用户名: 密码: 验证码:
羧基丁腈橡胶系高性能阻尼材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的发展,振动和噪声的危害正日益加剧,为了安全和环保,许多场合必须使用能够减振降噪的阻尼材料。高分子阻尼材料是新发展起来的一种新型材料,它是利用高分子的粘弹性来吸收振动的能量,将吸收的机械能或声能部分地转变为热能并耗散掉,从而起到降低振幅或减小振动能的作用。高分子阻尼材料已在交通工具、产业机械、建筑土木、家用电器、精密仪器和军事装备等领域获得了广泛应用。高新技术的发展对阻尼材料的要求愈来愈高,各领域都需要更多具有宽温域、高性能、智能化的阻尼材料。但目前多数阻尼材料不具有满意的减振、物理、机械等综合性能,尤其是减振和强度不能同时兼具,研制和开发综合性能优异的阻尼材料具有极其重要的意义。本论文正是在这一大背景下,在对多种阻尼改性方法的优缺点进行综合比较后,基于新近开发的由功能性有机小分子和极性聚合物组成杂化体系制备高性能阻尼材料的阻尼改性新方法,首次选取极性较大且具有阻尼性能较好的羧基丁腈橡胶(XNBR)作为基体聚合物,通过选用合适功能性有机小分子组成有机杂化体系得到具有较高损耗因子的阻尼材料,然后采用不同的途径对其性能进行进一步改善,开发出了一系列具有较大工程应用价值的高性能阻尼材料,并综合采用动态力学热分析(DMA)、差示扫描热分析(DSC)、傅立叶红外光谱(FT-IR)分析、扫描电镜(SEM)观察等分析测试手段,对其阻尼机理进行深入探讨,以期为今后该领域的研究工作提供一定的理论参考。本论文的主要研究内容与结论如下:
     1.二元有机杂化阻尼材料的制备及阻尼性能研究
     为了制备出高阻尼的有机杂化阻尼材料,本文首先经过一定理论分析和初步实验测试筛选出两种不同功能性有机小分子有机受阻酚2,2′-亚甲基双-(4-甲基-6-叔丁基苯酚)(AO-2246)和四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(AO-1010),然后将其加入到XNBR基体中制备出了不同的XNBR/AO-2246和XNBR/AO-1010二元有机杂化材料,并分别探讨了成型条件和小分子结构两个因素对二元有机杂化材料阻尼性能的影响。
     为了探讨成型条件对二元有机杂化材料的阻尼性能的影响,本文采用不同的成型条件分别制备出了未热压和热压XNBR/AO-2246样品,并对其结构及阻尼性能进行了研究。研究结果表明,在未热压XNBR/AO-2246样品中,大部分AO-2246分子以晶体颗粒的形式存在,AO-2246只起到了类似无机填料的作用导致共混体系的tanδ值比纯XNBR基体还低。而在热压XNBR/AO-2246样品中,由于热压淬火过程中两组分间形成了大量较强的分子间氢键作用而发生杂化,形成了一种特殊的形态结构。AO-2246不仅能使共混体系的单一tanδ峰高度明显增大(最高达3.5),并且可通过调节AO-2246含量使tanδ峰处于不同的温度范围(从-21℃到23℃)以满足不同的使用需求,从而得到了一种新型XNBR基高阻尼复合材料。
     为了进一步探讨小分子的结构对二元有机杂化材料的阻尼性能的影响,本文还制备出了热压的XNBR/AO-1010样品,并将其阻尼性能与热压的XNBR/AO-2246样品进行对比分析。研究结果表明,在XNBR/AO-1010杂化材料中,由于AO-1010和XNBR间形成的分子间氢键作用较弱,大多数的AO-1010分子都以结晶颗粒或集聚体的形式分散在XNBR基体中,从而呈现出一种以XNBR富集相为海,AO-1010富集相为岛的“海-岛”形态结构。因此,除XNBR的tanδ峰外,出现了一个新的tanδ峰。由于主要由AO-1010晶体构成的AO-1010富集相起到了类似无机填料的作用,因而导致XNBR的tanδ峰高度大幅降低,但两峰之间的高度随AO-1010含量的增加而有所提高,呈现出较宽的有效阻尼温域。
     通过研究,本文得出这样一个结论:对二元有机杂化材料而言,成型条件或小分子结构的不同均会导致体系中两组分间形成的分子间氢键的数目和种类的不同,从而影响小分子在基体聚合物中的分散状态,最终对体系的动态力学性能产生不同的影响。
     2.三元有机杂化阻尼材料的制备及有机杂化材料阻尼性能稳定性研究
     在对两个二元体系进行分析对比的基础上,本文将AO-2246和AO-1010同时加入到XNBR基体中制得多种不同的三元XNBR/AO-2246/AO-1010杂化体系,进一步探讨了两种小分子对XNBR基体的阻尼性能的协同作用及其机理。对不同的三元XNBR/AO-2246/AO-1010体系DMA测试结果表明,向XNBR/AO-2246中加入少量AO-1010(<20 wt%)会使体系的tanδ峰高度进一步提高,同时也使tanδ峰对应的温度大幅提高,从而证实了AO-2246和AO-1010对提高XNBR的阻尼性能具有一定的协同效应。此外,研究结果还表明可通过改变AO-1010添加量或XNBR/AO-2246的质量比来对三元XNBR/AO-2246/AO-1010体系的tanδ峰高度和位置加以调控,从而得到一系列满足实际应用需求的高性能阻尼材料。
     为了对制备出的有机杂化阻尼材料在实际应用中的性能稳定性加以预测和了解,本文对XNBR/AO-2246二元杂化体系样品在室温下长期放置老化或不同温度下进行退火处理后的阻尼性能进行了测试。通过比较老化或退火处理前后不同XNBR/AO-2246杂化材料阻尼性能的变化对该体系的阻尼稳定性进行了深入研究。研究结果表明,经老化或退火处理后,在XNBR和AO-2246间形成的较强的分子间氢键作用的消失会导致AO-2246发生再聚集和结晶行为,从而导致杂化材料的tanδ峰高度大幅降低,几乎完全丧失了刚制备时具有的高阻尼性能。这与类似的高分子/小分子共混体系中发现的结果一致。但是,研究还发现,在XNBR/AO-2246体系中存在可逆的分子间氢键作用,老化后的XNBR/AO-2246样品在高于AO-2246熔点的温度下经过再加热处理后,其tanδ峰高度会再次上升回复到老化前的tanδ值,甚至超过未老化的样品。XNBR/AO-2246杂化材料阻尼性能的这种热可逆效应主要是由于分子间氢键的再次形成对AO-2246分子的结晶行为产生一定的抑制作用引起的。因此,XNBR/AO-2246杂化材料可被用作新型热可循环橡胶阻尼材料。此外,本文在对三元XNBR/AO-2246/AO-1010杂化体系在等温退火过程中的阻尼性能稳定性进行研究后发现,向XNBR/AO-2246体系中加入少量AO-1010后会对AO-2246的结晶行为产生一定的抑制作用,从而使体系的阻尼性能稳定性有所提高。
     因此,可通过改变三元XNBR/AO-2246/AO-1010杂化体系的组成设计出一种新型的具有较高的阻尼峰且阻尼峰位置可调控,并且具有较好的阻尼性能稳定性的高性能阻尼材料。
     3.纤维增强和有机杂化相结合制备高性能阻尼材料
     针对XNBR/AO-2246有机杂化阻尼材料模量较低的缺陷,本文试图将纤维增强技术和有机杂化改性新方法相结合,制备出一种兼具较高模量和较好阻尼性能的高性能阻尼材料。在对芳纶浆粕(KP)和短碳纤维(SCF)与XNBR基体的添加效应进行比较后,本文最终选用SCF作为增强纤维,将其与AO-2246的杂化效应相结合,制备出了一系列三元XNBR/SCF(90/10)/AO-2246和XNBR/AO-2246(50/50)/SCF体系样品,并对其动态力学性能进行了研究。研究结果表明,向二元XNBR/SCF(90/10)体系中加入AO-2246后,可使体系在保持较高模量的同时,其阻尼峰高度获得较大幅度的提高,同时其阻尼峰位置也可通过改变AO-2246的含量加以调控以满足不同的实际需求,从而获得了一种兼具较高模量和较好阻尼性能的高性能阻尼材料。向二元XNBR/AO-2246(50/50)体系中加入一定量的SCF后得到的三元XNBR/AO-2246(50/50)/SCF体系尽管其tanδ峰高度有所下降,但tanδ_(max)值仍大于2.5,明显高于一般的阻尼材料。在保持较高阻尼的同时,体系的模量由于SCF的增强效应而大幅提高,从而得到了一种兼具较好阻尼性能和较高模量的高性能阻尼材料。这些结果证实了通过采用将有机杂化和纤维增强相结合的方法,可制备出一种新型的兼具高模量和高阻尼且阻尼峰位置可调控的高性能阻尼材料。因此,将纤维增强和有机杂化相结合的方法可看作是一种制备具有较大的工程应用价值的高性能阻尼材料的新方法。
With the rapid development of modern industry,vibration and noise pollution is becoming more and more serious.From an environmental protection point of view, damping materials that can reduce the vibration and noise significantly should be adopted in many cases.Polymeric damping materials are a type of newly developed materials,which can absorb vibration energy due to the characteristic viscoelastic properties of polymers.They can dissipate mechanical or acoustic energy as heat,thus to decrease the amplitude or energy of vibration.Therefore,polymeric damping materials have been widely used in numerous fields such as automobiles,industrial machinery,skyscrapers,household appliances,precision instruments,appliance industries,military equipment,etc.The development of high technology brings higher and higher requirements on damping materials and each field needs more damping materials with broad temperature region,high performance and intelligence.However, most of the damping materials are not satisfied due to their poor comprehensive properties,in particular,they can't possess both good damping and high strength at the same time.Thus,to develop damping materials with excellent comprehensive properties is extremely important.Under such a background,after comparing the advantages and disadvantages of various damping modification methods,we finally choose the recently developed organic hybrid damping modification method,through which organic hybrids with high-performance damping properties can be obtained by adding functional organic small molecules into polar polymers.Based on this novel design concept,the carboxylated nitrile rubber(XNBR) with larger polarity and good damping property was firstly chose as the matrix polymer,and selected functional organic small molecules were added into it to obtain organic hybrids with high damping factor.Then the comprehensive properties of the obtained organic hybrids were further improved by different ways to develop a series of high-performance damping material with better engineering application values.The damping mechanism of prepared materials were further discussed by using a combination of several analysis and testing means,such as dynamic mechanical thermal analysis (DMA),differential scanning thermal analysis(DSC),Fourier transform infrared spectroscopy(FT-IR) analysis,scanning electron microscopy(SEM) observation etc. to provide some theoretical reference for future research in this field.The main research contents and relevant research conclusions of this paper are as follows:
     1.Preparation and damping properties of binary organic hybrid damping materials
     In this paper,in order to prepare organic hybrid damping materials with high damping factor,two different functional organic small molecules 2,2'-methylenebis(6-tert-butyl-4-methylphenol)(AO-2246) and Pentaerythrityltetrakis -[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate](AO-1010) were screened out through some theoretical analysis and experimental tests.Then different binary XNBR/AO-2246 and XNBR/AO-1010 organic hybrid materials were thus obtained by adding them into XNBR matrix.The influence of molding condition and chemical structure of small molecules on the damping properties of binary organic hybrid material were discussed respectively.
