Pharmaceutical and Biomedical Analysis, 1998,16(5):825-36.
    [40]Liu Z, Zhang H, Chen X, et al. Structural elucidation of degradation products of olaquindox under stressed conditions by accurate mass measurements using electrospray ionization hybrid ion trap/time-of -flight mass spectrometry [J]. International Journal of Mass Spectrometry,2011,303:90-6.
    [41]Narayanam M, Handa T, Sharma P, et al. Critical practical aspects in the application of liquid chromatography-mass spectrometric studies for the characterization of impurities and degradation products [J]. Journal of Pharmaceutical and Biomedical Analysis,2014,87:191-217.
    [42]Mehta S, Shah R P, Singh S. Strategy for identification and characterization of small quantities of drug degradation products using LC and LC-MS:application to valsartan, a model drug [J]. Drug Testing and Analysis,2010,2(2):82-90.
    [43]魏农农.创新性化学药物杂质研究目的、思路与技术要求[J].中国新药杂志,2008,17(16):1461-3.
    [44]国家药典委员会.中国药典2010版二部[M].北京;中国医药科技出版社.2010.
    [45]《化学药物质量控制分析方法验证技术指导原则》课题研究组.化学药物质量控制分析方法验证技术指导原则[M].北京.2005.
    [46]ICH Guidelines Q2 (R1). Validation of analytical procedures:Text and Methodology [M]. IFPMA, Geneva (Switzerland).2005.
    [47]Vijaya Bhaskar Reddy A, Venugopal N, Madhavi G, et al. A selective and sensitive UPLC-MS/MS approach for trace level quantification of four potential genotoxic impurities in zolmitriptan drug substance [J]. Journal of Pharmaceutical and Biomedical Analysis,2013,84):84-9.
    [48]Locatelli M, De Lutiis F, Carlucci G. High performance liquid chromatography determination of prulifloxacin and five related impurities in pharmaceutical formulations [J]. Journal of Pharmaceutical and Biomedical Analysis,2013,78-79: 27-33.
    [49]Liu Y, Chen L, Ji Y. Quantification and structural elucidation of potential impurities in agomelatine active pharmaceutical ingredient [J]. Journal of Pharmaceutical and Biomedical Analysis,2013,81-82):193-201.
    [50]Lalitha Devi M, Chandrasekhar K B. A validated stability-indicating RP-HPLC method for levofloxacin in the presence of degradation products, its process related impurities and identification of oxidative degradant [J]. Journal of Pharmaceutical and Biomedical Analysis,2009,50(5):710-7.
    [51]Rao R N, Ramakrishna K, Sravan B, et al. RP-HPLC separation and ESI-MS,'H, and 13C NMR characterization of forced degradants including process related impurities of carisbamate:method development and validation [J]. Journal of Pharmaceutical and Biomedical Analysis,2013,77:49-54.
    [52]Thomas S, Paul S K, Shandilya S, et al. Identification and structural elucidation of two process impurities and stress degradants in darifenacin hydrobromide active pharmaceutical ingredient by LC-ESI/MS(n) [J]. The Analyst,2012,137(15): 3571-82.
    [53]张震,张玉琥.化学药品复方制剂中有关物质的定性归属方法[J].中国新药杂志,2008,17(21):1898-900.
    [54]Dendeni M, Cimetiere N, Amrane A, et al. Impurity profiling of trandolapril under stress testing:Structure elucidation of by-products and development of degradation pathway [J]. International Journal of Pharmaceutics,2012,438(1-2):61-70.
    [55]Russo R, Guillarme D, D T T N, et al. Pharmaceutical applications on columns packed with sub-2 microm particles [J]. Journal of Chromatographic Science,2008, 46(3):199-208.
    [56]Binnor A K, Mukkanti K, Suryanarayana M V, et al. Stability-indicating UPLC method for Tramadol HCl impurities in the Tramadol injection after dilution by infusion fluids (5% dextrose and 0.9% sodium chloride) [J]. Scientia Pharmaceutica, 2013,81(4):1003-15.
    [57]Verbeken M, Suleman S, Baert B, et al. Stability-indicating HPLC-DAD UV-ESI/MS impurity profiling of the anti-malarial drug lumefantrine [J]. Malaria Journal,2011,10):51-9.
    [58]Thomas S, Shandilya S, Bharati A, et al. Identification, characterization and quantification of new impurities by LC-ESI/MS/MS and LC-UV methods in rivastigmine tartrate active pharmaceutical ingredient [J]. Journal of Pharmaceutical and Biomedical Analysis,2012,57:39-51.
