用户名: 密码: 验证码:
辽宁区域地震台网资料的地壳介质剪切波分裂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地壳中产生各向异性的主要因素是大量充满液体的定向排列的微裂隙,当剪切波穿过这种各向异性介质传播时会分裂为快剪切波和慢剪切波。快剪切波的优势偏振方向与裂隙走向一致,与原地主压应力方向一致;慢剪切波的时间延迟与介质的各向异性程度有关。地壳的各向异性特征,受到地质构造、岩相、断裂分布和应力环境等因素的影响,并与地壳运动特征密切相关,区域性很强。通过剪切波分裂参数可以研究地壳介质的特性、地壳应力状态及应力场的变化,并且通过剪切波分裂参数在大地震前后的变化,可以研究地震预测问题。利用地壳介质各向异性特征研究断层性质也是一个新的动向。
     辽宁省位于华北北部,新生代构造轮廓总体形态为北东走向的条块状。中部为下辽河盆地,东西两侧为山地隆起。新生代以来的断层有一定的活动性,主要为老断层的新活动。北东向断裂遍布全省,规模较大,活动形迹显著;北西向断裂规模较小,一般为一些横截北东向断裂的扭性断裂(马杏垣,1989)。
     1999年11月29日,辽宁岫岩地区发生了一次M_L5.3(Ms5.9)地震,并于2000年1月12日又发生了一次M_L5.4(Ms5.2)的最大余震,岫岩地震是一次前震-主震-余震型的地震序列,该地震序列从1999年11月开始,一直持续到2000年10月结束(孙文福和焦明若,2001)。本研究利用剪切波分裂SAM分析方法,对辽宁遥测数字地震台网记录的岫岩地震前后的1999年6月-2006年9月的数字地震波形资料进行了分析。
     通过对辽宁台网中有可用资料的8个台站的数据分析,表明大部分台站的快剪切波优势偏振方向为NEE向近E-W向,与原地主压应力方向一致,与华北北部区域构造应力场方向一致,不过辽宁中部的SJ台和东南部的KD台的快剪切波优势偏振方向为近N-S向和NW向,与其他台站的结果有差异,这可能是受到复杂的局部构造的控制和影响引起的。不过由于这两个台站的有效记录少(SJ台为4条,KD台为1条),还需要更多的资料才能进行详细的解释。
     本研究还发现YK台的平均快剪切波偏振方向在主震发生前后有大约8°~12°的变化。快剪切波偏振方向的月平均变化直方图也显示,地震前两个月快剪切波偏振方向似乎也有变化,但还需要更多资料的证实。YK台的快剪切波优势偏振方向还与小地震活动空间分布走向一致,与活动断层走向相关。
     YK台的慢剪切波时间延迟在岫岩地震前有一个明显的增加,显示出了震前的应力积累过程。但由于缺少震前一个月内的数据,本研究没有观测到临震前慢剪切波时间延迟突然下降的过程。对YK台不同时间段的慢剪切波时间延迟进行平均后发现,平均慢剪切波时间延迟在主震发生前最大,主震发生后到最大余震发生前最小,地震序列结束后恢复到震前的水平。
     本研究结合GPS观测结果和其它地质与地球物理观测结果,进行对比分析,研究了辽宁区域的断裂分布和主压应力场的特征,对辽宁地区剪切波分裂参数的空间和时间变化特征进行了分析,对研究区域构造应力场环境和地震应力预测等方面具有重要意义。
Anisotropy in crust is mainly the result of stress-aligned fluid-saturated grain-boundary cracks, when traveling through this anisotropic media, shear-waves split into fast shear-waves and slow shear-waves. The predominant polarization direction of fast shear-waves is consistent with the direction of cracks, and also consistent with the direction of principal compressive stress; time delays correlate to the level of anisotropy. The fecture of anisotropy in crust is affected by geologic structure, lithofacies, distrubiting of faults and stress environment, and correlate to movement of crust. Also, anisotropy in crust is strongly regionalized. With shear-wave parameters, can study the feature of crust, the condition and change of crustal stress field, and can study earthquake forecast issues with the change of shear-wave parameters before and after the large earthquake. It is also a new attempt to study the natures of faults with the feature of anisotropy in crust.