     In order to discuss the influence of molding condition on the damping properties of binary organic hybrid material,unpressed and pressed XNBR/AO-2246 samples were prepared by using different molding conditions and correlations between the microstructure and damping properties of unpressed and pressed XNBR/AO-2246 samples were studied.Results showed that in the unpressed system,most of the AO-2246 molecules existed in the form of crystalline particles.They only acted like inorganic fillers thus decreased the loss tangent(tanδ) peak height of the blend system remarkably to a value lower than that of pure XNBR.Whereas,in the pressed system,AO-2246 were hybridized with XNBR due to the formation of large amounts of hydrogen bonds between them during the hot-pressing and quenching process,thus a special flower-like morphology structure were formed.The addition of AO-2246 can not only increase the tanδpeak height of the blend system significantly up to 3.5 but also shift the tanδpeak position from -21℃to 23℃by adjusting the AO-2246 content.Thus,a new type of XNBR-based high damping composite was obtained.
     In order to further discuss the chemical structure of small molecules on the damping properties of binary organic hybrid material,pressed XNBR/AO-1010 samples were also prepared and compared with pressed XNBR/AO-2246 samples. Results showed that in the XNBR/AO-1010 hybrid system,most of the AO-1010 molecules dispersed in the XNBR matrix in the form of crystal particles or aggregates and the system exhibited a sea(XNBR-rich matrix)-island(AO-1010-rich domain) morphology due to weak interaction between AO-1010 and XNBR.As a result,a new tanδpeak appeared besides that of XNBR.The AO-1010-rich domain,which was mainly composed of AO-1010 crystals,seemed to act like inorganic fillers thus decreased the tanδpeak of XNBR significantly.However,the tanδvalue between the two tanδpeaks increased gradually with increasing AO-1010 content,showing a broader efficient damping temperature region.
     Thus,we came to the conclusion that for binary organic hybrid material,different molding condition or chemical structure of small molecules leaded to differences in the number or type of the intermolecular hydrogen bonds between the two components,thus leaded to different dispersion state of small molecules in the matrix and finally resulted in different additive effects on damping properties of binary systems.
     2.Preparation of ternary organic hybrid damping materials and studies on the damping stability of organic hybrid systems
     Based on the analysis and comparison of two binary systems,AO-2246 and AO-1010 were added into XNBR matrix at same time,thus various ternary XNBR/AO-2246/AO-1010 hybrid systems were prepared to further discuss the synergistic effect of AO-1010 and AO-2246 on improving the damping property of XNBR.DMA measurements were carried out on various XNBR/AO-2246/AO-1010 ternary hybrids,results showed that the addition of a small amount of AO-1010(less than 20 wt%) into XNBR/AO-2246 hybrid leaded to not only a significant increase of the tanδpeak height but also a notable enhancement of the tanδpeak temperature, confirming that AO-1010 and AO-2246 indeed have a synergistic effect on enhancing the damping property of XNBR.Besides,it was also showed that the tanδpeak height and its position of ternary XNBR/AO-2246/AO-1010 hybrids could be controlled by varying AO-1010 content or XNBR/AO-2246 weight ratio.Thus,a series of high-performance damping materials with both high damping peak and controllable peak position suitable for different practical requirements were obtained.
     In order to get some information about the stability of the damping properties of prepared organic hybrid damping materials in practical applications,measurements were carried out on the damping properties of XNBR/AO-2246 hybrids which were aged in room temperature for a long time or annealed at different temperature in this paper.The damping stability of XNBR/AO-2246 hybrids was studied by comparing the changes of their damping properties before and after ageing or annealing.Results showed that after ageing or annealing treatment,the disappearance of strong intermolecular interactions between XNBR and AO-2246 leaded to the reaggregation and crystallization behavior of AO-2246.Thus the tanδpeak height of the hybrids decreased sharply and their high damping properties were nearly bankrupt.This is in accordance with the results found in similar polymer/small molecule blend systems. Nevertheless,it was also found that after reheating,the tanδpeak height of aged samples increased again and reverted to a value as high as even higher than that of the unaged samples due to the existence of reversible intermolecular hydrogen bonding interactions in XNBR/AO-2246 hybrid system.Such heat-reversible effect of the damping properties of XNBR/AO-2246 hybrids was attributed to bafflement of the reaggregation and crystallization behaviors of AO-2246 molecules by the recombination of the strong intermolecular hydrogen bonds between XNBR and AO-2246 molecules.Thus,XNBR/AO-2246 hybrids can be used as a new type of thermally recycling rubbers.Furthermore,studies on the damping stability of ternary XNBR/AO-2246/AO-1010 hybrid system during annealing process revealed that the addition of a small amount of AO-1010 into XNBR/AO-2246 hybrids obstructed the crystallization behavior of AO-2246 to some extent and finally improved the damping stability.
     Thus,a series of XNBR-based high-performance damping materials with high damping peak and controllable peak position as well as better damping stability can be designed by changing the composition of ternary XNBR/AO-2246/AO-1010 hybrid system.
     3.Preparation of high-performance damping materials by combination of fiber reinforcement and organic hybridization
     As to the low-modulus limitation of XNBR/AO-2246 organic hybrids,combination of fiber reinforcement and organic hybridization was adopted in order to develop a high-performance damping material with both high modulus and good damping property.After comparing the additive effects of Kevlar pulp(KP) and short carbon fiber(SCF) on the damping property of XNBR matrix,we finally selected SCF as the reinforcement fiber and combined its reinforcement effect with the hybridization effect of AO-2246.Thus,a series of ternary XNBR/SCF(90/10)/AO-2246 and XNBR/AO-2246(50/50)/SCF hybrid samples were prepared and measurements were made on their dynamic mechanical properties.Results showed that by the incorporation of AO-2246 into binary XNBR/SCF(90/10) system,the tanδpeak height increased remarkably while maintained a high modulus,at the same time,the tanδpeak position could be controlled by varying AO-2246 content to meet different practical requirements.Thus,a type of high-performance damping materials with both high modulus and good damping properties were obtained by adding AO-2246 into binary XNBR/SCF(90/10) system.It was also showed that by the introduction of SCF into binary XNBR/AO-2246(50/50) system,although the tanδpeak height was decreased to some extent,the tanδ_(max) value was maintained above 2.5,which was still much higher than that of most SFRC materials.While maintaining such a high damping factor,the modulus of ternary XNBR/AO-2246(50/50)/SCF system was improved significantly due to the reinforcement effect of SCF.Thus,a type of high-performance damping materials with both good damping properties and high modulus were obtained by adding SCF into XNBR/AO-2246 organic hybrids.