    [59]Dhayalamurthi S, Jayaveera K N, Subba Reddy G V, et al. A validated stability-indicating isocratic LC method for levofloxacin in the presence of degradation products and its process-related impurities [J]. Acta Chromatographica, 2012,24(1):23-36.
    [60]Raju B, Ramesh M, Srinivas R, et al. Identification and characterization of stressed degradation products of prulifloxacin using LC-ESI-MS/Q-TOF, MSn experiments: development of a validated specific stability-indicating LC-MS method [J]. Journal of Pharmaceutical and Biomedical Analysis,2011,56(3):560-8.
    [61]Rao R N, Farah H, Sahu P K, et al. Development and validation of a stability-indicating assay including the isolation and characterization of degradation products of metaxalone by LC-MS [J]. Biomedical Chromatography:BMC,2013, 27(12):1733-40.
    [62]Han S, Karlowicz-Bodalska K, Potaczek P, et al. Identification of unknown impurity of Azelaic Acid in liposomal formulation sssessed by HPLC-ELSD, GC-FID, and GC-MS [J].AAPS PharmSciTech,2014,15(1):111-20.
    [63]Hong J Y, Park N H, Yoo K H, et al. Comprehensive impurity profiling and quantification of Sudan Ⅲ dyes by gas chromatography/mass spectrometry [J]. Journal of Chromatography A,2013,1297:186-95.
    [64]谢沐风.如何建立高效液相色谱法测定有关物质的方法[J].中国医药工业杂志,2007,38(1):45-8.
    [65]郑明岚,周少英,刘学军,et al.毒理学关注阈值(TTC)在化学物质风险评估中的应用[J].卫生研究,2010,39(5):639.
    [66]Omer A, Singh P, Yadav N K, et al. An overview of data mining algorithms in drug induced toxicity prediction [J]. Mini Reviews in Medicinal Chemistry,2014,
    [67]Venkatapathy R, Wang C Y, Bruce R M, et al. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency [J]. Toxicology and Applied Pharmacology,2009,234(2):209-21.
    [68]EMEA. Question & answers on the CHMP guideline on the limits of genotoxic impurities [M]. London.2009.
    [69]USA, FDA. Draft guidance for Industry. Genotoxic and carcinogenic impurities in drug substances and products:recommended approaches [M]. Food and Drug Adminstration. Silver Spring, MD 2008.
    [70]Jacobson-Kram D, McGovern T. Toxicological overview of impurities in pharmaceutical products [J]. Advanced Drug Delivery Reviews,2007,59(1):38-42.
    [71]龙再浩,陈小青,马中春.危险度评价中的毒理学关注阈值原则[J].癌变.畸变.突变,2008,20(1):79-80.
    [72]Fioravanzo E, Bassan A, Pavan M, et al. Role of in silico genotoxicity tools in the regulatory assessment of pharmaceutical impurities [J]. SAR and QSAR in Environmental Research,2012,23(3-4):257-77.
    [73]Mohan C G, Gandhi T, Garg D, et al. Computer-assisted methods in chemical toxicity prediction [J]. Mini Reviews in Medicinal Chemistry,2007,7(5):499-507.
    [74]C.M. E, J.C. M, P. J, et al. Using in silico tools in a weight of evidence approach to aid toxicological assessment [J]. Molecular Informatics,2010,29:97-110.
    [75]Zhu Q, Li T, Li J, et al. In silico and in vitro genotoxicity evaluation of levofloxacin n-oxide, an impurity in levofloxacin [J]. Toxicology Mechanisms and Methods,2012, 22(3):225-30.
    [76]Shah R P, Sahu A, Singh S. LC-MS/TOF, LC-MS", on-line H/D exchange and LC-NMR studies on rosuvastatin degradation and in silico determination of toxicity of its degradation products:a comprehensive approach during drug development [J]. Analytical and Bioanalytical Chemistry,2013,405(10):3215-31.
    [77]Rifai A, Souissi Y, Genty C, et al. Ultraviolet degradation of procymidone--structural characterization by gas chromatography coupled with mass spectrometry and potential toxicity of photoproducts using in silico tests [J]. Rapid Communications in Mass Spectrometry:RCM,2013,27(13):1505-16.
    [78]King D E, Malone R, Lilley S H. New classification and update on the quinolone antibiotics [J]. American Family Physician,2000,61(9):2741-8.
    [79]Liu H H. Safety profile of the fluoroquinolones:focus on levofloxacin [J]. Drug Safe, 2010,33(5):353-69.
