用户名: 密码: 验证码:
近场超声非接触支撑与传输系统的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近场超声悬浮(Near Field Acoustic Levitation简称NFAL)是近年来应用于半导体制造与微机电系统(MEMS)技术领域中非接触式支撑与传输系统的新技术。在半导体制造与微机电系统技术领域,对晶圆的输送与精密定位、微小MEMS零件的装配与操作等精密作业单元提出更高的要求。在传统的晶圆传输与定位过程中,由于机械接触会损坏晶圆表面,并且产生微小颗粒破坏工作空间洁净度,制约了制造技术的发展。鉴于接触式晶圆传输过程中所遇到的问题,本文采用近场超声悬浮实现对非接触传输系统的精确理论建模与设计优化,并通过实验平台的搭建和测试,分析了非接触支撑与输送过程中系统的各项动态性能指标。实验数据与理论计算的吻合也证实了模型的精确度和可靠性。主要研究内容如下:
     基于粘性流体运动微分方程,深入研究了近场超声悬浮机理。通过对气体的动态弯曲边界、气体惯性力以及气膜边缘效应建模分析,建立了处于近场超声场的气体挤压膜理论模型。并针对模型的非线性偏微分方程,提出了具有高阶差分格式的数值求解方法和等效近似解析求解方法。模型中加入了对辐射面的弯曲振型的表达项,扩大了模型的适用范围;对于惯性力和边缘效应的建模,更是提高了模型的精度;量化求解实现了模型对悬浮的定量描述,提供了悬浮过程中气膜的压力、流速分布以及悬浮力、推进力等。
     建立了非接触传输系统中导轨—气膜—被悬浮物体的动力学耦合模型,分析了竖直的支撑力和水平推进力与行波驱动的基本关系。运用有限差分求解该系统的稳态解和瞬态解。利用模型对气膜表面气压和流速分布的定量描述,分析了平板物体在微小偏移和倾斜的情况下,挤压膜对其产生的回复力和回复力矩,从而讨论具有不同横截面的振子产生的挤压膜的抗干扰能力,为驱动部件的尺寸优化提供理论依据和优化方法。
     针对压电驱动部件的机电耦合特点,本文提出换能器与大面积振动头耦合的有限元模型,用于系统驱动部件的分析与设计。通过模型仿真计算,讨论了部件沿轴线方向和横向的振型分布,阻抗特性等。实验结果验证了大面积振动头对整个系统的耦合效应。另外,通过仿真分析了尺寸对器件的机电特性的敏感性,形成了一套对用于近场声悬浮振子的开放式的优化方法。
     最后,设计并搭建了非接触悬浮和传输的实验系统和测试平台。针对不同大小的晶圆设计了两种直径的悬浮装置,用于与实验数据的对比分析和验证模型的可靠性。在设计传输系统时,讨论了机械阻抗和电学阻抗匹配问题,并在实验中得出最佳匹配方案。针对支撑与悬浮过程中的各项动态性能指标,设计了动态测试方案,为本文提供有力的数据以便对各理论模型进行全方位评估。实验结果表明,本文提出的理论模型具有较高的精确度,实验误差仅在5%左右,可以用于描述近场超声支撑与悬浮机理,具有定量描述挤压膜内部各参数动态响应的能力,并且能够有效地指导非接触驱动系统的设计与优化。另外,通过大量实验,分析了非接触系统传输过程中的动力学响应特点,总结了实际应用中系统设计与制造的关键技术点,尤其是行波发生和传输对系统尺寸的精确要求,为此项技术工程的实际应用奠定了良好的理论基础。
Near field acoustic levitation (NFAL) has been used in non-contact handling andtransportation of small objects to avoid contamination. In semiconductor manufacturing andmicro-assembly, it is difficult to handle and transfer the wafer or component of MicroElectromechanical System (MEMS) due to their fragility and surface sensitive characteristics.Classical processes usually contain mechanical contacts, which may result in the destructionof fragile parts or cause some degree of surface damage. Also, particles are generated andthus contaminate the working space. The major advantage of NFAL lies in the fact that anymaterial, insulator or conductor, magnetic or non-magnetic, can be manipulated by acousticlevitation and transportation without physical contacts.