     These results confirm that a new type of high-performance damping material possessing both high modulus and high damping peak with controllable peak position can be obtained by combination of fiber reinforcement and organic hybridization. Therefore,combination of fiber reinforcement and organic hybridization can be considered to be a new way of developing high-performance damping materials with better engineering application values.
引文
1.李满,杨艳.纺织噪声的危害及其综合防治[J].甘肃轻纺科技,1993,4:25-27.
    2.越虹,李大成.纺织厂噪声的危害与控制[J].安全与健康,2005,6:52-53.
    3.李满,杨艳.纺织用设备降噪技术[J].噪声与振动控制,1994,2:31-35.
    4.吕生华,梁国正,范晓东.高分子阻尼材料的研究进展[J].中国塑料,2001,15(12):1-6.
    5.何显儒,等.丁基橡胶的阻尼性能及其应用[J].合成橡胶工业,2003,3:181-184.
    6.陈兵勇,马国富,严宏洲.阻尼丁基橡胶[J].世界橡胶工业,2005,2:31-33.
    7.Liao,F.S.,et al.Enhanced laminate damping via modification of viscoelastic interlayer[J].Journal of Applied Polymer Science,1993,48(10):1801-1809.
    8.Li,C.,et al.Damping behavior of sandwich beam laminated with CIIR/petroleum resins blends by DMA measurement[J].Journal of Applied Polymer Science,2007,106(4):2472-2478.
    9.秦清明.高阻尼橡胶的工程应用[J].振动与冲击,1993,4:36-41.
    10.刘兴衡.减震橡胶制品的应用前景[J].橡胶工业,2002.49(5):307-309.
    11.吴驰飞,李滨耀,杨军.高速轨道交通减振降噪材料的分析与发展动向[J].机车电传动,2003,B12:19-22.
    12.李聪,等.轨道阻尼垫板的研制[J].橡胶科技市场,2006,7:21-22.
    13.李春跃.减震阻尼橡胶支座在桥梁工程中的应用[J].河南水利与南水北调,2007,8:36-37.
    14.梁威,等.减震用橡胶材料及其应用[J].合成橡胶工业,2006,29(4):313-316.
    15.Wu,C.F.,Effects of a hindered phenol compound on the dynamic mechanical properties of chlorinated polyethylene,acrylic rubber,and their blend[J].Journal of Applied Polymer Science,2001,80(13):2468-2473.
    16.高家武,等.高分子材料近代测试技术[M].1994,北京:北京航空航天大学出版社.
    17.陈兵勇,马国富,阮家声.宽温域高阻尼橡胶材料研究进展[J].世界橡胶工业,2004,11:33-37,48.
    18.王雁冰,黄志雄,张联盟.硅橡胶阻尼材料的研究进展[J].材料导报,2004,10:50-53.
    19.何曼君,陈维孝,董西侠.高分子物理[M].1990,上海:上海复旦大学出版社.
    20.过梅丽.高聚物与复合材料的动态力学热分析[M].2002,北京:化学工业出版社.
    21.Chang,M.C.O.,Thomas,D.A.,Sperling L.H.Group contribution analysis of the damping behavior of homopolymers,statistical copolymers,and interpenetrating polymer networks[C].1987,New Orleans,LA,USA:Div of Polymer Chemistry Inc,Newark,NJ,USA.
    22.张殿荣,辛振祥.现代橡胶配方设计[M].2001,北京:化学工业出版社.
    23.胡小锋,魏伯荣.阻尼橡胶[J].特种橡胶制品,2002,5:20-23.
    24.韩俐伟,聂玉梅.丁腈橡胶和聚氯乙烯共混合金隔振降噪阻尼性能研究[J].化学工程师,2003,2:17-18.
    25.君轩.阻尼橡胶[J].世界橡胶工业,2005,8:52-52.
    26.罗权煜,郭建华.几种合成橡胶的共混、硫化特性与性能的研究[J].特种橡胶制品,2007,2:5-13.
    27.郭建华.高模量IIR/CIIR阻尼材料的制备及动态粘弹性[D].华南理工大学硕士论文.
    28.Lemieux,M.A.,Killgoar,P.C.J.Low modulus,high damping,high fatigue life elastomer compounds for vibration isolation[J].Rubber Chemistry and Technology,1984,57(4):792-803.
    29.薛晓锋,胡兆同,刘健新.高阻尼橡胶耗能性能研究[J].公路交通科技,2006,3:70-73.
    30.Perera,M.C.S.,Ishiaku,U.S.,Ishak,Z.A.M.Characterization of PVC/NBR and PVC/ENR50 binary blends and PVC/ENR50/NBR ternary blends by DMA and solid state NMR[J].European Polymer Journal,2001,37(1):167-178.
    31.Yamada,N.,et al.Developments of high performance vibration absorber from poly(vinyl chloride) chlorinated polyethylene epoxidized natural rubber blend[J].Journal of Applied Polymer Science,1999,71(6):855-863.
    32.王俊良,范世霞.聚环氧丙烷/聚苯乙烯接枝与嵌段共聚物的合成和阻尼性能[J].应用化学,1993(2):75-77.
    33.大村博,山田富穗.接枝聚合物在聚合物改性上的应用[J].绝缘材料通讯,1998.4:42-47.
    34.张诚,等.聚合物基阻尼材料研究进展[J].浙江工业大学学报,2005,33(1):83-87.
    35.Li,F.,Perrenoud,A.,Larock,R.C.Thermophysical and mechanical properties of novel polymers prepared by the cationic copolymerization of fish oils,styrene and divinylbenzene[J].Polymer,2001,42(26):10133-10145.
    36.吴彩云,毛晓东,吴驰飞.SIS/石油树脂共混物高温阻尼性能的研究[J].橡胶工业,2007,5:266-270.
    37.马玉璞,氯化丁基-丁腈橡胶动态性能及其阻尼材料研究[D].北京化工学院硕士论文.
    38.Hajime,K.,et al.Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites[J].Composites Science and Technology,2004,64(16):2517-2523.
    39.Keusch,S.,Haessler,R.Influence of surface treatment of glass fibres on the dynamic mechanical properties of epoxy resin composites[J].Composites Part A:Applied Science and Manufacturing,1999,30(8):997-1002.
    40.Millar,J.R.,Smith,D.G,Marr,W.E.Interpenetrating polymer networks.Part Ⅱ.Kinetics and equilibria in a sulphonated secondary intermeshed copolymer[J].Journal of the Chemical Society,1962:1789-1794.
    41.Curtius,A.J.,et al.Poly(butadiene)/poly(styrene) interpenetrating polymer networks[J].1972,45(6):1582-1596.
    42.Sperling,L.H.Pure and applied research on interpenetrating polymer networks and relater materials[M].1985,London,Engl:Martinus Nijhoff Publ,Dordrecht,Neth.
    43.吴培熙,张留成.聚合物共混改性[M].1996,北京:中国轻工业出版社.
    44.Sperling,L.H.,et al.Synthesis and behavior of prototype left double quote silent paint right double quote[J].1974,46(588):47-53.
    45.李强,黄光速,江璐霞.PMPS/PMAc相容性与同步互贯聚合物网络的阻尼性能研究[J].高分子学报,2003,3:409-413.
    46.晏欣,姚树人.PVA/PBA乳胶互穿聚合物网络阻尼材料的研究[J].高分子材料科学与工程,2003(1):92-95.
    47.黄光速,等.聚苯基硅氧烷/聚丙烯酸酯同步互贯网络聚合物阻尼材料的研究[J].高分子材料科学与工程,2001,2:133-136.
    48.Sumita,M.,et al.New damping materials composed of piezoelectric and electro-conductive,particle-filled polymer composites:Effect of the electromechanical coupling factor[J].Die Makromolekulare Chemie,Rapid Communications,1991,12(12):657-661.
    49.Hori,M.,et al.New type of mechanical damping composites composed of piezoelectric ceramics,carbon black and epoxy resin[J].Composites - Part A:Applied Science and Manufacturing,2001,32(2):287-290.
    50.董跃清,晏雄.压电导电型聚合物基减振复合材料研究进展[J].玻璃钢/复合材料,2001,4:25-28.
    51.晏雄,张慧萍,住田雅夫.新型减振高分子复合材料研究[J].高分子材料科学与工程,2001,17(5):86-89.
    52.晏雄,张慧萍,住田雅夫.CPE/DZ/VGCF复合材料动态粘弹性研究[J].高分子材料科学与工程,2002,18(3):165-168.
    53.晏雄,张慧萍,住田雅夫.CPE/DZ/VGCF复合材料介电特性研究[J].高分子材料科学与工程,2002,18(5):111-114.
    54.Wu,C.F.,et al.Organic hybrid of chlorinated polyethylene and hindered phenol.Ⅰ.Dynamic mechanical properties[J].Journal of Polymer Science Part B-Polymer Physics,2000,38(17):2285-2295.
    55.Wu,C.R,et al.Viscoelastic properties of organic hybrids consisting of chlorinated polyethylene and hindered phenol[J].Kobunshi Ronbunshu,2000,57(5):294-299.
    56. Wu, C. F., et al. Dynamic mechanical properties and morphologies of organic hybrids consisting of chlorinated polyethylene and hindered phenol[J]. Polymer Journal, 2001,33(10): 792-798.
    