    [80]Domagala J M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials [J]. The Journal of Antimicrobial Chemotherapy,1994, 33(4):685-706.
    [81]Kresse H, Belsey M J, Rovini H. The antibacterial drugs market [J]. Nature Reviews Drug discovery,2007,6(1):19-20.
    [82]刘晓,周颖,崔一民.氟喹诺酮类药物所致尖端扭转型室性心动过速[J].药物不良反应杂志,2011,13(2):95-8.
    [83]刘嵘,张海英.喹诺酮类药物引起的跟腱损伤[J].药物不良反应杂志,2010,12(6):406-9.
    [84]Stahlmann R, Lode H. Safety considerations of fluoroquinolones in the elderly:an update [J]. Drugs & Aging,2010,27(3):193-209.
    [85]Vosberg H P. DNA topoisomerases:enzymes that control DNA conformation [J]. Current Topics in Microbiology and Immunology,1985,114:19-102.
    [86]冯连顺,刘明亮.喹诺酮类药物的结构修饰剂“非经典”生物活性研究进展[J].国际药学研究杂志,2010,37(2):139-43.
    [87]冯连顺,刘明亮,郭慧元.细菌拓扑异构酶抑制剂研究进展[J].国外医药-抗生素分册,2009,30(1):13-8.
    [88]Shen L L, Mitscher L A, Sharma P N, et al. Mechanism of inhibition of DNA gyrase by quinolone antibacterials:a cooperative drug--DNA binding model [J]. Biochemistry,1989,28(9):3886-94.
    [89]Drlica K, Malik M, Kerns R J, et al. Quinolone-mediated bacterial death [J]. Antimicrobial Agents and Chemotherapy,2008,52(2):385-92.
    [90]Suto M J, Domagala Jm Fau - Roland G E, Roland Ge Fau-Mailloux G B, et al. Fluoroquinolones:relationships between structural variations, mammalian cell cytotoxicity, and antimicrobial activity [J]. Journal of Medincinal Chemistry,1992, 35(25):4745-50.
    [91]Mandell L, Tillotson G. Safety of fluoroquinolones:An update [J]. The Canadian Journal of Infectious Disease,2002,13(1):54-61.
    [92]Lalitha Devi M, Chandrasekhar K B. A validated, specific stability-indicating RP-LC method for moxifloxacin and its related substances [J]. Chromatographia,2009, 69(9-10):993-9.
    [93]Lalitha Devi M, Chandrasekhar K B. A validated, specific, stability-indicating RP-LC method for analysis of gatifloxacin in the presence of degradation products and process-related impurities [J]. Chromatographia,2009,69(9-10):985-92.
    [94]Djurdjevic P, Ciric A, Djurdjevic A, et al. Optimization of separation and determination of moxifloxacin and its related substances by RP-HPLC [J]. Journal of Pharmaceutical and Biomedical Analysis,2009,50(2):117-26.
    [95]Kumar Y R, Prasad Raju V V, Kumar R R, et al. Structural identification and characterization of impurities in moxifloxacin [J]. Journal of Pharmaceutical and Biomedical Analysis,2004,34(5):1125-9.
    [96]王秀珍,王新图,王尔华.加替沙星中主要杂质P-去甲加替沙星的分离、合成与结构鉴定[J].中国药科大学学报,2003,34(3):272-3.
    [1]冯连顺,刘明亮.喹诺酮类药物的结构修饰剂“非经典”生物活性研究进展[J].国际药学研究杂志,2010,37(2):139-43.
    [2]Zhu Q, Li T, Li J, et al. In silico and in vitro genotoxicity evaluation of levofloxacin n-oxide, an impurity in levofloxacin [J]. Toxicology mechanisms and methods,2012,22(3):225-30.
    [3]Domagala J M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials [J]. The Journal of antimicrobial chemotherapy,1994, 33(4):685-706.
    [4]Kresse H, Belsey M J, Rovini H. The antibacterial drugs market [J]. Nature reviews Drug discovery,2007,6(1):19-20.
    [5]刘晓,周颖,崔一民.氟喹诺酮类药物所致尖端扭转型室性心动过速[J].药物不良反应杂志,2011,13(2):95-8.
    [6]刘嵘,张海英.喹诺酮类药物引起的跟腱损伤[J].药物不良反应杂志,2010,12(6):406-9.
    [7]Liu H H. Safety profile of the fluoroquinolones:focus on levofloxacin [J]. Drug Safe,2010,33(5):353-69.
