用户名: 密码: 验证码:
PbTe/Pb准一维纳米结构材料的制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis and Properties of PbTe/Pb Quasi-One-Dimensional Nanostructure Material
  • 作者:宗兆存
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2010
  • 导师:邹广田 ; 张明喆
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2010-06-01
摘要
本文研究了准二维电沉积过程中离子输运的滞后效应,沉积出周期性的纳米材料,分析了沉积物形貌特殊性的原因和生长机理。
     通过方波电位电沉积出了大面积周期性的PbTe/Pb准一维纳米结构材料,对纳米结构材料进行了形貌和结构表征,在PbTe/Pb准一维纳米结构材料中发现了一种独特的微纳米结构,解释了内部微结构的形成原因。利用计算机模拟了制备出的平行纳米结构阵列前端的电场矢量分布和电势分布,解释了由于电沉积电位变化而导致形貌变化的原因。发现了电沉积过程中存在的三种纳米线分叉现象,分别建立起相应的生长模型,利用计算机模拟分析了这几种生长条件下的纳米线阵列前端的电场矢量分布和电势分布情况,解释了这几种不同分叉现象产生的根本原因。
     测量了单根PbTe/Pb准一维纳米结构材料的电学性能,比较了不同电解液浓度下制备的材料电阻率的变化。通过原位测量比较了退火前后材料电阻率的变化。首次采用四探针法这一新手段对纳米分叉现象进行了研究,研究了单根PbTe/Pb准一维纳米结构材料在光激发条件下的电导的变化,解释了这种结构材料的光电导机理。
     提出了一种新型的光电纳米结构材料阵列模型。设计了一套新的可控界面合成半导体纳米颗粒的方法,合成出了Zn1-xMnxS稀磁半导体纳米颗粒,研究了不同Mn离子掺杂含量的Zn1-xMnxS半导体纳米颗粒的高压相变,最后构建出了微纳米光电器件并测量了这种微纳米器件的光电性能。
When the size of material falls down to as small as a few or tens of nanometers, the material would show the uniqure properties differing from conventional materials. Nanostructure material has been focuses in nano- materials field because of their important applications in many fields in future. Especially, the research on one dimensional ordered nanostructure material arrays is very important, which would affect the constructure of functional devices and the property research of materials. At present, there is still no effective way to the morphology control and the microsturcture adjustment in many syntehsis methods of nanomaterials. As an excellent synthesis method, electrochemical deposition has been widely attended because of its lower cost and accurate control of the growth process. In the thesis, the periodic PbTe/Pb nanostructure material with quasi-one dimen- sion is a main researched object. The aims of the research are to explore the contralllable preparation of nanostructure material arrays in morpho- logy, structure and to study the growth mechanism and properties of nanosturctrure materials.
     We firstly found the lagging phenomenon of ion transportion in the electrodeposition process and prepared the periodic nanomaterial using the lagging effect. We explained the forming mechanism of the periodic nanomaterial. The research resolved the problem on how the change of ions concentration in front of electrodepositon affected the morphology of electrodeposition. As there is the phase difference between the ion transportion and the potential shift, the lagging phenomenon could be showed out when the potential changed. With the process of electrode- posit, the ions concentration in front of electrodeposition would increase and bring the change of electrodeposition morphology. The experiment proved directly the existence of ion lagging phenomenon. Ion concen- tration in front of electrodeposition would continualy increase during the potential decrease and the formula of ion concentration in front of electrodeposition was concluded. These important conclusions were getted according to the growth mechanism. The research not only provides a new preparation method of namomaterials, but also provides the certain funda- mental research foundation for the structure materials.
     The large area of periodic PbTe/Pb nanostructure material with quasi-one dimension was electrodeposited by using a pulsed deposition potential of square waves. The morphology and structucture of nanost- ructure materials were characterized. It was found that there was a un- quire nanostructure in the PbTe/Pb nanostructure material. The forming mechanism of unquire nanostructure was explained according to the banl- ance between ion supply and consumption. The atomic force microcope was used to characterize the dimensions of nanostructure materials. Seve- ral key factors in the quasi-two dimensions were generally analysized.
     The distributions of electic fields and potential in front of nanos- tructure material arrays were computed using the created models accor- ding to the growth patterns. The reasons why the diameter of nanostruc- ture materials changed alternately were explained detailedly. It was found that there were three kinds of branched phenomena in the electro- deposition precess. The first kind of branched phenomenon appeared at the edge of nanostructure material arrays; the second kind of branched phenomenon appeared at the tip of nanostructure materials, which was induced by the morphology of tip; the third kind of branched phenomenon appeared in the middle of arrays, which was induced by the locations of nanostructure materials in the arrays. These branched phenomena were detailedly explainned by combining the computer simulation with the change of ion concentration in front of electrodepositon. The whole branching process of nanowire in the middle of arrays was recorded by using a CCD (charge coupled device). We explained the branched reseason by the computer simulation. The effective control to nanowire branch is the key preparing the high-quality and ordered nanowire array. So, it was an important and difficulty problem in the prepatation fields of one- dimension nanomaterials. These researches have important significations not only in the basic research but also in the applied research.