    57. Wu, C. F. Effects of a hindered phenol compound on the dynamic mechanical properties of chlorinated polyethylene, acrylic rubber, and their blend[J]. Journal of Applied Polymer Science, 2001,80(13): 2468-2473.
    
    58. Wu, C. F., Akiyama, S. Enhancement of damping performance of polymers by functional small molecules [J]. Chinese Journal of Polymer Science, 2002, 20(2): 119-127.
    
    59. Wu, C. F., et al. Organic hybrid of chlorinated polyethylene and hindered phenol. II. Influence of the chemical structure of small molecules on viscoelastic properties[J]. Journal of Polymer Science Part B-Polymer Physics, 2000, 38(11): 1496-1503.
    
    60. Wu, C. F., et al. Viscoelastic properties of an organic hybrid of chlorinated polyethylene and a small molecule[J]. Journal of Polymer Science Part B-Polymer Physics, 2000,38(10): 1341-1347.
    
    61. Wu, C. F., et al. Dynamic properties of an organic hybrid of chlorinated polyethylene and hindered phenol compound[J]. Journal of Applied Polymer Science, 2001. 82(7): 1788-1793.
    
    62. Wu, C. F. Organic hybrid of chlorinated polyethylene and hindered phenol. IV. Modification on dynamic mechanical properties by chlorinated paraffin[J]. Journal of Polymer Science Part B-Polymer Physics, 2001,39(1): 23-31.
    
    63. Zhang, C., et al. Damping properties of chlorinated polyethylene-based hybrids: Effect of organic additives[J]. Journal of Applied Polymer Science, 2006,100(4): 3307-3311.
    
    64. Zhang, C., Sheng, J. R, Ma, C. A. Dynamic mechanical behavior of a novel polymeric composite damping material[J]. Chinese Chemical Letters, 2005, 16(11): 1527-1530.
    