     Liaoning locates in north part of north China, and it shows NE trending tectonical characters mainly nowadays. There are Xialiaohe Basin in the middle of Liaoning, and both sides of it are uplift. In Neozoic, the tectonic movement is some active, and it is mainly the new activity of the primary faults. It is very common to find NE striking faults in the whole province, largely and actively. Antitheticly, the NW striking faults are smaller and commonly wrench faults to cut the NE striking faults(Ma X Y, 1989).
     On November 29,1999, an earthquake M_L5.3(Ms5.9) happened in Xiuyan, Liaoning, and the largest aftershock M_L5.4(Ms5.2) happened on January 12,2000. Xiuyan earthquake is a cluster of foreshock-main shock-aftershock, the cluster lasted from November 1999 to October 2000(Sun & Jiao, 2001). This study analyzed the seismic data recorded by Liaoning Telemetry Digital Seismic Network from June 1999 to September 2006 with SAM technique.
     The analyzed results at 8 stations of Liaoning Seismic Netwoke (Liaoning Seismic Netwoke has 16 stations in all) show that predominant polarization direction of fast shear-waves at most stations strike to NEE(nearly E-W), consistent with the direction of regional principal compressive stress, and also consistent with the direction of the regional tectonic stress field in north part of North China. However, the predominant polarization direction of fast shear-waves at SJ station in the middle of Liaoning and KD station in southeast of Liaoning strike to nearly N-S and NW, different from other stations, they may be controlled and influenced by the complex local geological structure. Also, there is not enough available recorded data at the two stations(SJ is 4, and KD is 1), we need more data to analyze.
     We also find that the average polarizations of fast shear-waves at YK station have a change of 8°~12°before and after the main shock. The histogram of monthly average polarizations of fast shear-waves shows that polarizations of fast shear-waves also seems to change from two months before the earthquake, but it needs more data to prove. Predominant direction of the polarizations of fast shear-waves at YK station is also consistent with the spatial distribution of small earthquakes, correlates to the fault strike.
     Time delays increase before Xiuyan earthquake at YK station shows accumulation of stress before earthquake. But we have not observe the sudden decrease before impending earthquake due to lack of data one month before the earthquake. From the average time delays in different stages at YK station, we find that the average time delays is the largest before main shock, the least between main shock and aftershock, and after the end of cluster, it gets back to the level of before main shock.
     According to the study results and other data, such as GPS, geological and geophysical data, we studied the regional distribution of faults and feature of principal compressive stress field, and analysed the feature of special and temporal change of shear-wave parameters in Liaoning, it has some significance to study regional tectonicstress field and stress-forecasting et al.
