用户名: 密码: 验证码:
乳化泡沫高压喷射冲砂解堵理论研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田在开发过程中由于各种污染容易对地层和防砂工具造成堵塞,常规冲砂解堵技术所用的作业液一般为清水,在低压地层中容易产生漏失,加剧对油层的污染,因而不适用于低压井。泡沫流体是一种非牛顿流体,它具有密度低、滤失量小、携砂能力强、助排能力强、稳定性好以及对储层伤害小等优良特性,因而能够很好地防止作业液漏失,并有效保护油气层,所以在低压井中可以应用泡沫流体来解除地层和防砂工具的堵塞。
     通过理论和室内实验对泡沫流体的流变性和稳定性进行了分析和研究,确定了泡沫流体的流变模式,研究了发泡剂加量、剪切速率、压力、温度、污水等对泡沫体系性能的影响规律。
     对泡沫流体层流射流进行了数值模拟,研究了非牛顿流体层流射流速度的衰减规律,表观粘度的分布规律,以及K和n对轴心速度分布的影响。通过室内实验对泡沫射流的特性进行了测试和分析,研究发现当无因次喷距L/d小于4时,射流轴心冲击压力基本上保持不变,但随着L/d的增大,射流轴心冲击压力逐渐减小;射流径向压力是逐渐减小的。随着泵压的增加,喷头的旋转速度明显增大,但小于清水介质的旋转速度。通过幂律流体在环空内流动的理论推导,得出了幂律流体在同心环空中的速度分布,并研究了K、n值以及环空尺寸和压力降对速度分布和流量的影响。
     对泡沫体系在井筒和环空中的流动规律进行了分析,通过数值模拟确定了泡沫的携砂能力,研究了不同直径的砂粒在泡沫流体中的携砂率随环空倾角的变化关系。通过与相同流速下水的模拟结果相比较,可以看出泡沫流体的携砂性能远大于相同条件下水的携砂性能,泡沫流体更适合于水平井。
     在综合上述研究的基础上编制了泡沫流体射流解堵计算软件,该软件能够为现场射流解堵作业提供所需的施工参数,从而指导现场应用。现场实验证明:低密度泡沫射流在地层压力低,漏失严重的井上作业施工效果非常明显,能有效地解除筛管的砂堵,是有效保护油层提高油井产量的工艺方法。
During the exploitation of oil field plugging is easily resulted from variouspollution. General technology of sand washing and broken down is not applicable tolow pressure wells because the fluid is water and it can easily produce leakage in lowpressure reservoir bed thus aggravate the pollution to it. Foam is a kind ofnon-Newtonian fluid. With its fine characteristics such as low density, low filtration,high ability of sand carrying and circulating out, stability, low damage to the reservoirbed and so on, it can be used in the low pressure wells to relieve the plugging in thereservoir bed and sand prevention tools because it can avoid the leakage of fluid andthus effectively protect the hydrocarbon reservoir.
     Rheological property and stability of foam are studied both theoretically andexperimentally. Rheological model of foam fluid has been established and the mainfactors affecting stability of foam have also been found out. The influences ofconcentration of foaming agent, shearing rate, pressure, temperature and waste water tofoam system performance have been researched.
     The laminar jet of foam fluid is researched by numerical method. Velocity decayrule, apparent viscosity distribution, and influence of K and n to axial velocitydistribution of non-Newtonian fluid laminar jet has been studied. Through experimentin laboratory, performance of foam fluid jet has been researched. The results show thatwhen L/d is less than 4, axial pressure of jet holds a constant value; when L/d is largerthan 4, axial pressure of jet decreases. Radical pressure of jet decreases. Along with theincrease of pump pressure, revolving velocity of nozzle increases which is less than that of water.Velocity distribution of power-law fluid in annulus pipeline was deduced, andimpact of K, n and size of annulus pipeline to velocity distribution and flux wasresearched.