    65. Liu, J. T., et al. Study on an organic hybrid made from chlorinated polyethylene and 2, 2'-methylene-bis-(4-methyl-6-cyclohexylphenol)[J]. Journal of Dong Hua University(English Edition),2003,20(2):31-35.
    66.Akasaka,S.,et al.Low-frequency sound absorption of organic hybrid comprised of chlorinated polyethylene and N,N '-dicyclohexyl-2-benzothiazolyl sulfenamide[J].Journal of Applied Polymer Science,2006,99(6):2878-2884.
    67.Akasaka,S.,et al.Viscoelasticity and morphology of an organic hybrid of chlorinated polyethylene and N,N'-dicyclohexyl-2-benzothiazolyl sulfenamide[J].Composite Interfaces,2005,12(7):637-653.
    68.何利军,等.有机小分子杂化阻尼材料研究进展[J].宇航材料工艺,2007,3:9-12.
    69.刘其霞,等.有机杂化阻尼材料动态力学性能的影响因素探讨[J].玻璃钢/复合材料,2007,2:54-58.
    70.丁新波,张慧萍,晏雄.杂化材料中有机小分子形态对阻尼性能影响[J].材料工程,2008,4:23-26.
    71.Li,C.,et al.Dynamic mechanical properties of chlorinated butyl rubber blends[J].European Polymer Journal,2006,42(10):2507-2514.
    72.赵秀英,向平,张立群.受阻酚/丁腈橡胶复合材料的结构与性能[J].复合材料学报,2007,24(2):44-49.
    73.向平,等.受阻酚AO-80/NBR/PVC交联复合材料的结构与动态力学性能[J].复合材料学报,2007,24(6):44-49.
    74.Zhao,X.Y.,et al.Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance[J].Polymer,2007,48(20):6056-6063.
    75.Xiang,P.,et al.,The structure and dynamic properties of nitrile-butadiene rubber/poly(vinyl chloride)/hindered phenol crosslinked composites.Journal of Applied Polymer Science,2008.109(1):106-114.
    76.Li,C,et al.The investigation of miscibility in blends of ENR/AO-80 by DMA and FT-IR[J].Journal of Macromolecular Science Part B-Physics,2008,47(1):87-97.
    77.Mao,X.D.,Xu,S.A.,Wu,C.F.Dynamic mechanical properties of EPDM rubber blends[J].Polymer-Plastics Technology and Engineering,2008,47(2): 209-214.
    78.Bandyopadhyay,S.,et al.Influence of surface oxidation of carbon black on its interaction with nitrile rubbers[J].Polymer,1996,37(2):353-357.
    79.李晓强,唐斌,成奖国.羧基丁腈橡胶的性能研究[J].橡胶工业,2004,2:69-73.
    80.Ibarra,L.,Rodriguez,A.,Mora,I.Ionic nanocomposites based on XNBR-OMg filled with layered nanoclays[J].European Polymer Journal,2007,43(3):753-761.
    1. Zhang, C, Sheng, J. F., Ma, C. A. Dynamic mechanical behavior of a novel polymeric composite damping material [J]. Chinese Chemical Letters, 2005, 16(11): 1527-1530.
    
    2. Sperling, L. H., Fay, J. J. Factors which affect the glass transition and damping capability of polymers[J]. Polymers for Advanced Technologies, 1991, 2(1): 49-56.
    
    3. Piorkowska, E., et al. Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol) [J]. Polymer, 2006,47(20): 7178-7188.
    
    4. Liang, G. G., et al. Diallyl orthophthalate as a reactive plasticizer for polycarbonate. Part 1: Uncured system[J]. European Polymer Journal, 2008, 44(2): 366-375.
    
    5. Kwak, G. H., et al. Characterization of the vibrational damping loss factor and viscoelastic properties of ethylene-propylene rubbers reinforced with micro-scale fillers[J]. Journal of Applied Polymer Science, 2001, 82(12): 3058-3066.
    
    6. Zhou, Y., et al. Influence of montmorillonite clay on the thermal and mechanical properties of conventional carbon fiber reinforced composites[J]. Journal of Materials Processing Technology, 2007,191(1-3): 347-351.
    
    7. Liu, Q. X., Yan, X., Ding, X. B. Study on dynamic mechanical properties of short fiber reinforced carboxylated nitrile rubber[C]. Proceedings of the 2007
    International Conference on Advanced Fibers and Polymer Materials, 2007, Vol I: 347-350.
    
    8. Wu, C. F., et al. Organic hybrid of chlorinated polyethylene and hindered phenol. I. Dynamic mechanical properties [J]. Journal of Polymer Science Part B-Polymer Physics, 2000, 38(17): 2285-2295.
    
    9. Wu, C. F., Functional design of organic hybrids consisting of polarized polymers and hindered phenol[J]. Journal of Materials Science Letters, 2001, 20(15): 1389-1391.
    10.Wu,C.F.A novel second-order transition in organic hybrids consisting of polymers and small molecules[J].Chinese Journal of Polymer Science,2001,19(5):455-466.
    11.Wu,C.F.,et al.Dynamic properties of an organic hybrid of chlorinated polyethylene and hindered phenol compound[J].Journal of Applied Polymer Science,2001,82(7):1788-1793.
    12.Wu,C.F.,Akiyama,S.Enhancement of damping performance of polymers by functional small molecules[J].Chinese Journal of Polymer Science,2002,20(2):119-127.
    13.Wu,C.F.Effects of molecule aggregation state of hindered phenol on dynamic mechanical properties of chlorinated polyethylene[J].Chinese Journal of Polymer Science,2003,22(1):7-16.
    14.Wu,C.F.,et al.Organic hybrid of chlorinated polyethylene and hindered phenol.Ⅱ.Influence of the chemical structure of small molecules on viscoelastic properties[J].Journal of Polymer Science Part B-Polymer Physics,2000,38(11):1496-1503.
    15.Wu,C.F.,et al.Organic hybrid of chlorinated polyethylene and hindered phenol.Ⅲ.Influence of the molecular weight and chlorine content of the polymer on the viscoelastic properties[J].Journal of Polymer Science Part B-Polymer Physics,2000,38(22):2943-2953.
    16.刘其霞,等.有机杂化阻尼材料动态力学性能的影响因素探讨[J].玻璃钢/复合材料,2007,2:54-58.
    17.何利军,等.有机小分子杂化阻尼材料研究进展[J].宇航材料工艺,2007,3:9-12.
    18.Li,C.,et al.Dynamic mechanical properties of chlorinated butyl rubber blends[J].European Polymer Journal,2006,42(10):2507-2514.
    19.赵秀英,向平,张立群.受阻酚/丁腈橡胶复合材料的结构与性能[J].复合材料学报,2007,24(2):44-49.
    20.向平,等.受阻酚AO-80/NBR/PVC交联复合材料的结构与动态力学性能[J]. 复合材料学报,2007,24(6):44-49.
    21.Zhao,X.Y.,et al.Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance[J].Polymer,2007,48(20):6056-6063.
    22.Xiang,P.,et al.The structure and dynamic properties of nitrile-butadiene rubber/poly(vinyl chloride)/hindered phenol crosslinked composites[J].Journal of Applied Polymer Science,2008,109(1):106-114.
    23.Li,C.,et al.The investigation of miscibility in blends of ENR/AO-80 by DMA and FT-IR[J].Journal of Macromolecular Science Part B-Physics,2008,47(1):87-97.
    24.Mao,X.D.,Xu,S.A.,Wu,C.F.Dynamic mechanical properties of EPDM rubber blends[J].Polymer-Plastics Technology and Engineering,2008,47(2):209-214.
    25.Bandyopadhyay,S.,et al.Influence of surface oxidation of carbon black on its interaction with nitrile rubbers.Polymer,1996,37(2):353-357.
    26.李晓强,唐斌,成奖国.羧基丁腈橡胶的性能研究[J].橡胶工业,2004,2:69-73.
    27.Ibarra,L.,Rodriguez,A.,Mora,I.Ionic nanocomposites based on XNBR-OMg filled with layered nanoclays[J].European Polymer Journal,2007,43(3):753-761.
    28.Roychoudhury,A.,et al.Self-crosslinkable ternary blend of chlorosulphonated polyethylene,epoxidized natural rubber and carboxylated nitrile rubber[J].Polymer,1992,33(22):4737-4740.
    29.Ramesh,P.,De,S.K.Carboxylated nitrile rubber as a reactive compatibilizer for immiscible blends of poly(vinyl chloride) and epoxidized natural rubber[J].Journal of applied polymer science,1993,50(8):1369-1377.
    30.Mandal,U.K.,Tripathy,D.K.,De,S.K.Dynamic mechanical spectroscopic studies on plasticization of an ionic elastomer based on carboxylated nitrile rubber[J].Polymer,1996,37(15):3437-3440.
    31.Antony,P.,Bandyopadhyay,S.,De,S.K.Synergism in properties of ionomeric polyblends based on zinc salts of carboxylated nitrile rubber and poly(ethylene-co-acrylic acid)[J]. Polymer, 2000, 41(2): 787-793.
    