     It was explored that the effect of the structures and components of PbTe/Pb nanowires on their electronic transport properties by an ultrahigh vacuum (UHV) four-probe scanning tunneling microscopy (4P-STM) system. The resistance changes of two kinds of PbTe/Pb nanowires were compared. The I-V characteristic of single PbTe/Pb nanowire shows the conductance of nanowires decrease with the increase of PbTe content. The annealing result implies the annealing could favor the construction of microstructure. The electric characteristics of branch parts were measured and the change of resistance value in different parts could stem from the crystal boundaries and defects in nanowire. We compared the difference between the four-probe and two-probe measurement.
     The photoelectricity effect of quasi one-dimension PbTe/Pb nanos- ructure materials was measured. The nanostructure material showed the stronger photoconductive characteristics. The measurement showed that the annealing could improve the photoconductive characteristics of PbTe/ Pb nanostructure materials. The photoconductive mechanism of the nano- structure materials was also explained.
     A new photoelectricity device model was designed; the model could not only improve the photosensitivity but also extend the range of photo- sensive of devices. We designed a set of new equipment used to synthesize the semiconductor nanoparticals on the gas-liquid interface. Dilute magnetic semiconductor Zn1-xMnxS nanoparticls was synthesized using the set of equipment. The pressure-induced phase transition to the rock salt (B1) phase was studied by high pressure energy-dispersive X-ray diffraction experiments. The phase transition began at a pressure of around 17.70GPa for the 0.85% Mn ions doped-nanoparticles and at 18.29GPa for the 1.26% Mn ions doped-nanoparticle. It is indicated that the transition pressure of ZnxMn1-xS nanoparticles increases with the increase of Mn ions doped concentration. The photoelectricity device was constructed successfully by the PbTe/Pb nanostructure material arrays and the semiconductor nanoparticles. The photoelectricical properties of the device were also measured.?
引文
[1]朱静等著,纳米材料和器件[M].北京:清华大学出版社, 2003.
    [2]曹茂盛,曹传宝,徐甲强著,纳米材料学[M].哈尔滨:哈尔滨工程大学出版社, 2002.
    [3] N. Romˇcevi′c. J. Traji′c, T. A. Kuznetsova, M. Romˇcevi′c, B. Hadˇzi′c, D. R. Khokhlov.?Far-infrared study of impurity local modes in Ni-doped PbTe [J].?Journal of Alloys and Compounds 2007, 442, 324.
    [4] M. Boberl, W. Heiss, T. Schwarzl, K. Wiesauer, G. Springholz.?Midin- frared continuous-wave photoluminescence of lead–salt structures up to temperatures of 190°C [J].?Appl. Phys. Lett. 2003, 82, 4065.
    [5] Y. Yang, S. C. Kung, D. K. Taggart, C. Xiang, F. Yang, M. A. Brown, A. G. Güell, T. J. Kruse, J. C. Hemminger, R. M. Penner.? Synthesis of PbTe Nanowire Arrays using Lithographically Patterned Nanowire Electrodeposition [J].?Nano Lett. 2008, 8, 2447.
    [6] E. Budevski, G. Staikov, W. J. Lorenz. Electrocrystallization Nuclea- tion and growth phenomena [J]. Electrochimica Acta 2000, 45 2559.
    [7] H. Masuda, K. Fukuda. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina [J]. Science 1995, 268, 1466.
    [8] H. Masuda, K. Yada, A. Osaka, Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution [J]. Jpn. J. Appl. Phys. 1998, 37, 1340.
    [9] O. Jessensky, F. Muller, U. Gosele. Self-organized formation of hexa- gonal pore arrays in anodic alumina [J]. Appl. Phys. Lett. 1998, 72, 1173.
    [10] A. J. Yin, J. Li, W. Jian, A. J. Bennett, J. M. Xu. Fabrication of highly ordered metallic nanowire arrays by electrodeposition [J]. Appl. Phys.Lett. 2001 79, 13.
    [11] H. Pan, B. H. Liu, J. B. Yi, C. K. Poh, S. H. Lim, J. Ding, Y. P. Feng, C. H. A. Huan, J. Y. Lin. Growth of Single-Crystalline Ni and Co Nanowires via Electrochemical Deposition and Their Magnetic Prop- erties [J]. J. Phys. Chem. B 2005, 109, 3094.