     Combined with the factual material the flow law of foam in well bore and annulusis analyzed and the ability of foam to carry sand has been figured out. Numericalsimulation for sand carrying capability of foam fluid was conducted using discretephase model. The relations of sand carrying rate and residence time in foam fluid toinclination angle of annular pipe were researched. The simulation results of foam fluidwere compared with the results of water on the same condition, and qualitative analyseswere provided. It can be seen that sanding carrying capability of foam fluid is muchbetter, and it is especially suitable for well cleanout of horizontal well.
     Based on the above study a program of foam jet broken down has beenprogrammed which can provide the required construction parameters for the fieldthereby supervise the field application. Field application indicates that the technology offoam jet broken down can really solve the plugging problem in low pressure wells so ithas certain economic significance.
引文
[1] 万仁溥,罗英俊.采油技术手册(第七分册,防砂技术).北京:石油工业出版社,1991:42~50
    [2] 王鸿勋,张琪.采油工艺原理.北京:石油工业出版社,1994:36~38
    [3] 景瑞林,尹强,田宝国等.割缝筛管防砂技术研究.石油钻采工艺,2001;23(2):72~75
    [4] 沈忠厚.水射流理论与技术.东营:石油大学出版社,1998:172~174
    [5] 陈家琅,刘永建,岳湘安.钻井液流动原理.北京:石油工业出版社,1997:232~234
    [6] 王瑞和.油气井工程高压水射流技术研究.东营:石油大学出版社,1998:142~144
    [7] Kurg.J.A. and Mitchell.B.J. Pressure Needed for Foam Drilling. Oil and Gas, Feb7,1972
    [8] Beyer .A.H Millhone. R.S. and Foote .R.W. Flow Behavior of Foam as a WellCirculating Fluid. SPE 2986
    [9] Blauer.R.E and Kohaas .C.A. Formation Fracturing with Foam. SPE 5003
    [10] Blauer.R.E and Mitchell. B.J. Determination of laminar, Turbulent and TransitionalFoam Flow Friction Losses in Pipes. SPE 4885, 1974
    [11] Lord D.L. Analysis of Dynamic and Static Foam Behavior. J.P.T Jan 1981
    [12] 唐代绪.有利于分析欠平衡钻井的泡沫计算机模型.国外油田工程,2000;16(1):46~49
    [13] Evren M. Ozbayoglu, Stefan Z. Miska, Cuttings Transport with Foam in Horizontal& Highly-inclinedWellbores. SPE 79856,2003.
    [14] Stephane SAINTPERE and Yannick MARCILLAT, Hole Cleaning Capabilities ofFoams compared to Conventional Fluids. SPE 63049,2000.
    [15] 李治龙,钱武鼎.我国油田泡沫流体应用综述.石油钻采工艺,1993;15(6):88~93
    [16] 罗世应.气藏泡沫欠平衡钻井数学模型研究.天然气工业,2000;20(5):47~50
    [17] 杨虎.牛102 井欠平衡泡沫水平井钻井技术.石油学报,2002;23(1):88~93
    [18] 李兆敏.石油工程流体力学研究进展.东营:石油大学出版社.2004:47~52
    [19] 刘伟,董胜祥,曹子龙.泡沫洗井工艺的研究及应用.钻采工艺,2002;25(2):45~48
    [20] 裴润有,马效忠,王克信等.低密度负压泡沫洗井解堵配套技术研究及现场应用.石油钻采工艺,1999;19(3):75~79
    [21]肖稳发,向兴金.复合型乳化剂泡沫性能研究.湖北化工,1999;16(6):13~15
    [22] 陈正国,马睿.水-油-表面活性剂体系相行为.胶体与聚合物,2001;19(3):42~43
    [23] 倪海勇,江龙中,邓佐国等.表面活性剂对液膜破损的影响.江西有色金属,2002;16(1):31~34