    32. Ibarra, L., Alzorriz, M. Vulcanization of carboxylated nitrile rubber (XNBR) by a mixed zinc peroxide-sulphur system[J]. Polymer International, 2000, 49(1): 115-121.
    
    33. Mandal, U. K. Ionic elastomer based on carboxylated nitrile rubber: infrared spectral analysis[J]. Polymer International, 2000,49(12): 1653-1657.
    
    34. Ibarra, L., Alzorriz, M. Ionic elastomers based on carboxylated nitrile rubber (XNBR) and zinc peroxide: Influence of carboxylic group content on properties[J]. Journal of Applied Polymer Science, 2002, 84(3): 605-615.
    
    35. Ibarra, L., Marcos-Fernandez, A., Alzorriz, M. Mechanistic approach to the curing of carboxylated nitrile rubber (XNBR) by zinc peroxide/zinc oxide[J]. Polymer, 2002, 43(5): 1649-1655.
    
    36. Manoj, N. R., et al. Interpenetrating polymer networks based on carboxylated nitrile rubber and poly(alkyl methacrylate)s[J]. Polymer Engineering & Science, 2002,42(8): 1748-1755.
    
    37. Manoj, N. R., et al. Vibration damping materials based on interpenetrating polymer networks of carboxylated nitrile rubber and poly(methyl methacrylate)[J]. Polymers for Advanced Technologies, 2002,13(9): 644-648.
    
    38. Manoj, N. R., et al. Sequential interpenetrating polymer network of poly(ethyl methacrylate) and carboxylated nitrile rubber: Dynamic mechanical analysis and morphology[J]. Journal of applied polymer science, 2005, 96(5): 1487-1491.
    
    39. Wu, C. F., et al. Viscoelastic properties of an organic hybrid of chlorinated polyethylene and a small molecule[J]. Journal of Polymer Science Part B-Polymer Physics, 2000, 38(10): 1341-1347.
    
    40. Wu, C. F., et al. Dynamic mechanical properties and morphologies of organic hybrids consisting of chlorinated polyethylene and hindered phenol[J]. Polymer Journal, 2001, 33(10): 792-798.
    
    41. Li, J., He, Y., Inoue, Y. Thermal and infrared spectroscopic studies on hydrogen-bonding interactions between poly-( ε -caprolactone) and some dihydric phenols[J].Journal of Polymer Science Part B:Polymer Physics,2001,39(17):2108-2117.
    42.Heux,L.,et al.Dynamic mechanical and 13C n.m.r.analyses of the effects of antiplasticization on the β secondary relaxation of aryl-aliphatic epoxy resins[J].Polymer,1998,39(6-7):1269-1278.
    43.王庆文,杨玉桓,高鸿宾.有机化学中的氢键问题[M].1993,天津:天津大学出版社.
    44.张广宏,马文霞,万会军,氢键的类型和本质[J].化学教学,2007,7:72-75.
    45.谢吉麟.氢键的本质特征、存在类型及其影响[J].化学教学,2006,8:60-62.
    46.李伟琦.氢键对有机物性质和结构的影响[J].天中学刊,2003,18,2:38-40.
    47.He,Y.,et al.Effects of low molecular weight compounds with hydroxyl groups on properties of poly(L-lactic acid)[J].Journal of Applied Polymer Science,2001,82(3):640-649.
    48.Zhu,B.,et al.Thermal and infrared spectroscopic studies on hydrogen-bonding interaction of biodegradable poly(3-hydroxybutyrate)s with natural polyphenol catechin[J].Green Chemistry,2003,5(5):580-586.
    49.He,Y.,Asakawa,N.,Inoue,Y.Studies on poly(ε-caprolactone)/thiodiphenol blends:The specific interaction and the thermal and dynamic mechanical properties[J].Journal of Polymer Science Part B:Polymer Physics,2000,38(14):1848-1859.
    50.Hexig,B.,et al.Diphenol miscibility effect on the immiscible polyester/polyether binary blends through intermolecular hydrogen-bonding interaction[J].Journal of Polymer Science Part B:Polymer Physics,2004,42(16):2971-2982.
    51.Kawakami,T.,Kato,T.Use of Intermolecular Hydrogen Bonding between Imidazolyl Moieties and Carboxylic Acids for the Supramolecular Self-Association of Liquid-Crystalline Side-Chain Polymers and Networks[J].Macromolecules,1998,31(14):4475-4479.
    52.Wu,C.F.,Yamagishi,T.A.,Nakamoto,Y.Crystallization behaviour of hindered phenol on chlorinated polyethylene matrix[J].Polymer International,2001,50(10):1095-1102.
    1. Wu, C. F., et al. Organic hybrid of chlorinated polyethylene and hindered phenol. II. Influence of the chemical structure of small molecules on viscoelastic properties[J]. Journal of Polymer Science Part B-Polymer Physics, 2000, 38(11): 1496-1503.
    
    2. Wu, C. F. A novel second-order transition in organic hybrids consisting of polymers and small molecules[J]. Chinese Journal of Polymer Science, 2001, 19(5): 455-466.
    
    3. Wu, C. F., Akiyama, S. Enhancement of damping performance of polymers by functional small molecules[J]. Chinese Journal of Polymer Science, 2002, 20(2): 119-127.
    
    4. Zhang, C., et al. Damping properties of chlorinated polyethylene-based hybrids: Effect of organic additives[J]. Journal of Applied Polymer Science, 2006, 100(4): 3307-3311.
    
    5. Wu, C. F., et al. Organic hybrid of chlorinated polyethylene and hindered phenol. I. Dynamic mechanical properties[J]. Journal of Polymer Science Part B-Polymer Physics, 2000,38(17): 2285-2295.
    
    6. Wu, C. F., et al. Viscoelastic properties of an organic hybrid of chlorinated polyethylene and a small molecule[J]. Journal of Polymer Science Part B-Polymer Physics, 2000, 38(10): 1341-1347.
    