    [12] K. T. Kim, M. J. Kim, S. M. Cho. Pulsed electrodeposition of pallad- ium nanowire arrays using AAO template [J]. Materials Chemistry and Physics 2006, 96, 278.
    [13] H. Wang, C. W. Xu, F. L. Cheng, S. P. Jiang. Pd nanowire arrays as electrocatalysts for ethanol electrooxidation [J]. Electrochemistry Communications 2007, 9, 1212.
    [14] G. Riveros, S. Green, A. Cortes, H. G′omez, R. EMarotti, E. A. Dalchiele. Silver nanowire arrays electrochemically grown into nano- porous anodic aluminatemplates [J]. Nanotechnology 2006, 17, 561.
    [15] G. Sauer, G. Brehm, S. Schneider. Highly ordered monocrystalline silver nanowire arrays [J]. J. Appl. Phys. 2002, 91, 3243.
    [16] A. J. Yin, J. Li, W. Jian, A. J. Bennett, J. M. Xu. Fabrication of highly ordered metallic nanowire arrays by electrodeposition [J]. Appl. Phys. Lett. 2001, 79, 1039.
    [17] Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen, C. L. Bai. Ordered Ni-Cu Nanowire Array with Enhanced Coercivity [J]. Chem. Mater. 2003, 15, 664.
    [18] A. Saedi, M. Ghorbani. Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template [J]. Materials Chemistry and Physics 2005, 91, 417.
    [19] Y. Yang, H. L. Chen, Y. F. Mei, J. B. Chena, X. L. Wu, X. M. Bao. Anodic alumina template on Au/Si substrate and preparation of CdS nanowires [J]. Solid State Communications 2002, 123, 279.
    [20] D. S. Xu, Y. J. Xu, D. P. Chen, G. L. Guo, L. L. Gui, Y. Q. Tang. Preparation and characterization of CdS nanowire arrays by dc elec-trodeposit in porous anodic aluminum oxide templates [J]. Chem- ical Physics Letters 2000, 325, 340.
    [21] E. S. Ko, J. S. Choi, K. C. Okamoto, Y. S. Tak, J. Y. Lee. Cu2O Nanowires in an Alumina Template: Electrochemical Conditions for the Synthesis and Photoluminescence Characteristics [J]. ChemPhys- Chem 2006, 7, 1505.
    [22] L. Trahey, C. R. Becker, A. M. Stacy. Electrodeposited Bismuth Tell- uride Nanowire Arrays with Uniform Growth Fronts [J]. Nano Lett. 2007, 7, 2535.
    [23] W. Wang, Q. H. Huang, F. L. Jia, J. Zhu. Electrochemically assembled p-type Bi2Te3 nanowire arrays [J]. J. Appl. Phys. 2004, 96, 615.
    [24] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gosele. Synthesis of Vertical High-Density Epitaxial Si (100) Nanowire Arrays on a Si (100) Substrate Using an Anodic Aluminum Oxide Template [J]. Adv. Mater. 2007, 19, 917.
    [25] L. Li, Y. W. Yang, X. H. Huang, G. H. Li, L. D. Zhang. Fabrication and Characterization of Single-Crystalline ZnTe Nanowire Arrays [J]. J. Phys. Chem. B 2005, 109, 12394.
    [26] G. H. Yue, P. X. Yan, X. Y. Fan, M. X. Wang, D. M. Qu, D. Yan, J. Z. Liu. Characterization of the single crystalline iron sulfide nanowire array synthesis by pulsed electrodeposition [J]. J. Appl. Phys. 2006, 100, 124313.
    [27] J. C. Bao, C. Y. Tie, Z. Xu, Q. F. Zhou, D. Shen, Q. Ma. Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Beha- vior [J]. Adv. Mater. 2001, 13, 1631.
    [28] F. F. Tao, M. Y. Guan, Y. Jiang, J. M. Zhu, Z. Xu, Z. L. Xue. An EasyWay to Construct an Ordered Array of Nickel Nanotubes: The Triblock-Copolymer-Assisted Hard-Template Method [J]. Adv. Mater. 2006, 18, 2161.
    [29] L. Li, S. S. Pan, X. C. Dou, Y. G. Zhu, X. H. Huang, Y. W. Yang, G. H.trodeposit in porous anodic aluminum oxide templates [J]. Chem- ical Physics Letters 2000, 325, 340.
    [21] E. S. Ko, J. S. Choi, K. C. Okamoto, Y. S. Tak, J. Y. Lee. Cu2O Nanowires in an Alumina Template: Electrochemical Conditions for the Synthesis and Photoluminescence Characteristics [J]. ChemPhys- Chem 2006, 7, 1505.
    [22] L. Trahey, C. R. Becker, A. M. Stacy. Electrodeposited Bismuth Tell- uride Nanowire Arrays with Uniform Growth Fronts [J]. Nano Lett. 2007, 7, 2535.