    [24] 叶仲斌,魏发林,罗平亚等.泡沫增效三元复合驱油体系渗流行为研究.西南石油学院学报,2002;24(4):49~52
    [25] 钱昱,张思富,吴军政等. 泡沫复合驱泡沫稳定性及影响因素研究. 大庆石油地质与开发,2001;20(2):61~64
    [26]樊世忠,蔡彰涟. 泡沫特性、流变性及设计计算. 石油钻探技术,1987;15(2):42~46
    [27]宋金仕,欧绍祥. 循环泡沫钻井工艺枝术的应用. 石油钻采工艺,1998, 20(6):47~50
    [28]秦积舜,孟红霞.泡沫钻井液密度-压力-温度关系测定.石油钻探技术.2001;29(3):42~44
    [29]张瑞.欠平衡钻井液高温高压密度和流变性研究.硕士学位论文,石油大学(华东).1999:20~43
    [30] 邓智.负压冲砂技术在文卫油田的应用.中原钻采技术,1987
    [31] 周家驹,郭志华,全宏等.冲击波解堵技术的作用机理及技术特点.钻采工艺,2002;25(4):101~102
    [32] 石道涵,王栋林,刘书炳.电脉冲解堵技术增产机理分析及应用.石油钻采工艺,2002;24(3):73~74
    [33] 张杰,张伟峰,宋和平等.多脉冲高能气体压裂-二氧化氯复合解堵技术研究.西安石油学院学报(自然科学版),2003;18(2):21~24
    [34] 李永信,周风山.泡沫理论浅说.石油钻探技术,1998;26(3):64~65
    [35] 马宝歧,詹少淮.泡沫特性研究.油田化学,1990;17(3):22~24
    [36] 周静,谭永生.稳定泡沫流体的机理研究.钻采工艺,1999;22(6):75~81
    [37] 赵晓东.泡沫稳定性综述.钻井液与完井液,1992;9(2):24~25
    [38] 万里平,孟英峰,赵晓东.泡沫流体稳定性机理研究.新疆石油学院学报,2003;15(1):70~73
    [39] 庄升东,谈晓丽.ADF-2泡沫剂的室内性能评价.探矿工程,1997年增刊:144~145
    [40] Ijaz H, George C. The evolution of laminar jets of Herschel-Bulkley fluids.International Journal of Heat and Mass Transfer 1998; 41:3575~3588.
    [41] Schlichting H. Boundary Layer Theory. 6th ed. New York: McGraw-Hill. 1968.
    [42] Lemieux PF, Unny TE. The laminar two-dimensional free jet of an incompressiblepseudoplastic fluid. Journal of Applied Mechanics, Trans ASME,90 1968:810.
    [43] Atkinson C. On the laminar two-dimensional free jet of an incompressible,pseudoplastic fluid. Journal of Applied Mechanics, Trans ASME, 94,1972;39:1162.
    [44] Serth RW. The axisymmetric free laminar jet of a power- law fluid. Journal ofApplied Mathematics and Physics1972;23:131~139.
    [45] Mitwally EM. Solutions of laminar jet flow problems for non-Newtonianpower-law fluids. Journal of Fluids Engineering 1978;100:363~369.
    [46]Vlachopoulos J, Stournaras C. Laminar two-dimensional non-Newtonian jets.AIChE Journal 1975;21(2):385~393.
    [47] Rubel A. Navier_Stokes similarity solution for the planar liquid wall jet. AIAAJournal 1987;25(1):179~260.
    [48] 李兆敏,蔡国琰.非牛顿流体力学.石油大学出版社,1998:147~150
    [49] 岳湘安.非牛顿流体力学原理及应用.石油工业出版社,1996:99~102
    [50] 章梓雄,董曾南.粘性流体力学.清华大学出版社,1998:41~45
    [51] M. Grigioni, C. Daniele, G. D.Avenio, V. Barbaro. On the monodimensionalapproach to the estimation of the highest Reynolds shear stress in a turbulent [J].Journal of Biomechanics 33 (2000) 701~708.
    [52] Yoshio Morozumi, Jun Fukai. Growth and structures of surface disturbances of aroundliquid jet in a coaxial air[J]. Fluid Dynamics Research 34 (2004) 217~231.
    [53] M.Iguchi, K.Okita, T.Nakatani and N.Kasai. Structure of turbulent round bubblingjet generated by premixed gas and liquid injection[J]. Int.J.Multiphase Flow Vol.23.No.2. pp, 249~262.