引文
曹风娟,郭晓燕,贾晓东,等.2006.地震综合信息量S值在岫岩Ms5.4地震前异常特征研究[J].东北地震研究,22(3):24-32
    曹凤娟,王连权,张萍,等.2005.岫岩Ms5.4地震前后S波分裂研究[J].东北地震研究,21(4):39-44
    曹凤娟,尹涛,马丽,等.2005.岫岩Ms5.4地震前后视应力时空变化特征[J].东北地震研究,21(1):14-19
    陈天长.1994.震后横波偏振的时间变化[M].陈运泰等主编.中国固体地球物理学进展.北京:海洋出版社,352-357
    陈学忠,盖增喜,周仕勇,等.2001.1999年11月29日辽宁岫岩5.4级地震序列的破裂过程研究[J].地震学报,23(6):559-662
    刁桂苓,周仕勇,刘杰,等.2005.岫岩地震序列的平均波速比前兆异常[J].华北地震科学,23(4):1-5
    丁国瑜,蔡文伯,于品清,等.1991.中国岩石圈动力学概论[M].北京:地震出版社,271-539
    高原.2000.破裂临界状态下大理岩的剪切波分裂特征[J].中国地震,16(3):197-202
    高原.2003.地壳介质各向异性与剪切波分裂[M].地震参数-数字地震学在地震预测中的应用.北京:地震出版社,82-106
    高原.2006.利用剪切波分裂研究地壳介质各向异性[J].安徽师范大学学报(自然科学版),29(3):206-211
    高原,冯德益.1993.大同地区近震S波分裂的观测与研究[J].地震学报,15(增刊):521-527
    高原,郑斯华.1994.唐山地区剪切波分裂研究(Ⅱ)-相关函数分析法[J].中国地震,10(增刊):11-21
    高原,滕吉文.2005.中国大陆地壳与上地幔地震各向异性研究[J].地球物理学进展,20(1):180-185
    高原,郑斯华,孙勇.1995.唐山地区地壳裂隙各向异性[J].地震学报,17(3):283-293
    高原,郑斯华,王培德.1996.海南省东方地区1992年小震群剪切波分裂研究[J].地球物理学报,39(2):221-232
    高原,郑斯华,周慧兰.1999.唐山地区快剪切波偏振图象及其变化[J].地球物理学报,42(2):228-232
    高原,梁维,丁香,等.2004.云南2001年施甸地震的剪切波分裂参数变化特征[J].地震学报,26(6):576-582
    高原,刘希强,梁维,等.2004.剪切波分裂系统分析办法(SAM)软件系统[J].中国地震,20(1):101-107
    高原,石玉涛,梁维,等.2008.剪切波分裂系统分析系统SAM(2008)--软件系统[J].中国地震,(已投稿)
    高常波,钟以章.2000.1999年辽宁海城-岫岩5.6级地震的地震构造背景和发震构造[J].地震地质,22(4):405-412
    谷光裕,于龙伟,王安东,等.2001.辽宁岫岩5.4级地震临震预测[J].地震,21(1):78-84
    蒋秀琴,佟晓辉.2001.1999年11月29日辽宁岫岩-海城Ms5.4地震综述[J].地震地磁观测与研究,22(2):1-9
    孔繁强,林玉祥.1991.辽宁地区垂直形变场特征再研究[J].东北地震研究,7(4):21-27
    赖院根,刘启元,陈九辉,等.2002.新疆伽师强震群区的横波分裂与应力场特征[J].地球物理学报,45(1):83-92
    兰从欣,刘杰,马士振,等.2006.岫岩5.4级地震序列主应力变化特征研究[J].地震,26(2):73-82
    雷军,王培德,姚陈,等.1997.云南剑川近场横波特征及其与构造的关系[J].地球物理学报,40(6):792-801
    李白基.1996.云南禄劝地震余震分裂剪切波的变化[J].地震学报,18(2):224-230
    李白基,秦嘉政,钱晓东.2002.1995年武定6.5级地震余震的剪切波分裂[J].地震研究,25(2):108-114
    李宇彤,焦明若,李芳.2005.岫岩Ms5.4与海城Ms7.3地震的共性和个性研究[J].地震研究,28(3):231-235
    李清河,刘希强,张范民,等.1996.肃南5.7级地震过程剪切波分裂特征[J].地震,16(4):417-426
    李芳,于笑非.2004.岫岩5.4级地震前后振幅比变化特征[J].东北地震研究,20(3):33-38
    李乐,周蕙兰,陈棋福.2004.地球内核的地震学研究进展[J].地球物理学进展,19(2):238-245
    刘元生,刘贵和,佟凤兰.2000.辽河盆地地下流体异常与岫岩Ms5.6地震[J].西北地震学报,22(3):241-257
    刘斌,张群山,王宝善,等.2000.内核地震波速各向异性成因[J].地球物理学报,43(3):312-321
    吕培苓,杨智娴,王晓青,等.2004.1999年岫岩地震序列研究[J].地震,24(4):45-50
    马杏垣.1989.中国岩石圈动力学地图集[M].中国地图出版社,32-33
    牛滨华,孙春岩.2002.半空间介质与地震波传播[M].石油工业出版社,242-249
    潘科,蒋秀琴,卢造勋,等.2001.辽宁及邻区地壳上地幔三维速度的地震层析成像[J].地震地磁观测与研究,22(2):92-98
    钱晓东,李白基,秦嘉政.2002.2000年云南姚安Ms6.5地震余震序列S波分裂研究[J].中国地震,18(2):157-165
    曲延军,赵翠萍,赵建政,等.2004.乌鲁木齐及附近地区剪切波分裂特征研究[J].内陆地 震,18(3):212-220
    石玉涛.2006.利用区域遥测台网研究云南地区地壳介质各向异性.[硕士学位论文].中国地震局地震预测研究所
    石玉涛,高原,吴晶,等.2006.云南地区地壳介质各向异性-快剪切波偏振特性的初步研究[J].地震学报,28(6):574-585
    孙勇,郑斯华.1993.唐山地区剪切波分裂研究[J].中国地震,9(1):60-67
    孙文福,焦明若.2001.1999年岫岩5.6级地震序列活动跟踪研究[J].东北地震研究,17(2):8-16
    滕吉文,张中杰,王光杰,等.2000.地球内部各圈层介质的地震各向异性与地球动力学[J].地球物理学进展,15(1):1-34
    万波.2000.岫岩-海城5.6级地震地质背景及其发震构造[J].东北地震研究,16(2):27-32
    王海燕.2000.岫岩-海城5.6级地震前的水化学异常[J].东北地震研究,16(2):56-60
    王良书,陈运平,米宁,等.2005.从地震波各向异性到各向异性地震学:地震波各向异性综述[J].高校地质学报,11(4):554-551
    王玉莹,陈德峰,王丽华.2000.岫岩-海城5.6级地震震前辽宁地区形变前兆异常特征[J].东北地震研究,16(2):61-65