    [23] W. Wang, Q. H. Huang, F. L. Jia, J. Zhu. Electrochemically assembled p-type Bi2Te3 nanowire arrays [J]. J. Appl. Phys. 2004, 96, 615.
    [24] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gosele. Synthesis of Vertical High-Density Epitaxial Si (100) Nanowire Arrays on a Si (100) Substrate Using an Anodic Aluminum Oxide Template [J]. Adv. Mater. 2007, 19, 917.
    [25] L. Li, Y. W. Yang, X. H. Huang, G. H. Li, L. D. Zhang. Fabrication and Characterization of Single-Crystalline ZnTe Nanowire Arrays [J]. J. Phys. Chem. B 2005, 109, 12394.
    [26] G. H. Yue, P. X. Yan, X. Y. Fan, M. X. Wang, D. M. Qu, D. Yan, J. Z. Liu. Characterization of the single crystalline iron sulfide nanowire array synthesis by pulsed electrodeposition [J]. J. Appl. Phys. 2006, 100, 124313.
    [27] J. C. Bao, C. Y. Tie, Z. Xu, Q. F. Zhou, D. Shen, Q. Ma. Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Beha- vior [J]. Adv. Mater. 2001, 13, 1631.
    [28] F. F. Tao, M. Y. Guan, Y. Jiang, J. M. Zhu, Z. Xu, Z. L. Xue. An EasyWay to Construct an Ordered Array of Nickel Nanotubes: The Triblock-Copolymer-Assisted Hard-Template Method [J]. Adv. Mater. 2006, 18, 2161.
    [29] L. Li, S. S. Pan, X. C. Dou, Y. G. Zhu, X. H. Huang, Y. W. Yang, G. H.wires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation [J]. Electroch- imica Acta 2008, 53, 5804.
    [39] K. Fukutani, K. Tanji, T. Motoi, T. Den.Ultrahigh Pore Density Nanoporous Films Produced by the Phase Separation of Eutectic Al- Si for Template-Assisted Growth of Nanowire Array [J]. Adv. Mater. 2004, 16, 1456.
    [40] O. Azzaroni, P. L. Schilardi, R. C. Salvarezzaa. Templated electro- deposition of patterned soft magnetic films [J]. Appl. Phys. Lett. 2002, 80, 1061.
    [41] D. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. Ji, Y. B. Jiang , H. Xu, J. Tang, R. H. Schmehl, C. O. Connor, C. J. Brinker, Y. Lu. Electrodeposition of Metallic Nanowire Thin Films Using Meso- porous Silica Templates [J]. Adv. Mater. 2003, 15, 130.
    [42] T. L. Sehayek, A. D. Vaskevich, I. Rubinstein. Preparation of Graded Materials by Laterally Controlled Template Synthesis [J]. J. Am. Chem.Soc. 2003, 125, 4718.
    [43] H. Schwanbeck, U. Schmidt. Preparation and characterisation of mag- netic nanostructures using filtration membranes [J]. Electrochi- mica Acta 2000, 45, 4389.
    [44] V. Ganesh, V. Lakshminarayanan. Preparation of high surface area nickel electrodeposit using a liquid crystal template technique [J]. Electrochimica Acta 2004, 49, 3561.
    [45] M. Z. Zhang, S. Lenhert, M. Wang, L. F. Chi, N. Lu, H. Fuchs, N. B. Ming. Regular Arrays of Copper Wires Formed by Template-Assisted Electrodeposition [J]. Adv. Mater. 2004, 16, 409.
    [46] M. A. Ghanem, P. N. Bartlett, P. D. Groot, A. Zhukov. A double temp- lated electrodeposition method for the fabrication of arrays of metal nanodots [J]. Electrochemistry Communications 2004, 6, 447.
    [47] M. Nakayama, T. K. Kanaya, R. T. Inoue. Anodic deposition of layer-ed manganese oxide into a colloidal crystal template for electr- ochemical supercapacitor [J]. Electrochemistry Communications 2007, 9, 1154.
    [48] F. Favier, E. C. Walter. Hydrogen sensors and switches from electr- odeposited palladium mesowire arrays [J]. Science 2001, 293, 2227.
    [49] Walter E C, Favier F. Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated witches [J]. Anal Chem 2002, 74, 1546.
    [50] E. C. Walter, B. J. Murray, F. Favier, G. Kaltenpoth, M. Grunze, R. M. Penner. Noble and Coinage Metal Nanowires by Electrochemical Step Edge Decoration [J]. J. Phys. Chem. B 2002, 106, 44.
    [51] M. P. Zach, K. Inazu, K. H. Ng, J. C. Hemminger, R. M. Penner. Synthesis of Molybdenum Nanowires with Millimeter-Scale Lengths Using Electrochemical Step Edge Decoration [J]. Chem. Mater. 2002, 14, 3206.