     The noncontact wafer handling and transportation systems based on NFAL have beenstudied in this dissertation. We have built theoretical models, designed and optimized thedriving parts and built up the experimental systems. We have also tested and analyzeddynamic performances during handling and transporting process. Experimental data matchwell with theoretical calculations, thus proves the accuracy and reliability of our theoreticalmodel. The main research content and achievements are as follows.
     Based on viscous fluid equations of motion, we have studied the mechanism of near fieldacoustic levitation. We have built theoretical model of gas squeeze film considering flexuralboundary condition, gas inertia and edge effect. Solving such nonlinear partial differentialequation, high resolution central scheme has been developed in numerical solutions, and approximate analytical solutions have been studied by equivalent method. By accounting theflexural mode shape of the vibrator, we have extended the applications of the theoreticalmodel. By accounting gas inertia and edge effect, accuracy of the model has been improvedgreatly. With high order solutions, our model can provide quantitative analysis for squeezefilms, including velocity and pressure distributions, levitation forces and driving forces.
     We have built dynamic models of noncontact systems, including the coupling effect ofrail, gas film and levitated object. The relationship between traveling waves and forces hasbeen studied. Static and transient responses have been solved by finite differential method.According to velocity and pressure distributions of the gas film, we have calculated restoringforces and moments with small eccentric and inclination. Consequently we have discussedthe anti-disturb ability of the gas film generated by vibrators with different cross sections,which provide theoretical basis and optimization method for transducer design.
     Piezoelectric transducers have strong electrical-mechanical coupling. The coupled FEAmodel with transducer and large surface vibrator has been built in this dissertation.Simulations have been performed to get mode shapes, amplitude distributions andimpedances, which are used for design of the driving part. The coupling has been proved bymeasurement. Moreover in simulations, dimension sensitivity on electrical-mechanicalcharacteristics has been discussed, which provide a general method for optimizingtransducers used in NFAL.
     Finally, noncontact levitation and transportation systems have been built for experimentalresearches. To serve wafers of different size, we have set up two levitation device with tworadiuses, thus enhanced the contrast of different conditions and reliability of data. In thedesign of transportation systems, electrical and mechanical impedance matching has beendiscussed. Optimal matching program can be achieved by experimental debugging. Fortesting of dynamic performance during levitation and transportation, measuring systems havebeen built, which provide powerful data for comprehensive evaluation of noncontact systems. Compared with experimental data, our theoretical model has the highest precision, with erroraround5%. Good agreement with experiment enables the theoretical model to quantitativelyexplain the NFAL mechanism, predict dynamic response inside the squeeze film, and finallyhelp design the noncontact transportation systems effectively. Meanwhile, by large amount ofexperimental tests, key techniques of design and manufacturing have been concluded, forexample, precise requirements in dimensions to guarantee traveling wave generation andtransporting. At this point, it provides a theoretical foundation for practical applications.