    王玉莹,佟晓辉,石艳丽,等.2005.新民地震台应变短期异常与地震的关系探讨[J].东北地震研究,21(3):56-61
    王琼,陈学忠,王林瑛.2005.岫岩地震序列视应力变化及其预测意义[J].25(2):91-97
    王椿镛,丁志峰,陈学波,等.1997.大别造山带地壳S波分裂和介质各向异性[J].科学通报,42(23):2539-2542
    王培德,K Klinge,F Kruger,等.2000.波形极相似的地震丛集中剪切波分裂的变化[J].地震学报,22(5):501-508
    王伟君,刘杰.2004.1999年岫岩地震序列尾波Qc的变化过程[J]_地震,24(4):37-44
    吴晶,高原,陈运泰,等.2007a.首都圈西北部地区地壳介质地震各向异性特征初步研究[J].地球物理学报,50(1):209-220
    吴晶,高原,蔡晋安,等.2007b.华夏地块东南部的地壳地震各向异性特征初步研究[J].地球物理学报,50(6):1749-1756
    邢作云,邢集善,赵斌.2006.华北地区深部构造特征[J].地质科技隋报,25(6):17-23
    杨成元,郝维英.2003.岫岩5.4级地震前地形变观测异常的某些特征[J].东北地震研究,19(3):24-30
    姚陈,王培德,陈运泰.1992.卢龙地区S波偏振与上地壳裂隙各项异性[J].地球物理学报,35(3):305-315
    姚陈,王培德,陆玉美,等.1992.对大同地区横波分裂的研究[J].华北地震科学,10(3):12-26
    袁金荣,徐菊生,高士钧.1999.利用GPS观测资料反演华北地区现今构造应力场[J].地球学报,20(3):232-238
    张静华,李延兴,郭良迁,等.2004.用GPS测量结果研究华北现今构造形变场[JJ.大地测量与地球动力学,24(3):40-46
    张玲,李兴航,刘哲,等.2000.岫岩-海城5.6级地震前电磁前兆变化特征[J].东北地震研究,16(2):66-70
    张萍,蒋秀琴.2000.辽宁地区震源机制解及应力场特征的研究[J].东北地震研究,16(1):1-7
    张萍,蒋秀琴.2001.岫岩-海城Ms5.4地震序列的震源机制解及应力场特征[J].地震地磁观测与研究,22(2):76-82
    张萍,谷光裕,高艳玲.2001.岫岩-海城Ms5.45地震序列震源机制解[J].地震,21(1):98-101
    张萍,陈忠奇,曹凤娟,等.2006.岫岩5.4级地震前后拐角频率比的变化特征[J].四川地震,4(1):19-36
    张萍,于龙伟,李爱民,等.2003a.岫岩-海城Ms5.4地震余震震源机制研究[J].东北地震研究,19(2):28-35
    张萍,于龙伟,李涯,等.2003b.岫岩-海城5.4级地震前小震震源机制解与记录特征分析[J].地震地磁观测与研究,24(1):29-38
    张中杰.2002.地震各向异性研究进展[J].地球物理学进展,17(2):281-293
    张存德,向家翠.1990.华北地区的现代构造运动fJ].地震地质,12(3):265-271
    郑治真.1990.S波分裂的研究[J].地球物理学进展,5(1):8-13
    Ando M,Ishikawa Y,Yamazaki F.1983.Shear wave polarization anisotropy in the upper mantle beneath Honshu,Japan[J].J Geophys Res,88:5850-5864
    Bergman M I.1997.Measurements of elastic anisotropydue to solidification texturing and the implications for the Earth's inner core[J].Nature,389(6646):60-63
    Bianco F,Scarfi L,Del Pezzo E,et al.2006.Shear wave splitting changes associated with the 2001volcanic eruption on Mt Etna[J].Geophys J Int,167:959-967
    Brown J M,McQueen R G.1986.Phase transitions,Grlineisen parameter,and elasticity for shocked iron between 77 GPa and 400 Gpa[J].J Geophys Res,91:7485-7494
    Crampin S.1977.A review of the effects of anisotropic layering on the propagation of seismic waves[J].Geophys JR Astron Soc,49:9-27
    Crampin S,1978.Seismic-wave propagation through a cracked solid polarization as a possible dilatancy diagnostic[J].Geophys JR Astron Soc,53:467-496
    Crampin S.1981.A review of wave motion in anisotropic and cracked elastic-media[J].Wave Motion,3:343-391
    Crampin S.1984.Effective anisotropic elastic constants for wave propagation through cracked solids[J].Geophys J R Astron Soc,76:135-145
    Crampin S.1999.Calculable fluid-rock interactions[J].J Geol Soc Lond,156:501-514
    Crampin S.2001.Developing stress-monitoring sites using cross-hole seismology to stressforecast the times and magnitudes of future earthquakes[J].Tectonophysics,338:233-245
    Crampin S. 2003. The new geophysics: shear-wave splitting provides a window into the crack, critical rock mass [J]. Leading Edge, 22: 536-549
    
    Crampin S, Atkinson B K. 1985. Microcracks in the earth's crust[J]. First Break, 3(3): 16-20