    [52] H. Tong, Y. J. Zhu, L. X. Yang, L. Li, and L. Zhang. Lead Chalcogenide Nanotubes Synthesized by Biomolecule-Assisted Self- Assembly of Nanocrystals at Room Temperature [J]. Angew. Chem. Int. Ed. 2006, 45, 7739.
    [53] W. G. Lu, P. X. Gao, W. B. Jian, Z. L. Wang, J. Y. Fang. Perfect Orientation Ordered in-Situ One-Dimensional Self-Assembly of Mn- Doped PbSe Nanocrystals [J]. J. Am. Chem. Soc. 2004, 126, 14816.
    [54] M. Fardy, A. I. Hochbaum, J. Goldberger, M. M. Zhang, P. D. Yang. Synthesis and Thermoelectrical Characterization of Lead Chalcog- enide Nanowires [J]. Adv. Mater. 2007, 19, 3047.
    [55] W. F. Liu, W. L. Cai, L. Z. Yao. Electrochemical Deposition of Well- ordered Single-crystal PbTe Nanowire Arrays [J]. Chem. Lett. 2007, 36, 1362.
    [56] V. Fleury, J. N. Chazalviel, M. Rosso. Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits [J].Phys. Rev. E 1993, 48, 1279.
    [57] V. Fleury, J. N. Chazalviel, M. Rosso. Theory and experimental evidence of electroconvection around electrochemical deposits [J]. Phys. Rev. Lett. 1992, 68, 2492.
    [58] V. Fleury, M. Rosso, J. N. Chazalviel. Geometrical aspect of electro- deposition: The Hecker effect [J]. Phys. Rev. A 1991, 43, 6908.
    [59] V. Fleury, J. Kaufman, B. Hibbert. Evolution of the space-charge layer during electrochemical deposition with convection [J]. Phys. Rev. E 1993, 48, 3831.
    [60] V. Fleury, M. Rosso, J. N. Chazalviel, B. Sapoval. Experimental aspe- cts of dense morphology in copper electrodeposition [J]. Phys. Rev. A 1991, 44, 6693.
    [61] J. N. Chazalviel, M. Rosso, E. Chassaing, V. Fleury. A quantitative study of gravity-induced convection in two-dimensional parallel elec- trodeposition cells [J]. Journal of Electroanalytical Chemistry 1996, 407, 61.
    [62] M. Wang, S. Zhong, X. B. Yin, J. M. Zhu, R. W. Peng, Y. Wang, K. Q. Zhang, N. B. Ming. Nanostructured Copper Filaments in Electrochem- ical Deposition [J]. Phys. Rev. Lett. 2001, 86, 3827.
    [63] S. Zhong, Y. Wang, M. Wang, M. Z. Zhang, X. B. Yin, R. W. Peng, N. B. Ming. Formation of nanostructured copper filaments in electroche- mical deposition [J]. Phys. Rev. E 2003, 67, 061601.
    [64] Y. Wang, Y. Cao, M. Wang, S. Zhong, M. Z. Zhang, Y. Feng, R. W. Peng, X. P. Hao, N. B. Ming. Spontaneous formation of periodic nanostructured film by electrodeposition: Experimental observations and modeling [J]. Phys. Rev. E 2004, 69, 021607.
    [65] M. Z. Zhang, M. Wang, Z. Zhang, J. M. Zhu, P. W. Peng, N. B. Ming. Periodic structures of randomly distributed Cu/Cu2O nanograins and periodic variations of cell voltage in copper electrodeposition [J]. Electrochim. Acta 2004, 49, 2379.
    [66] S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim, H. Hahn, T. Schimmel. Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition [J]. Small 2009, 5, 2265.
    [67] X. G. Peng, L. Manna, W. D. Yang. Shape control of CdSe nanocrys- tals [J]. Nature 2000, 404, 59.
    [68] D. B. Suyatin, J. Sun, A. Fuhrer, D. Wallin, L. E. Fr?berg, L. S. Karlsson, I. Maximov, L. R. Wallenberg, L. Samuelson, H. Q. Xu. Electrical properties of self-assembled branched InAs nanowire junctions [J]. Nano Lett. 2008, 8, 1100.
    [69] K. A. Dick, K. Deppert, M. W. Larsson, T. M?rtensson, W. Seifert, L. R. Wallenberg, L. Samuelson. Synthesis of branched‘nanotrees’by controlled seeding of multiple branching events [J]. Nat. Mater. 2004, 3, 380.
    [70] L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, A, P. Alivisatos. Controlled growth of tetrapod-branched inorganic nanocrystals [J]. Nat. Mater. 2003, 2, 382.