引文
[1]雷源忠,雒建斌,丁汉,钟掘,先进电子制造中的重要科学问题,中国科学基金,2002,4:204-209
    [2]杨叔子,丁汉,李斌,高端制造装备关键技术的科学问题,机械制造与自动化,2011,40(1):1-5
    [3] Tichiem M., Lang Defeng and Karpuschewski Bernhard, A classification scheme forquantitative analysis of micro-grip principles, Assembly Automation,2004,24(1):88-93
    [4] Cecil J., Vasquez D. and Powell D., A review of gripping and manipulation techniquesfor micro-assembly applications, Int. J. Production Research,2005,43(4):819-828
    [5] Vincent. Vandaele, Pierre Lambert and Alain Delchambre, Non-contact handling inmicroassembly: acoustical levitation, Precision Engineering,2005,29(4):491-505
    [6] Kang BJ, Hung LS, Kuo SK, Lin SC, Liaw CM, H∞2DOF control for the motion of amagnetic suspension positioning stage driven by inverter-fed linear modtor.Mechatronics,2003,13:677-696
    [7]谢宝昌,任永德,王庆文,磁悬浮电机及其应用的发展趋势,微机电,1999,32(6):28-30
    [8] Stephan RM, Nicolsky R, Neves MA, Ferreira AC. A superconducting levitation vehicleprototype. Physica C,2004:408-410
    [9] Zheng XJ, Wu JJ, Zhou Y-H. Effect of spring non-linearity on dynamic stability of acontrolled maglev vehicle and its guideway system. J. Sound&Vibration,2005,279(1–2):201–215
    [10]胡亮,鲁晓宇,候智敏,静电悬浮技术研究进展,物理,2007,36(12):944-950
    [11]Bar-Ziv A, Sarofim AF. The electrodynamic chamber: a tool for studying hightemperature kinetics involving liquid and solid particles. Prog Ener Combust Sci1991,17:1–65
    [12]Ashkin A. Acceleration and trapping of particules by radiation pressure. Phys Rev Lett1970,24(4):156–159
    [13]Peirs J., Design of micromechatronic systems: scale laws, technologies, and medicalapplications, PhD thesis, KUL, Belgium,2001
    [14]Erzincanli F, Sharp JM, Erhal S. Design and operational considerations of a non-contactrobotic system for non-rigid materials. Int. J. Mach Tools Manuf1998,38(4):353–361
    [15]Waltham C, Bendall S, Kotlicki A. Bernoulli levitation. Am. J. Physics2003,71(2):176–179
    [16]Brandt E. H., Suspended by sound,Nature,2001,413(6855):474-475
    [17]解文军,魏炳波,声悬浮研究新进展,物理,2002,31(9):551-554
    [18]Ueha S, Hashimoto Y, Koike Y. Non-contact transportation using nearfield acousticlevitation. Ultrasonics,2000,38:26–32
    [19]Hashimoto Y, Koike Y, Ueha S. Near-field acoustic levitation of planar specimens usingflexural vibration. J Acoust Soc Am1996,100(4):2057–2061
    [20]Hashimoto Y., Koike Y. and Ueha S., Transporting objects without contact using flexuraltraveling waves. J Acoust Soc Am1998,103(6):3230–3233
    [21]解文军,声悬浮优化设计理论及其应用研究[博士论文],西安:西北大学,2002
    [22]Barmatz M. Overview of containerless processing technologies. In: Proceedings of theSymposium on Materials Processing in the Reduced Gravity Environment of Space,Elsevier,1982:25–37
    [23]应崇福,超声学,北京:科学出版社,1990
    [24]林书玉,超声换能器的原理及设计,北京:科学出版社,2004:10-22
    [25]Kazuyuki Minami, Tadao Matsunaga, Masayoshi Esashi. Simple modeling andsimulation of the squeeze film effect and transient response of the MEMS device. IEEE1999:338-343
    [26]Katsuhiko Asai, Minoru Kuribayashi Kurosawa. Estimation of the squeeze film effect ina surface acoustic wave motor. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control,2005,52(10):1722-1734