    Crampin S, Booth D C. 1985. Shear-wave polarization near the North Anatolian Fault, II .Interpretation in terms of crack-induced anisotropy[J]. Geophys J R Astron Soc, 83: 75-92
    Crampin S, Evans R. 1985. Analysis of records of local earthquakes: the Turkish dilatancy projects(TDP1 & TDP2)[J]. Geophys J R Astron Soc, 83:1-16
    Crampin S, Gao Y. 2006. Review of techniques for measuring shear-wave Splitting above small earthquake[J]. Phys Earth Planet Inter, 159: 1-14
    Crampin S, Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth[J]. Wave Motion, 41: 59-77
    Crampin S, Zatsepin S V. 1997. Changes of strain before earthquakes: the possibility of routine monitoring of both long-term and short-term precursors[J]. J Phys Earth, 45: 1-26
    Crampin S, Chastin S, Gao Y. 2003a. Shear-wave splitting in a critical crust: III - preliminary report of multi-variable measurements in active tectonics[J]. J Appl Geophys, 54: 265-277
    Crampin S, Gao Y, Chastin S, et al. 2003b. Speculations on Earthquake Forecasting[J]. Seism Res Lett, 74(3): 271-273
    Crampin S, Volti T, Stefánsson R. 1999. A successfully stress-forecast earthquake[J]. Geophys J Int,138:F1-F5
    Crampin S, Volti T, Chastin S, et al. 2002. Indication of high pore-fluid pressures in a seismically-active fault zone[J]. Geophys J Int, 151: F1-F5
    Creager K C. 1992. Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP[J]. Nature, 356: 309-314
    Evans R, Beamish D, Crampin S, et al. 1987. The Turkish Dilatancy Project(TDP3): multidisciplinary studies of a potential earthquake source region[J]. Geophys J R Astron Soc, 91: 265-286
    Gao Y, Crampin S. 2003. Temporal variations of shear-wave splitting in field and laboratory in China[J]. JAppl Geophys, 54(3/4): 279-287. doi: 10.1016/j.jappgeo.2003.01.002
    Gao Y, Crampin S. 2004. Observations of stress relaxation before earthquakes[J]. Geophys J Int, 157(2): 578-582
    Gao Y, Crampin S. 2006. A further stress-forecast earthquake (with hindsight), where migration of source earthquakes causes anomalies in shear-wave polarizations[J]. Tectonophysics, 426: 253-262
    Gao Y, Hao P, Crampin S. 2006. SWAS: A shear-wave analysis system for semi-automatic measurement of shear-wave splitting above small earthquakes[J]. Phys Earth Planet Inter, 159:71-89
    Gerst A, Savage M K. 2004. Seismic anisotropy beneath Ruapehu volcano: a possible eruption forecasting tool[J]. Science, 306(5701): 1543-1547
    Hao P, Gao Y, Crampin S. 2008. An expert system for measuring shear-wave splitting above small earthquakes[J]. Computer & Geosciences, 34: 226-234
    Hess H H, 1964. Seismic anisotropy of the upper mantle[J]. Nature, 203: 629-631
    Jeanloz R, Wenk H R. 1988. Convection and anisotropy of the innercore[J]. Geophys Res Lett, 15: 72-75
    Karato S. 1999. Seismic anisotropy of the Earth's inner core resulting from flow induced by Maxwell stresses[J]. Nature, 402(6764): 871-873
    Karato S. 2000. Inner core anisotropy due to the heterogeneitiy leve[J]. Geophys Res Lett, 27: 3121-3124, and correction, 2001. Geophys Res Lett, 28(1): 85-86