    [71] K. Jasuja, V. Berry. Implantation and Growth of Dendritic Gold Nanostructures on Graphene Derivatives: Electrical Property Tailor- ing and Raman Enhancement [J]. ACS Nano 2009, 3, 358.
    [72] Z. P. Zhang, X. Q. Shao, H. D. Yu, Y. B. Wang, M. Y. Han. Morpho- synthesis and Ornamentation of 3D Dendritic Nanoarchitectures [J]. Chem. Mater. 2005, 17, 332.
    [73] J. Wang, H. C. Huang, S. V. Kesapragada, D. Gall. Growth of Y-Shaped Nanorods throughPhysical Vapor Deposition [J]. Nano Lett. 2005, 5, 2505.
    [74] K. Wang, L. P. Niu, Z. C. Zong, M. Z. Zhang, C. Wang, X. J. Shi, Y. F. Men, G. T. Zou. Direct Electrodeposition of Copper Ladder Structures on a Silicon Substrate [J]. Crystal Growth & Design 2008, 8, 442.
    [75] J. X. Fang, H. J. You, P. Kong, Y. Yi, X. P. Song, B. J. Ding. Dendritic Silver Nanostructure Growth and Evolution in Replacement Reaction[J]. Crystal Growth & Design 2007, 7, 864.
    [76] Q. Q. Wang, G. Xu, G. R. Han. Synthesis and Characterization of Large-Scale Hierarchical Dendrites of Single-Crystal CdS [J]. Crystal Growth & Design 2006, 6, 1776.
    [77] S. O. Cho, E. J. Lee, H. M. Lee, J. G. Kim, Y. J. Kim. Controlled Synthesis of Abundantly Branched, Hierarchical Nanotrees by Electr- on Irradiation of Polymers [J]. Adv. Mater. 2006, 18, 60.
    [78] G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, P. M. Ajayan. Controlled fabrication of hierarchically branched nanopores, nanotubes and nan- owires [J]. PNAS 2005, 102, 7074.
    [79] J. Huang, A. X. Lu, B. Zhao, Q. Wan. Appl.Branched growth of degenerately Sb-doped SnO2 nanowires [J]. Phys. Lett. 2007, 91, 073102.
    [80] J. X. Fang, H. Hahn, R. Krupke, F. Schramm, T. Scherer, B. J. Ding, X. P. Song. Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites [J]. Chem. Commun. 2009, 9, 1130.
    [81] M. Z. Zhang, G. H. Zhuo, Z. C. Zong, H. Y. Cheng, Z. He, C. M. Yang, D. M. Li, G. T. Zuo. Self-assembly from the branch pattern to parallel wire array in electrodeposition [J]. Appl. Phys. Lett. 2006, 88, 203106.
    [82] J. X. Fang, X. N. Ma, H. H. Cai, X. P. Song, B. J. Ding. Double-inter- face growth mode of fractal silver trees within replacement reaction [J]. Appl. Phys. Lett. 2006, 89, 173104.
    [82] H. J. You, J. X. Fang, F. Chen, M. Shi, X. P. Song, B. J. Ding. Morphological Evolution of Fractal Dendritic Silver Induced by Ions Walking within the Diffusion Layer [J]. J. Phys. Chem. C 2008, 112, 16301.
    [84] X. F. Yang, J. L. Zhuang, X. Y. Li, D. H. Chen, G. F. Ouyang, Z. Q. Mao, Y. X. Han, Z. H. He, C. L. Liang, M. M. Wu, J. C. Yu.Hierarchically Nanostructured Rutile Arrays: Acid Vapor Oxidation Growth and Tunable Morphologies [J]. ACS Nano 2009, 3, 1212.
    [85] J. A. Switzer, C. J. Hung, B. E. Breyfogle, M. G. Shumsky, R. V. Leeuwen, T. D. Golden. Electrodeposited Defect Chemistry Superlat- tices [J]. Science 1994, 264, 1573.
    [86] Y. Li, G. W. Meng, L. D. Zhang. Ordered semiconductor ZnO nanowi- re arrays and their photoluminescence properties [J]. Appl. Phys. Lett. 2000, 76, 2011.
    [87] T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell. Ultrahigh-Density Nanowire Arrays Grown in Self-Assem- bled Diblock Copolymer Templates [J]. Science 2000, 290, 2126.
    [88] M. Innocenti, S. Bellassai, C. Bianchini. Confined electrodeposition using a template-assisted procedure based on the selective desorption of a short chain thiol from a binary self-assembled monolayer formed on Ag(111) [J]. Electrochimica Acta. 2010, 55, 2550.
    [89] R. Al-Salman, F. Endres. Template-assisted electrodeposition of SixGe1-x nanowires with varying length and composition from two different ionic liquids [J]. J. Mater. Chem. 2009, 19, 7228.