    7. Wu, C. F., et al. Dynamic mechanical properties and morphologies of organic hybrids consisting of chlorinated polyethylene and hindered phenol [J]. Polymer Journal, 2001,33(10): 792-798.
    
    8. Wu, C. F., et al. Dynamic properties of an organic hybrid of chlorinated polyethylene and hindered phenol compound[J]. Journal of Applied Polymer Science, 2001, 82(7): 1788-1793.
    
    9. Wu, C. F., et al. Effects of molecule aggregation state on dynamic mechanical properties of chlorinated polyethylene/hindered phenol blends[J]. Polymer, 2001, 42(19):8289-8295.
    10.F(o|¨)ldes,E.,Turcsányi,B.Transport of small molecules in polyolefins.Ⅰ.Diffusion of irganox 1010 in polyethylene[J].Journal of Applied Polymer Science,1992,46(3):507-515.
    11.F(o|¨)ldes,E.Transport of small molecules in polyolefins.Ⅱ.Diffusion and solubility of irganox 1076 in ethylene polymers[J].Journal of Applied Polymer Science,1993,48(11):1905-1913.
    12.F(o|¨)ldes,E.Transport of small molecules in polyolefins.Ⅲ.Diffusion of topanol CA in ethylene polymers[J].Journal of Applied Polymer Science,1994,51(9):1581-1589.
    13.Wu,C.F.Microstructural development of a vitrified hindered phenol compound during thermal annealing[J].Polymer,2003,44(5):1697-1703.
    14.Wu,C.F.Relaxation effects in an organic glassy material[J].Journal of Non-Crystalline Solids,2003,315(3):321-324.
    15.Wu,C.F.,Yamagishi,T.A.,Nakamoto,Y.Crystallization behaviour of hindered phenol on chlorinated polyethylene matrix[J].Polymer International,2001,50(10):1095-1102.
    16.Wu,C.F.,Akiyama,S.Crystallization of a vitrified hindered phenol within chlorinated polyethylene and its effects on dynamic mechanical properties[J].Journal of Polymer Science Part B-Polymer Physics,2004,42(2):209-215.
    17.Wu,C.F.,Kuriyama,T.,Inoue,T.Crystalline structure and morphology of a hindered phenol in a chlorinated polyethylene matrix[J].Journal of Materials Science,2004,39(4):1249-1254.
    18.杨育农,王浩江,邵芳.稳定化助剂在塑料加工应用中的进展[J].国外塑料,2005,23(8):36-38.
    19.沈昌乐,高金玲.酚类抗氧剂在聚合物中的应用及研究进展[J].天津化工,2006,20(4):16-19.
    20.李志弘.两种新型酚类抗氧剂在天然胶制品中的应用及稳定性的研究[J].聚合物与助剂,2006,5:41-41.
    21.严慧,杨锦飞.磷系阻燃剂在塑料中的应用进展[J].塑料助剂,2008,6:6-8.
    22.Laoutid,F.,et al.New prospects in flame retardant polymer materials:From fundamentals to nanocomposites[J].Materials Science and Engineering:R:Reports,2009,63(3):100-125.
    23.张启兴.环氧增塑剂的生产工艺及其在pvc塑料加工中的应用[J].聚氯乙烯,2007.12:1-4.
    24.吴波震,夏琳,邱桂学.增塑剂DOP在软PVC和PVC/ABS共混物中的应用[J].塑料助剂,2007,3:33-35.
    25.Yamaguchi,M,et al.Control of optical anisotropy of cellulose esters and their blends with plasticizer[J].Acta Materialia,2009,57(3):823-829.
    26.Liang,G.G.,et al.Diallyl orthophthalate as a reactive plasticizer for improving PVC processibility,Part Ⅱ:Rheology during cure[J].Polymer.In Press,Corrected Proof.
    27.Liang,G.G.,et al.,Diallyl orthophthalate as a reactive plasticizer for improving PVC processability,Part Ⅲ:Curing,properties,and phase separation[J].Polymer.In Press,Corrected Proof.
    28.Zhu,B.,et al.Thermal and infrared spectroscopic studies on hydrogen-bonding interaction of biodegradable poly(3-hydroxybutyrate)s with natural polyphenol catechin[J].Green Chemistry,2003,5(5):580-586.
    29.He,Y.,et al.Effects of low molecular weight compounds with hydroxyl groups on properties of poly(L-lactic acid)[J].Journal of Applied Polymer Science,2001,82(3):640-649.
    30.He,Y.,Asakawa,N.,Inoue,Y Studies on poly(ε-caprolactone)/thiodiphenol blends:The specific interaction and the thermal and dynamic mechanical properties[J].Journal of Polymer Science Part B:Polymer Physics,2000,38(14):1848-1859.
    31.Hexig,B.,et al.Diphenol miscibility effect on the immiscible polyester/polyether binary blends through intermolecular hydrogen-bonding interaction[J].Journal of Polymer Science Part B:Polymer Physics,2004,42(16):2971-2982.
    1. Wu, C. F., Nitta, K. H. Crystallization of the hindered phenol in chlorinated polyethylene matrix and its influence on viscoelastic properties[J]. Kobunshi Ronbunshu, 2000, 57(7): 449-456.
    
    2. Zhang, C., Miura, T., Asai, S. New approach to design polymer damping composites by incorporating low molecular weight organic fillers[C]. The Eighth International Conference on Composite Interfaces, 2000.
    
    3. Inoue, K., et al. Crystallization behavior of chlorinated polyethylene N,N'-dicyclohexyl- 2-benzothiazolylsulfenamide organic hybrid I[J]. Sen-I Gakkaishi, 2001, 57(2): 47-53.
    
    4. Wu, C. F. Functional design of organic hybrids consisting of polarized polymers and hindered phenol[J]. Journal of Materials Science Letters, 2001, 20(15): 1389-1391.
    
    5. Wu, C. F. A novel second-order transition in organic hybrids consisting of polymers and small molecules[J]. Chinese Journal of Polymer Science, 2001, 19(5): 455-466.
    
    6. Wu, C. F., Akiyama, S. Dynamic mechanical and adhesive properties of acrylate rubber/ chlorinated polypropylene blends compatibilized with a hindered phenol compound[J]. Polymer Journal, 2001,33(12): 955-958.
    
    7. Wu, C. F., et al. Effects of molecule aggregation state on dynamic mechanical properties of chlorinated polyethylene/hindered phenol blends[J]. Polymer, 2001, 42(19): 8289-8295.
    
    8. Wu, C. F., Akiyama, S. Enhancement of damping performance of polymers by functional small molecules[J]. Chinese Journal of Polymer Science, 2002, 20(2): 119-127.
    