    [27]Mitri F. G.. Acoustic radiation force acting on elastic and viscoelastic spherical shellsplaces in a plane standing wave field. Ultrasonics,2005,43:681-691
    [28]Reinhart G, Hoeppner J., Non-contact handling using high-intensity ultrasonics. CIRPAnn,2000,49(1):5–8
    [29]Sadayuki Ueha, Yoshiki Hashimoto, Yoshikazu Koike. Non-contact transportation usingnear-field acoustic levitation. Ultrasonics,2000,38:26~32
    [30]Matsuo E., Koiike Y., Nakamura K., Ueha S., Hashimoto Y.. Holding characterstics ofplannar objects suspended by near-field acoustic levitation. Ultrasonics,2000,38:60~63
    [31]Sadayuki Ueha. Recent Development of Ultrasonic Actuators. IEEE UltrasonicsSymposium,2001:513~520
    [32]Koike Y., Ueha S., Okongi A., Amano T., Nakamura K.. Suspension Mechanism in NearField Acoustic Levitation Phenomenon. IEEE Ultrasonics Symposium,2000:671~674
    [33]Hashimoto, Y., Noncontact Suspending and Transporting Planar Objects by UsingAcoustic Levitation. Trans. IEE of Japan117-D (1997)11, pp.1405-1408
    [34]Chu B., Apfel R.E.. Acoustic radiation pressure produced by a beam of sound. J. Acoust.Soc. Am.,1982,72(6),1673-1687
    [35]赵淳生,超声电机技术与应用,北京:科学出版社,2007:390-397
    [36]刘景全,吴博达,杨志刚,程光明,鲁勇,一种新型的圆筒非接触超声马达,声学学报,2001,26(2):113-116
    [37]Yamayoshi Y, Hirose S, Ultrasonic motor not using mechanical friction force,International Journal of Applied Electromag-Neticsin Materials,1992,3:179-182
    [38]熊田明生,超声波减摩性能的研究,声学与电子工程,1986,5:24-29
    [39]曲建俊,姜开利,张凯等,超声驱动的超声波振动减摩作用研究,声学学报,2001,26(6):497-502
    [40]黄明军,周铁英,巫庆华,超声振动对摩擦力的影响,声学学报,2000,25(2):115-119
    [41]常颖,吴博达,杨志刚等,超声波推力轴承承载能力及减摩性能,吉林大学学报,34(2),222-225,2004
    [42]孟光,张文明,微机电系统动力学,科学出版社,2008
    [43]鲍敏杭, Analysis and design principles of MEMS devices, Elsevier,2005
    [44]Xing Changhu, Minel J. Braun and Li Hongmin, A three-dimensionalNavier-Stokes-based numerical model for squeeze film dampers. Part1-Effects ofgaseous cavitation on pressure distribution and damping coefficients withoutconsideration of inertia. Tribology Transactions,2009,52:680-694
    [45]Beltman W. M., P. J. M. van der Hoogt, R. M. E. J. Spiering and H. Tijdeman, Air loadson a rigid plate oscillating normal to a fixed surface, J. Sound and vibration1997,206(2):217-241
    [46]Li Wang-Long, Analytical modeling of ultra-thin gas squeeze film, Nanotechnology,1999,10:440-446
    [47]Burgdorfer A., The influence of thee molecular mean free path on the performance ofhydrodynamic gas lubricated bearing, ASME J. Basic Engineering,1959,81:94-99
    [48]Hsia Y. T., Domoto G. A., A experimental investigation of molecular rarefaction effects ingas lubricated bearings at ultra-low clearance, ASME J. Lubrication Technology,1983,105:120-130
    [49]Fukui S., Kaneko R., Analysis of ultra-thin gas film lubrication thermal creeping flow,ASME J. Tribology,1988,110:253-262
    [50]Seidel H., Riedel H., Kolbeck R., Capacitive silicon accelerometer with highlysymmetrical design, Sensors and Actuators A: Physical,1990, A21-A23,312-315
    [51]Homentcovschi Dorel and Ronald N. Miles, Modeling of viscous damping of perforatedplanar microstructures. Application in acoustics, J. Acoustic Society of America,2004,116(5):2939-2947