    [90] X. P. Huang, W. Han, Z. L. Shi, D. Wu, M. Wang, R. W. Peng, N. B. Ming. Electrodeposition of Periodically Nanostructured Straight Cobalt Filament Arrays [J]. J. Phys. Chem. C 2009,113, 1694.
    [91] T. Liu, S. Wang, Z. L. Shi, G. B. Ma, M. Wang, R. W. Peng, X. P. Hao, N. B. Ming. Long-range ordering effect in electrodeposition of zinc and zinc oxide [J]. Phys. Rev. E 2007, 75, 051606.
    [92] Z. C. Zong, H. Yu, L. P. Niu, M. Z. Zhang, C. Wang, W. Li, Y. F. Men, B. B. Yao, G. T. Zuo. Potential induced copper periodic micro/nano structures by electrodeposition on silicon substrate [J]. Nanotechnology 2008, 19, 315302.
    [93] V. Fleury. Branched fractal patterns in non-equilibrium electro che-mical deposition from oscillatory nucleation and growth [J]. Nature 1997, 390, 145.
    [94] M. Wang, V. Enckevort, N. B. Ming. Bennema P. Formation of a mesh-like electrodeposit induced by electroconvection [J]. Nature 1994, 367, 438.
    [95] M. Wang, S. Zhong, X. B. Yin, J. M. Zho, R. W. Peng, N. B. Ming. Nanostructured Copper Filaments in Electrochemical Deposition [J]. Phys. Rev. Lett. 2001, 86, 3827.
    [96] R. Bruyn. Physical and electrochemical contributions to the cell voltage in the thin-layer electrochemical deposition of copper at con- stant current [J]. Phys. Rev. E 1997, 56, 3326.
    [97] V. Fleury, W. A. Watters, L. Allam, T. Devers. Rapid electroplating of insulators [J]. Nature 2002, 416, 716.
    [98] T. Vicsek. Pattern Formation in Diffusion-Limited Aggregation [J]. Phys. Rev. Lett. 1984, 53, 2281.
    [99] M. Q. Lopez-Salvans, P. P. Trigueros, S. Vallmitjana, J. Claret, F. Sagues. Fingerlike Aggregates in Thin-Layer Electrodeposition [J]. Phys. Rev. Lett. 1996, 76, 4062.
    [100] M. Z. Zhang, G. H. Zhuo, Z. C. Zong, H. Y. Cheng, Z. He, C. M. Yang, G. T. Zuo. Self-Assembly of Copper Micro/Nanoscale Parallel Wires by Electrodeposition on a Silicon Substrate [J]. Small 2006, 2, 727.
    [101] H. Cao, L. Wang, Y. Qiu, L. Zhang. Synthesis and I–V properties of aligned copper nanowires [J]. Nanotechnology 2006, 17, 1736.
    [102] J. J. Boote, S. D. Evans. Dielectrophoretic manipulation and electr- ical characterization of gold nanowires [J]. Nanotechnology 2005, 16, 1500.
    [103] J. K. Mbindyo, T. E. Mallouk, J. B. Mattzela, I. Kratochvilova, B. Razavi, J T. N. ackson, T. S. Mayer. Template Synthesis of Metal Nanowires Containing Monolayer Molecular Junctions [J]. J. Am.Chem.Soc. 2002, 124, 4020.
    [104] L. T. Cai, H. Skulason, J. G. Kushmerick, S. K. Pollack, J. Naciri, R. Shashidhar, D. L. Allara, T. E. Mallouk, T. S. Mayer. Nanowire-Based Molecular Monolayer Junctions: Synthesis, Assembly, and Electrical Characterization [J]. J. Phys. Chem. B 2004, 108, 2827.
    [105] Z. M. Liao, J. Xu, Y. P. Song, Y. Zhang, Y. J. Xing, D. P. Yu. Quantum interference effect in single Pt(Ga)/C nanowire [J]. Appl. Phys. Lett. 2005, 87, 182112.
    [106] S. Valizadeh, M. Abid, F. Hernandez-Ramirez, A. Romano Rodriguez, K. Hjort, J. A. Schweitz. Template synthesis and forming electrical contacts to single Au nanowires by focused ion beam techniques [J]. Nanotechnology 2006, 17, 1134.
    [107] A. SWalton, C. S. Allen, K. Critchley, M. ?. G′orzny, J. E. McKendry, R. M. D. Brydson, B. J. Hickey, S. D. Evans. Four-probe electrical transportmeasurements on individual metallic nanowires [J]. Nanotechnology 2007, 18, 065204.
    [108] S. Desgreniers, L. Beaulieu, I. Lepage. Pressure-Induced Structural Changes in ZnS [J]. Phys Rev B 2000, 61, 8726.
    [109] A. Qteish, M. A. Jafar, A. Nazzal. The Instability of the Cinnabar Phase of ZnS under High Pressure [J]. J Phys: Condens Matter 1998, 10, 5069.