    [54] Baoyu Guo, TimA.G. Langrish, David F.Fletcher. An assessment of turbulencemodels applied to the simulation of a two-dimensioned jet[J]. Applied MathematicalModelling 25 (2001) 635~653.
    [55] Shinichi Yuu, Takashi Ueno, Toshihiko Umekage. Numerical simulation of thehigh Reynolds number slit nozzle gas–particle jet using subgrid-scale coupling largeeddy simulation[J]. Chemical Engineering Science 56 (2001) 4293~4307.
    [56] M. Rudman, H.M. Blackburn, L.J.W. Graham, L. Pullum. Turbulent pipe flow ofshear-thinning fluids[J]. Non-Newtonian Fluid Mech. 118 (2004) 33~48.
    [57] 刘存芳,周强泰,张梦珠.幂律体浑水轴对称层流射流的理论研究.东南大学学报,1995;15(4):62~66
    [58] 雍炼,夏素兰,朱家骅.气雾两相受限射流特性的研究.四川大学学报,2001;33(4):54~58
    [59] 李兆敏,刘成文.高分子添加剂射流湍流特性的实验研究.石油大学学报(自然科学版),1999;23(2):40~46
    [60] 杨永印,王瑞和,沈忠厚等.聚丙烯酰胺浆体旋转射流速度分布的实验研究.石油大学学报(自然科学版),2001;25(6):38~41
    [61] 岳湘安, 固液两相流基础. 北京:石油工业出版社,1996:138~139
    [62] Gu Dazhi, Tanner R I. The Drag on a Sphere in a Power-Law Fluid. Journal ofNon-Newtonian Fluid Mechanics, 1985,17:1~12
    [63] 岳湘安, 牛顿与非牛顿液、固液两相流的本构理论及其垂直管流[博士学位论文]. 中国科学技术大学,1993
    [64] 岳湘安,郝江平,陈家酿. 固体颗粒在宾汉流体中的阻力系数和沉降速度. 石油钻采工艺,1993,15(1):1~8
    [65] Batchelor G K. Sedimentation in a Dilute Dispersion of Spheres. Jour. Fluid Mech,1972,(52):77~90
    [66] Hawksley P G. The Effect of Concentration on the Settling of Suspensions andFlow Through Porous Media In some Aspects of Fluid Flow. Edward Arnold Co.London, 1951,(4):114~135
    [67] McNown J S, Malaika J. Effect of Particle Shapes Settling Velocity at LowReynauds Numbers, Amer. Geophys. Union,1950,31(1):74~82
    [68] McNown J S, Particles in Slow Motion. La House Blabcle,1951,6(5):701~722
    [69] 汪海阁,刘希圣,水平井洗井液携砂机理,钻采工艺,1996;19(2):10~14
    [70] 张万义.负压冲砂工艺.石油钻采工艺,1990;11(1):43~47
    [71] 李彩虹,张玉亮,宋文玲等.颗粒在非牛顿液体中的沉降.大庆石油学院学报.1995;19(4):6~9
    [72] 李爱芬,王士虎,王文玲.地层砂粒在液体中的沉降规律研究.油气地质与采收率,2001;8(1):70~73
    [73] Gefei Liu, George H.Medley Jr. Foam computer Model helps in analysis ofunderbalanced drilling, Oil and Gas Journal, July 1, 1996
    [74] 王渊,李兆敏等.泡沫流体冲砂洗井计算机模型.第十六届全国水动力学研讨会论文集,2002 年789~795
    [75] 韩占忠,王敬,兰小平. FLUENT 流体工程仿真计算实例与应用. 北京:北京理工大学出版社,2004:10~12
    [76] 沈燕来,陈建武.冲砂洗井水利计算方法综述.水动力学研究与进展,1998;13(3):347~354
    [77] 严大凡. 非牛顿管流摩阻计算方法的比较. 石油规划设计,1994(3):44~48
    [78] 宋金仕,欧绍祥. 循环泡沫钻井工艺枝术的应用. 石油钻采工艺,1998, 20(6):40~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700