    [52]Veijola T., Compact models for squeezed-film dampers with inertial and rarefied gaseffects, J. Micromech. Microeng.2004,14:1109-1118
    [53]Veijola T. and Lehtovuori A., Numerical and compact modeling of squeeze-film dampingin RF MEMS resonators, DTIP of MEMS&MOEMs,2008:9-11
    [54]Minikes A., Bucher I., Levitaion force induced by pressure radiation in gas squeeze films,J. Acoustical Society of America,2004,116(1):217-226
    [55]Hashimoto Y., Koike Y., Ueha S., Acoustic levitation of planar objects using alongitudinal vibration mode, Jpn. J. Appl. Phys,1995,16(3):189-192
    [56]Ide T., Friend J., Nakamura K. and Ueha S., A non-contact linear bearing and actuator viaultrasonic levitation, Sensors and Actuators,2006. A(135):740-747
    [57]Salbu E. O. J., Compressible squeeze film and squeeze bearings, Transaction of theASME, J. Basic engineering,1964:355-368
    [58]Kang J., Xu Z. Akay A., Inertia Effects on Compressible Squeeze films, Transaction ofthe ASME, J of Vibration and Acoustics,1995.117:94-102
    [59]Usha R., Vimala P., Curved squeeze film with inertial effects-energy integral approach,Fluid Dynamics Research,2002,30:139-153
    [60]Park K. H., Lee S. K., Yi J. H., Yi S. H., Kim S. H., Contactless Magnetically LevitatedSilicon Wafer Transport System. Mechatronics,1996,6(5):591-610
    [61]Jeroen de Boeij, Elena Lomonova and Jorge Duarte, Contactless Planar Actuator withmanipulator: A motion system without cables and physical contact between the moverand the fixed world, IEEE Transactions on Industry Applications,2009,45(6):1930-1938
    [62]Gunther Reinhart, Juergen Hoeppner, Josef Zimmermann. Non-contact wafer handlingusing high-intensity ultrasonics,2001IEEE/SEMI Advanced SemiconductorManufacturing Conference:139~140
    [63]Reinhart G, Hoeppner J, Zimmermann J. Non-contact handling of wafers and micro-partsusing ultrasonics. Proceedings of the Seventh Mechatronics Forum InternationalConference,2000
    [64]Takeshi Ide, James R. Friend, Kentaro Nakamura and Sadayuki Ueha, A low-profiledesign for the noncontact ultrasonically levitated stage, Japanese Journal of AppliedPhysics,2005,44(6B):4662-4665
    [65]季叶,赵淳生.一种圆筒型非接触式超声电机.南京航空航天大学学报.2005,37(6):690~693
    [66]季叶,赵淳生.非接触型超声电机的圆筒形定子的振型测量技术.振动、冲击与诊断,2005,25(1):1~3
    [67]韩凤,气体挤压膜悬浮平台的性能分析.[硕士论文].南京:南京航空航天大学.2008
    [68]陈长植.工程流体力学.武汉:华中科技大学出版社.2008:104-110
    [69]Minikes A. and Bucher I., Noncontacting lateral transportation using gas squeeze filmgenerated by flexural traveling waves-Numerical analysis, J. Acoust. Soc. Am.2003,113:2464–2473
    [70]池长青.气体动静压轴承的动力学及热力学.北京:北京航空航天大学出版社.2008:79-88
    [71]Langlois W. E., Isothermal squeeze films, Q. Appl. Math.1962. XX(2):131–150
    [72]Alexander Kurganov and Eitan Tadmor, New High-Resolution Central Schemes forNonlinear Conservation Laws and Convection-Diffusion Equations, J. ComputationalPhysics,2000.160:214–282
    [73]Blech, J. J., On Isothermal Squeeze Films, J. Lub. Tech.,1983,105:615-620
    [74]Fox, M. J. H., and Whitton, P. N., The Damping of Structural Vibration by Thin Gas Film,J. Sound and Vib.,1980,73:279-295