    9. Wu, C. F., Akiyama, S. Effects of crystallization on dynamic properties of an organic hybrid consisting of chlorinated polyethylene and hindered phenol [J]. Polymer Journal, 2002, 34(11): 847-850.
    10.Liu,J.T.,et al.Study on an organic hybrid made from chlorinated polyethylene and 2,2'- methylene-bis-(4-methyl-6-cyclohexylphenol)[J].Journal of Dong Hua University(English Edition),2003,20(2):31-35.
    11.Wu,C.F.Effects of molecule aggregation state of hindered phenol on dynamic mechanical properties of chlorinated polyethylene[J].Chinese Journal of Polymer Science,2003,22(1):7-16.
    12.Wu,C.F.,Akiyama,S.Crystallization of a vitrified hindered phenol within chlorinated polyethylene and its effects on dynamic mechanical properties[J].Journal of Polymer Science Part B-Polymer Physics,2004,42(2):209-215.
    13.Zhao,X.Y.,et al.Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance[J].Polymer,2007,48(20):6056-6063.
    14.何利军,等.有机小分子杂化阻尼材料研究进展[J].宇航材料工艺,2007,3:9-12.
    15.向平,等.受阻酚AO-80/NBR/PVC交联复合材料的结构与动态力学性能[J].复合材料学报,2007,24(6):44-49.
    16.赵秀英,向平,张立群.受阻酚/丁腈橡胶复合材料的结构与性能[J].复合材料学报,2007,24(2):44-49.
    17.Bandyopadhyay,S.,et al.Influence of surface oxidation of carbon black on its interaction with nitrile rubbers[J].Polymer,1996,37(2):353-357.
    18.李晓强,唐斌,成奖国.羧基丁腈橡胶的性能研究[J].橡胶工业,2004,2:69-73.
    19.Ibarra,L.,Rodriguez,A.,Mora,I.Ionic nanocomposites based on XNBR-OMg filled with layered nanoclays[J].European Polymer Journal,2007,43(3):753-761.
    20.Wu,C.F.,et al.Organic hybrid of chlorinated polyethylene and hindered phenol.Ⅰ.Dynamic mechanical properties[J].Journal of Polymer Science Part B-Polymer Physics,2000,38(17):2285-2295.
    21.Wu,C.F.,et al.Dynamic properties of an organic hybrid of chlorinated polyethylene and hindered phenol compound[J].Journal of Applied Polymer Science,2001,82(7):1788-1793.
    22.Zhang,C.,et al.Damping properties of chlorinated polyethylene-based hybrids:Effect of organic additives[J].Journal of Applied Polymer Science,2006,100(4):3307-3311.
    23.Wu,C.F.,Akiyama,S.Dynamic properties of carbon black filled chlorinated polyethylene/ hindered phenol blends[J].Polymer International,2003,52(8):1249-1255.
    24.Zhang,C.,Sheng,J.F.,Ma,C.A.Dynamic mechanical behavior of a novel polymeric composite damping material[J].Chinese Chemical Letters,2005,16(11):1527-1530.
    25.周彦豪,张立群.短纤维/橡胶复合材料及其制品研究开发的新进展[J].合成橡胶工业,1998,1:1-6.
    26.于海琴,王金刚,闫良国.短纤维增强橡胶复合材料研究进展[J].材料科学与工程,2002,20(2):287-289,234.
    27.Gu,W.,et al.Volume fraction effects on interfacial adhesion strength of glass-fiber-reinforced polymer composites[J].Materials Science and Engineering A,2000,277(1-2):237-243.
    28.Tjong,S.C.,et al.Mechanical behavior and fracture toughness evaluation of maleic anhydride compatibilized short glass fiber/SEBS/polypropylene hybrid composites[J].Composites Science and Technology,2002,62(6):831-840.
    29.张之兵,等.对位芳纶浆粕预分散体补强SBR的研究[J].橡胶工业,2008,55(5):268-274.
    30.吴卫东,等.新型芳纶浆粕短纤维增强氯丁橡胶复合材料结构与性能的研究[J].广东橡胶,2008,3:1-9.
    31.谷和平,等.短切纤维增强环氧树脂力学性能研究[J].塑料工业,2007,35(12):20-22.
    32.李汉堂.短纤维-橡胶复合材料的发展前景[J].现代橡胶技术,2006,32(4):5-12.
    33.Pothan,L.A.,Oommen,Z.,Thomas,S.Dynamic mechanical analysis of banana fiber reinforced polyester composites[J].Composites Science and Technology, 2003,63(2):283-293.
    34.Geethamma,V.G.,et al.Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites[J].Composites Part A:Applied Science and Manufacturing,2005,36(11):1499-1506.
    35.Idicula,M.,et al.Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites[J].Composites Science and Technology,2005,65(7-8):1077-1087.
    36.Liu,Q.X.,Yan,X.,Ding,X.B.Study on dynamic mechanical properties of short fiber reinforced carboxylated nitrile rubber[C].Proceedings of the 2007International Conference on Advanced Fibers and Polymer Materials,2007,Vol Ⅰ:347-350.
    37.Wu,C.F.,et al.Viscoelastic properties of an organic hybrid of chlorinated polyethylene and a small molecule[J].Journal of Polymer Science Part B-Polymer Physics,2000,38(10):1341-1347.
    38.尤秀兰,等.芳纶浆粕纤维的结构性能与应用[J].新纺织,2001,11:23-25.
    39.廖子龙.芳纶的市场需求与芳纶浆粕的应用[J].高科技纤维与应用,2008,33(3):36-39.
    40.尤秀兰,刘兆峰.芳纶浆粕纤维制备技术的研究进展[J].高分子材料科学与工程,2003,19(3):45-48.
    41.尤秀兰,刘兆峰.芳纶浆粕纤维在橡胶制品中的应用[J].特种橡胶制品,2002,23(2):17-20.
    42.王曙中.芳纶浆粕的现状及其应用前景[J].高科技纤维与应用,2003,28(3):14-17
    43.Wu,W.D.,Zhou,Y.H.,Zhang,L.Q.Reinforcing mechanism of novel aramid pulp short fibre in chloroprene rubber matrix[C],AICAM 2005,2006,11-12:513-516.
    44.任玉柱,等.高性能芳纶浆粕/HNBR复合材料的制备及性能研究[J].橡胶工业,2006,53(2):69-74.
    45.Seyler,R.J.Assignment of the glass transition[M].1994,Philadelphia,PA:ASTM.
    46.Joseph,P.V.,et al.Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites[J].Composites Part A:Applied Science and Manufacturing,2003,34(3):275-290.
    47.Fu,S.Y.,et al.On the post-mortem fracture surface morphology of short fiber reinforced thermoplastics[J].Composites Part A:Applied Science and Manufacturing,2005,36(7):987-994.
    48.程俊梅,等.动态热力学分析法评估短纤维/橡胶复合材料界面粘合效果[J].橡胶工业,2006,53(3):139-142.
    49.Keusch,S.,Haessler,R.Influence of surface treatment of glass fibres on the dynamic mechanical properties of epoxy resin composites[J].Composites Part A:Applied Science and Manufacturing,1999,30(8):997-1002.
    50.Wu,C.F.,et al.Dynamic mechanical properties and morphologies of organic hybrids consisting of chlorinated polyethylene and hindered phenol.Polymer Journal,2001,33(10):792-798.
    51.Wu,C.F.,et al.Phase modification of Acrylate Rubber/Chlorinated Polypropylene blends by a Hindered Phenol compound[J].Polymer Journal,2001,33(4):322-329.
    52.王晏研,陈喜荣,黄光速.复合阻尼材料最新研究进展[J].材料导报,2004,18(10):54-56.
    53.Vallianos,C.Dynamic mechanical analysis of some randomly-oriented viscoelastic short-fiber composites[J].Composites Science and Technology,1987,30(4):239-250.
    54.张立群,周彦豪.短纤维/橡胶复合材料动态力学性能研究.橡胶工业,1994.41(9):538-542.
    55.Rana,A.K.,Mitra,B.C.,Banerjee,A.N.Short jute fiber-reinforced polypropylene composites:Dynamic mechanical study[J].Journal of Applied Polymer Science,1999,71(4):531-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700