    Mizuno T, Ito H, Kuwahara Y, et al. 2005. Spatial variation of shear-wave splitting across an active fault and its implication for stress accumulation mechanism of inland earthquakes: The Atosugawa fault case[J]. Geophys Res Lett, 32: L20305, doi:10.1029/2005GL023875
    Montagner J P, Anderson D L. 1989. Petrological constraints on seismic anisotropy[J]. Phys Earth & Plan Int, 54: 82-105
    Morelli A, Dziewonski A M, Woodhouse J H. 1986. Anisotropy of the inner-core infered from PKIKP travel times[J]. Geophys Res Lett, 13: 1545-1548
    Nicholas A N, Christensen N I. 1987. Formation of anisotropy in upper mantle peridotites-a review, in composition, structure and dynamies of the lithosphere-asthenosphere System[J]. Geodyn Ser, 16: 111-123
    Padhy S, Crampin S. 2006. High pore-fluid pressures at Bhuj, inferred from 90 -flips in shear-wave polarizations[J]. Geophys J Int, 164: 370-376
    Peng Z, Ben-Zion Y. 2004. Systematic analysis of crustal anisotropy along the Karadere-D(u|¨)zce branch of the North Anatolian fault[J]. Geophys J Int, 159: 253-274
    
    Peng Z, Ben-Zion Y. 2005. Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 Izmit and M7.1 D(u|¨)zce, Turkey, earthquake sequences[J]. Geophys J Int, 160: 1027-1043
    Shih X R, Meyer R P, Schneider J F. 1989. An automated, analytical method to determine shear-wave splitting[J]. Tectonophysics, 165: 271-278
    Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology[J]. Annual Rev Earth Planet Sci, 24: 385-432
    Silver P G, Chan W W. 1991. Shear-wave splitting and subcontinental mantle deformation[J]. J Geophys Res, 96: 16429-16454
    Singh S C, Taylor M A J, Montagner J P. 2000. On the presence ofliquid in Earth's inner core[J]. Science, 287(5462): 2471-2474
    Tang C, Rial J A, Lees J M. 2005. Shear-wave splitting: A diagnostic tool to monitor fluid pressure in geothermal fields[J]. Geophys Res Lett, 32: L21317, doi:10.1029/2005GL023551
    Tsvankin I D, Chesnokov E M. 1990. Synthesis of body wave seismograms from point sources in anisotropy media[J]. J Geophys Res, 95(B7): 11317-11332
    Volti T, Crampin S. 2003. A four-year study of shear-wave splitting in Iceland: 1. Background and preliminary analysis, in New insights into structural interpretation and modeling, ed. Nieuwland D A[J]. Geol Soc Lond Spec Publ, 212: 117-133
    Woodhouse J H, Giardini D, Li X D. 1986. Evidence for inner-core anisotropy from free oscillations[J]. Geophys Res Lett, 13: 1549-1552
    Yoshida S, Sumita I, Kumazawa M. 1996. Growh-model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy[J]. J Geophys Res, 101(B12): 28085-28103
    Zatsepin S V, Crampin S. 1997. Modelling the compliance of crustal rock: I-response of shear-wave splitting to differential stress[J]. Geophys J Int, 129: 477-494
    Zhang S, Karato S. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear[J]. Nature, 375: 774-77
    Zhang Z, Li Y, Lu D, et al. 2000. Velocity and anisotropu structure of the crust in the Dabieshan organic belt from wide-angle seismic data[J]. Phys Earth Planet Inter, 122: 115-131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700