    [110] M. Uchino, T. Mashimo, T. Kodama. Phase Transition and EOS of Zinc Sulfide (ZnS) under Shock and Static Compressions up to 135 GPa [J]. J Phys Chem Solids 1999, 60, 827.
    [111] Y. Zhou, A. J. Campbell, D. L. Heinz. Equations of State and Optical Properties of the High Pressure Phase of Zinc Sulfide [J]. J Phys Chem Solids 1991, 52, 821.
    [112] A. Nazzal, Qteish. Ab initio pseudopotential study of the structural phase transformations of ZnS under high pressure [J]. Phys Rev B 1996, 53, 8262.
    [113] A. Qteish. Self-Interaction-Corrected Local Density Approximation Pseudopotential Calculation of the Structural Phase Transformations of ZnO and ZnS under High Pressure [J]. J Phys:Condens Matter 2000, 12, 5639.
    [114] A. Qteish. Parrinello M. Stability and Structural Properties of the SC16 Phase of ZnS under High Pressure [J]. Phys Rev B 2000, 61, 6521.
    [115] H. Hanzawa, M. Kobayashi. Temperature Dependence of Photolu- minescence in Mn-Doped ZnS Re-trieved after the Pressure-Induced Structural Phase Transition [J]. Phys Status Solidi A 1999,175, 715.
    [116] J. Z. Jiang, L. Gerward, D. Frost. Grain-Size Effect on Pressure- Induced Semiconductor-to-Metal Transition in ZnS [J]. J Appl Phys 1999, 86, 6608.
    [117] Y. W. Pan, S. C. Qu, S. S. Dong. An Investigation on the Pressure- Induced Phase Transition of Nanocrystalline ZnS [J]. J Phys: Condens Matter 2002, 14,10487.
    [118] Y. W. Pan, S. C. Qu, Q. L. Cui. Pressure-Induced Phase Transition of Nanocrystalline Zinc Sulfide [J]. High Energy Physics and Nuclear Physics 2001, 25, 58.
    [119] Y. W. Pan, S. C. Qu, C. X. Gao. Structural Phase Transformation of ZnS Nanocrystalline under High Pressure [J]. Chinese Physics Letters 2004, 21, 67.
    [120] Y. L. Ji, L. Guo, H. B. Xu. Synthesis and Phase Transition under Ultra-High Pressure of ZnS Nanoparticles Modified by Sodium bis (2-Ethylhexyl) Sulfosuccinate [J]. Physica Status Solidi A 2003, 198, 210.
    [121] S. B. Qadri, E. F. Skelton, A. D. Dinsmore. The Effect of Particle Size on the Structural Transitions in Zinc Sulfide [J]. J Appl Phys 2001, 89, 115.
    [122] H. K. Mao, P. M. Bell. Year Book?Carnegie Institution of Washing-ton; Carnegie Institution of Washington: Washington, D.C., 1978, 77, 904.
    [123] X. R. Chen, X. F. Li, L. C. J. Zhu.?Pressure induced phase transition in ZnS[J].?Solid State Communications 2006, 139, 246.
    [124] M. A. Ruderman, C.Kittel.?Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons [J].?Phys. Rev. 1954, 96, 99.
    [125] C. Zener.?Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Struct- ure [J].?Phys. Rev. 1951, 82, 403.
    [126] K. Sato, H. K.Yoshida.? Stabilization of Ferromagnetic States by Electron Doping in Fe-, Co- or Ni-Doped ZnO [J].?Jpn. J. Appl. Phys. 2001, 40, L334.
    [127] K. Sato, H. K.Yoshida.?Material Design for Transparent Ferroma- gnets with ZnO-Based Magnetic Semiconductors [J].?Jpn. J. Appl. Phys. 2000, 39, L555.
    [128] M. Sawicki, T. Dietl, J. Kossut, J. Igalson, T. Wojtowicz, and W. Plesiewicz.?Influence of s-d exchange interaction on the conducti- vity of Cd1-xMnxSe:In in the weakly localized regime [J].?Phys. Rev. Lett. 1986, 56, 508.
    [129] J. Warnock, A. Petrou,? R. N. Bicknell, N. C. Giles-Taylor, D. K. Blanks, and J. F. Schetzina.? Photoluminescence of Cd1-xMnxTe- CdTe multiple-quantum-well structures and superlattices in a magnetic field [J].?Phys. Rev. B 1985, 32, 8116.
    [130] H. Yang, J. Z. Zhao, L. Z. Song, L. C. Shen, Z. C. Wang, L. Wang, D. Zhang. Photoluminescent properties of ZnS:Mn nanocrystals prepar- ed in inhomogeneous system [J]. Materials Letters 2003, 57, 2287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700