    [8]Stahlmann R, Lode H. Safety considerations of fluoroquinolones in the elderly:an update [J]. Drugs & aging,2010,27(3):193-209.
    [9]蒋晓磊,崔玉彬,曹胜华.喹诺酮类抗菌药物研究新进展[J].中国抗生素杂志,2011,36(4):255-63.
    [10]Suto M J, Fau D J, Roland G E, et al. Fluoroquinolones:relationships between structural variations, mammalian cell cytotoxicity, and antimicrobial activity [J]. Journal of Medicinal Chemistry,1992,35(25):4745-50.
    [11]《化学药物杂质研究的技术指导原则》课题研究组.化学药物杂质研究的技术指导原则[M].2005.
    [12]Qu J, Wang Y H, Li J B, et al. Rapid structural determination of new trace cassaine-type diterpenoid amides in fractions from Erythrophleum fordii by liquid chromatography-diode-array detection/electrospray ionization tandem mass spectrometry and liquid chromatography/nuclear magnetic resonance [J]. Rapid communications in mass spectrometry:RCM,2007,21(13):2109-19.
    [13]Li B, Van Schepdael A, Hoogmartens J, et al. Investigation of unknown related substances in commercial neomycin samples with liquid chromatography/ion trap tandem mass spectrometry [J]. Rapid communications in mass spectrometry RCM,2007,21(11):1791-8.
    [14]Zhou H, Zheng Z, Wu S, et al. Separation and characterization of clindamycin and related impurities in bulk drug by high-performance liquid chromatography-electrospray tandem mass spectrometry [J]. Journal of pharmaceutical and biomedical analysis,2006,41(4):1116-23.
    [15]Volmer D A, Mansoori B, Locke S J. Study of 4-Quinolone Antibiotics in Biological Samples by Short-Column Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry [J]. Analytical chemistry, 1997,69(20):4143-55.
    [16]马彬,孙玉明,陈笑艳,et al氟喹诺酮类化合物的电喷雾离子阱质谱分析[J].质谱学报,2006,27(3):163-7.
    [17]焦豪妍,许风国,田媛,et al氟喹诺酮类化合物电喷雾质谱裂解规律[J].中国抗生素杂志,2009,34(6):344-7.
    [1]Betto P, Turchetto L, Longinotti L. Allergenic impurities in medicinal preparations containing aminopenicillin. I. Ampicillin sodium [J]. Annali dell'Istituto superiore di sanita,1989,25(2):315-7.
    [2]Guerrini M, Beccati D, Shriver Z, et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events [J]. Nature Biotechnology,2008,26(6):669-75.
    [3]Hu C Q, Xu M Z, Ma Y, et al. Determination of the allergic impurities in the parenteral injection of Chinese traditional medicines containing Salvia miltiorrhiza [J]. ActaPharmaceutica Sinica,2008,43(5):518-22.
    [4]Kim S H, Suk E H, Kil S H, et al. Hypotension in patients administered indigo carmine containing impurities-A case report [J]. Korean Journal of Anesthesiology, 2011,61(5):435-8.
    [5]Pan C, Liu F, Motto M. Identification of pharmaceutical impurities in formulated dosage forms [J]. Journal of Pharmaceutical Sciences,2011,100(4):1228-59.
    [6]Singh S, Handa T, Narayanam M, et al. A critical review on the use of modern sophisticated hyphenated tools in the characterization of impurities and degradation products [J]. Journal of Pharmaceutical and Biomedical Analysis,2012,69:148-73.
    [7]Neu V, Bielow C, Gostomski I, et al. Rapid and comprehensive impurity profiling of synthetic thyroxine by ultrahigh-performance liquid chromatography-high-resolution mass spectrometry [J]. Analytical Chemistry,2013,85(6):3309-17.
    [8]Thomas S, Mathela C S, Agarwal A, et al. Identification and structural elucidation of an unknown impurity in carbamazepine active pharmaceutical ingredient by liquid chromatography-tandem mass spectrometry and semi-preparative chromatographic isolation [J]. Journal of Pharmaceutical and Biomedical Analysis, 2011,56(2):423-8.
    [9]Xue G, Bendick A D, Chen R, et al. Automated peak tracking for comprehensive impurity profiling in orthogonal liquid chromatographic separation using mass spectrometric detection [J]. Journal of Chromatography A,2004,1050(2):159-71.
    [10]Ma S, Chowdhury S K. Data acquisition and data mining techniques for metabolite identification using LC coupled to high-resolution MS [J]. Bioanalysis,2013,5(10): 1285-97.