    [75]Minhang Bao, Analysis and design principles of MEMS devices, Amsterdam:ELSEVIER,2005:115-173
    [76]Kang Jongmin, Xu Zhaoshun and Adnan Akay, Inertia Effects on Compressible SqueezeFilms, J. Vib. Acoustics,1995,177:94-102
    [77]Yang Seung-Man, Leal L. Gary, Thin fluid film squeezed with inertia between twoparallel plane surfaces, J Tribology,1993,115:632-639
    [78]Pan C.H.T., Calculation of pressure, Shear, and flow in lubricating films for high speedbearings, J. Lubrication Technology,1974, JAN:80-93
    [79]Suhas S. Mohite, Venkata R. Sonti and Rudra Pratap, A compact Squeeze-Film ModelIncluding Inertia, Compressibility, and Rarefaction Effects for Perforated3-D MEMSStructure, J. Microelectromechanical Systems,2008,17(3):709-723
    [80]T. Veijola, Compact models for squeezed-film dampers with inertial and rarefied gaseffects, J. Micromech. Microeng.2004,14:1109
    [81]Stolarski T.A. and Chai Wei, Inertia effect in squeeze film air contact, TribologyInternational, article in press
    [82]Yong Lu and R. J. Rogers, A nonlinear model for short length, cylindrical squeeze filmswith large planar motions, J. Tribology,1992,114:192-198
    [83]Vijay Kumar Stokes, Couple Stresses in Fluids, The Physics of Fluids,1966,9(9):1709-1715
    [84]Hiromu Hashimoto and Sanae Wada, The effects of fluid of fluid inertia forces in parallelcircular squeeze film bearings lubricated with pseudo-plastic fluids, J. Tribology,1986,108:282-287
    [85]Yukio Hori, Hydrodynamic Lubrication, Springer-Verlag, Japan,2006:137-144
    [86]Martin Zatloukal and Jan Musil, Analysis of entrance pressure drop techniques forextensional viscosity determination, Polymer Testing,2009,28:843-853
    [87]Paul J.M. Lebens, Rolf K. Edvinsson, S. Tiong Sie and Jacob A. Moulijn, Effect ofentrance and exit geometry on pressure drop and flooding limits in a single channel of aninternally finned monolith, Ind. Eng. Chem. Res.1998,37:3722-3730
    [88]Smalley A. J., Vohr J. H., Castelli V. and Wachmann C., An analytical and experimentalinvestigation of turbulent flow in bearing films including convective inertia forces, Trans.ASME J. Lubr. Tech.,1974,96:151-157
    [89]Turns S. R., Annular squeeze films with inertial effects, Trans. ASME J. Lubr. Tech.,1983,105:361-363
    [90]Kuroda S. and Hori Y., A study of fluid inertia effects in a squeeze film, J. JSLE,1976,105:361-363
    [91]孙运涛,陈超,基于近场声悬浮的非接触式直线型压电作动器,中国机械工程,2010,21(24):2952-2956
    [92]Gross W. A., Gas Film Lubrication, New York: Wiley,1962
    [93]胡宗武,工程振动分析基础,上海:上海交大出版社,1999,200-218
    [94]田立平,数学物理方程及其反问题研究,北京:机械工业出版社,2010:28-36
    [95]张渭滨,数学物理方程,北京:清华大学出版社,2007:59-68
    [96]Fox R. W. and McDonald A. T., Introduction to fluid mechanics, New York: Wiley,1985
    [97]陈长植,工程流体力学,武汉:华中科技大学出版社,2008:第十章量纲分析与相似原理
    [98]Matsuo E., Koike Y., Nakamura K., Ueha S. and Hashimoto Y., Holding characteristicsof planar objects suspended by near-field acoustic levitation, Ultrasonics,2000,38:60–63
    [99]Ide T., Friend J., Nakamura K., and Ueha S., A non-contact linear bearing and actuatorvia ultrasonic levitation, Sensors and Actuators A: Physical,2006,135(2):740-747