    [11]Gosetti F, Chiuminatto U, Mazzucco E, et al. Identification of photodegradation products of Allura Red AC (E129) in a beverage by ultra high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry [J]. Analytica ChimicaActa,2012,746:84-9.
    [12]Zhu M, Zhang H, Humphreys W G. Drug metabolite profiling and identification by high-resolution mass spectrometry [J]. The Journal of Biological Chemistry,2011, 286(29):25419-25.
    [13]Zhang H, Yang Y. An algorithm for thorough background subtraction from high-resolution LC/MS data:application for detection of glutathione-trapped reactive metabolites [J]. Journal of Mass Spectrometry:JMS,2008,43(9):1181-90.
    [14]Zhang H, Grubb M, Wu W, et al. Algorithm for thorough background subtraction of high-resolution LC/MS data:application to obtain clean product ion spectra from nonselective collision-induced dissociation experiments [J]. Analytical Chemistry, 2009,81(7):2695-700.
    [15]Domagala J M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials [J]. The Journal of Antimicrobial Chemotherapy,1994, 33(4):685-706.
    [16]Mandell L, Tillotson G. Safety of fluoroquinolones:An update [J]. The Canadian Journal of Infectious Disease,2002,13(1):54-61.
    [17]Malati V, Reddy A R, Mukkanti K, et al. A novel reverse phase stability indicating RP-UPLC method for the quantitative determination of fifteen related substances in Ranolazine drug substance and drug product [J]. Talanta,2012,97:563-73.
    [18]ICH Guidelines Q3A(R2). Impurities in new drug substances [M]. IFPMA, Geneva (Switerland).2006.
    [19]Zhang H, Zhang D, Ray K. A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses [J]. Journal of Mass Spectrometry:JMS,2003,38(10):1110-2.
    [20]Yoshida Y, Sato E Fau-Moroi R, Moroi R. Photodegradation products of levofloxacin in aqueous solution [J]. Arzneimittelforschung,1993,43(5):601-6.
    [21]Lalitha Devi M, Chandrasekhar K B. A validated stability-indicating RP-HPLC method for levofloxacin in the presence of degradation products, its process related impurities and identification of oxidative degradant [J]. Journal of Pharmaceutical and Biomedical Analysis,2009,50(5):710-7.
    [22]The United States Pharmacopeia Convention. The 35th Revision of the United States Pharmacopeia (USP 36). [M].2012.
    [23]The Pharmacopoeia of the People's Republic of China, Part Ⅱ. [M]. China Medical Science and Technology Press, Beijing.2010.
    [24]The Japanese Pharmacopoeia (English Electric Version), Sixteenth Edition. [M]. Issued on 24 March 2011, last updated:February 27,2012.
    [25]王维剑,李涛,李军,et al. HPLC-MS法鉴定左氧氟沙星的降解产物[J].药学学报,2012,47(4):498-501.
    [1]魏农农.创新性化学药物杂质研究目的、思路与技术要求[J].中国新药杂志,2008,17(16):1461-3.
    [2]国家药典委员会.中国药典2010版二部[M].北京;中国医药科技出版社.2010.
    [3]ICH Guidelines Q3A(R2). Impurities in new drug substances [M]. IFPMA, Geneva (Switerland).2006.
    [4]ICH Guidelines Q3B (R2). Impurities in new drug products [M]. IFPMA, Geneva (Switzerland).2006.
    [5]赵焱,应万涛,钱小红.质谱MRM技术在蛋白质组学研究中的应用[J].生命的化学,2008,28(2):210-3.
    [6]VOLMER D A, MANSOORI B, LOCKE S J. Study of 4-Quinolone Antibiotics in Biological Samples by Short-Column Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry [J]. Analytical chemistry,1997, 69(20):4143-55.
    [7]鲁静,付凌燕,王旭.质量分析方法验证中检出限和定量限测定方法探讨[J].中国药品标准,2012,13(1):33-5.
    [8]田强兵.分析化学中检出限和测定下限的探讨[J].化学分析计量,2007,16(3):72-3.
    [9]陈英.一种节省杂质对照品的优化HPLC测定方法及其应用[J].中国药品标准,2012,13(2):86-7.
    [10]张启明,李慧义.色谱分析中面积归一化法测定有关物质的弊与利[J].中国药品标准,2005,6(4):45-6.
    [11]胡昌勤.化学药品杂质控制的现状与展望[J].中国科学: 化学,2010,40(6):679-87.
    [12]国家药品标准物质研制技术要求[M].国家药典委员会http://www.chp.org.cn/cms/newscenter/publicity/000252.html.2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700