    [100]Ueha S., Hashimoto Y. and Koike Y., Non-contact transportation using near-fieldacoustic levitation, Ultrasonics,2000,38:26-32
    [101]Hu J., Nakamura K. and Ueha S., Stability analysis of an acoustically levitated disk,IEEE Trans. Ultr. Ferr. Freq. Contr.,2003,50(2):117-127
    [102]Hashimoto Y., Koike Y. and Ueha S., Transporting objects without contact usingflexural traveling waves, J. Acoust. Soc. Am.1998,103(6):3230-3233
    [103]Barmatz M. and Collas P., Acoustic radiation potential on a sphere in plane, cylindrical,and spherical standing wave fields, J. Acoust. Soc. Am,1985,77(3):926-945
    [104]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社,1990:2-15
    [105]林书玉,超声换能器的原理及设计,北京:科学出版社,2004:10-22
    [106]IEEE Standard on Piezoelectricity-Std. The Institute of Electrical and ElectronicsEngineering, New York,1987:176
    [107]Randeraat J., Piezoelectric Ceramics, London: Mullard,1974
    [108]Kim J., Kim H.S., Finite element analysis of piezoelectric underwater transducers foracoustic characteristics, J. Mech. Sci. Technol.2009,23:452-460
    [109]Abdullah A., Shahini M., Pak A., An approach to design a high power piezoelectricultrasonic transducer, J. Electroceram.2009,22:369-382
    [110]林书玉.弯曲振动气介式超声换能器的振动特性及辐射声场研究.声学与电子工程.2004,3:1-7
    [111]林仲茂,超声变幅杆的原理和设计,北京:科学出版社,1987:53-56
    [112]莫喜平, ANSYS软件在模拟分析声学换能器中的应用,声学技术,2007,26(6):1279-1290
    [113]Bao X.Q., Bar-Cohen Y., Chang Z., Dolqin B.P., Sherrit S., Pal D.S., Du S., Peterson T.,Modeling and computer simulation of ultrasonic/sonic driller/corer (USDC), IEEE Trans.Ultrason. Ferroelectr. Freq. Control.,2003,50:1147-1159
    [114]Kim J., Jung E., Finite element analysis for acoustic characteristics of amagnetostrictive transducer, Smart. Mater. Struct.2005,14:1273-1280
    [115]ANSYS Coupled-Field Analysis Guide, Release10, ANSYS, Inc., Canonsburg,Pennsylvania,2005
    [116]Jiang, W., Zhang, R., Jiang, B., Cao, W, Characterization of piezoelectric materials withlarge piezoelectric and electromechanical coupling coefficients, Ultrasonics,2003,41(2):55-63
    [117]Grimes R.G., Lewis J.G., Simon H.D., A shifted block lanczos algorithm for solvingsystematic generalized eigenproblems, SIAM. J. Matrix. Anal. Appl.1994,15(1):228-272
    [118]Li Jin, Cao Wenwu, Liu Pinkuan and Ding Han, Influence of gas inertia and edge effecton squeeze film in near field acoustic levitation, App. Phy. Letter,2010,96:243507
    [119]Chu B. and Apfel E., Acoustic radiation pressure produced by a beam of sound, J.Acoust. Soc. Am,1982,72(6):1673-1687
    [120]Nomura H. and Kamakura T., Theoretical and experimental examination of near-fieldacoustic levitation, J. Acoust. Soc. Am.2002,111:1578–1583
    [121]Minikes A. and Bucher I., Levitation force induced by pressure radiation in gas squeezefilms, J. Acoust. Soc. Am,2004,116(1):217–226
    [122]Kuribayashi M., Ueha S. and Mori E., Excitation conditions of flexural traveling wavesfor a reversible ultrasonic linear motor, J. Acoust. Soc. Am,1985,77(4):1431-1435
    [123]彭太江,常颖,杨志刚,吴博达,超声减摩用压电换能器阻抗匹配的试验研究,压电与声光,2004,24(1):65-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700