用户名: 密码: 验证码:
三类分数阶偏微分方程的有限元计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分数阶微积分作为整数阶(经典)微积分推广,在生物、物理、化学、工程等领域有着广泛的应用。特别地,在近几十年里,许多研究者指出分数阶微积分以及分数阶微分方程非常适合用来刻画具有记忆和遗传特性的材料和过程。由于应用的广泛性,使得分数阶微积分这一领域越来越受到人们的关注,与之相关的理论分析和数值计算等研究工作就显得尤为重要。
     本文主要有两大部分。第一部分讨论的是函数的分数阶可积性和可微性问题。第二部分研究了三类分数阶偏微分方程的有限元计算问题。其中这三类方程分别从空间分数阶,时空分数阶,时空分数阶且时间方向为两项分数阶导数的角度研究了数值方法,给出了理论分析,并进行了数值模拟,数值结果与理论分析相吻合。
     具体地说,第一章简要介绍了分数阶发展的概况和研究分数阶微分方程数值解法的实际意义。
     第二章讨论函数的分数阶可积性和分数阶可微性。主要给出了函数关于Riemann-Liouville积分意义下的分数阶可积性定理,关于Riemann-Liouville导数和Caputo导数意义下的分数阶可微性定理。
     第三章针对非线性空间分数阶Fokker-Planck方程,建立了有限元数值格式。时间方向采用差分格式,空间方向采用分数阶有限元格式,并对全局误差进行了理论分析。数值算例表明数值方法的可行性。
     第四章考虑的是非线性时空分数阶亚扩散和超扩散方程。在空间方向上,我们利用分数阶有限元方法来逼近;时间方向上,分别利用分数阶欧拉向后差分格式和分数阶中心差分格式来逼近亚扩散和超扩散问题。同时研究了弱解的存在唯一性、半离散格式的稳定性、以及半离散和全离散格式的误差估计。最后所给出的数值例子验证了前面的理论分析。并在数值模拟中,我们观察到了有趣的分数阶扩散现象。
     第五章为数值求解时空分数阶电报方程。在时间方向上我们同时使用分数阶欧拉向后差分格式和分数阶中心差分格式来逼近,在空间方向上使用分数阶有限元格式来逼近,建立了半离散格式和全离散格式,并给出了有限元理论分析。所给的数值例子验证了方法的可行性。
In this dissertation, the theory analysis for the fractional calculus and the finite element algorithms for three types of fractional partial differential equations are stud-ied. The first part focuses on the fractional integrability and differentiability of a given function, the second part deals with the finite element algorithms for the generalized nonlinear space fractional Fokker-Planck equation, the nonlinear time-space fractional differential equations with subdiffusion and superdiffusion, and the time-space frac-tional telegraph eqaution.
     In details, chapter II is devoted to discussing the fractional integrability and dif-ferentiability of the considered function, in the senses of Riemann-Liouville integral, Riemann-Liouville derivative and Caputo derivative, respectively. Important issues on these fractional integral and derivatives are also included.
     Chapter III is to formulate a fully discrete scheme to numerically solve the gener-alized nonlinear space fractional Fokker-Planck equation, which can be used to describe the Levy flights. The error estimates for the fully discrete scheme are derived in details. The numerical examples are also included which agree with the theoretical analysis.
     Chapter IV is to propose a new fractional finite element method for the nonlinear time-space fractional differential equations with subdiffusion and superdiffusion. The semi-discrete and fully discrete numerical approximations are both analyzed. In spatial direction, we use the fractional finite element method, and in temporal direction, we use the fractional finite difference methods. For the subdiffusion problem, we use the fractional Euler backword difference method. For the superdiffusion problem, we use the fractional center difference method. Results on the existence and uniqueness of the weak solutions, the numerical stability, and the error estimates are presented. Numerical examples are also included to confirm the theoretical analysis. During our simulations, an interesting fractional diffusion phenomenon of particles is also observed.
     Chapter V is to numerically study the time-space fractional telegraph equation, which has a multi-fractional order characteristically describing the random walks of the individual particles in the suspension flow, and the anomalous diffusion during the transmission of the voltage wave or the current wave. In temporal direction, we use the fractional difference method, including the fractional Euler backword difference scheme and the fractional center difference scheme. In spatial direction, we use the fractional finite element method. We derive the semi-discrete scheme and the fully discrete scheme separately for the considered equation. We prove the existence and uniqueness of the discrete solution and then derive the error estimates. The numerical results are inline with the theoretical results.
引文
[1]F. Mainardi, E. Bonetti, The application of real-order derivatives in linear viscoelasticity, Rheol. Acta 26 (1988), pp.64-67.
    [2]C.P. Li, G.J. Peng, Chaos in Chen's system with a fractional order, Chaos, Soli. Frac. 22 (2004), pp.443-450.
    [3]T.S. Zhou, C.P. Li, Synchronization in fractional-order differential systems, Phys. D 212 (2005), pp.111-125.
    [4]C.P. Li, W.H. Deng, D. Xu, Chaos synchronization of the Chua system with a fractional order, Phys. A 360 (2006), pp.171-185.
    [5]C.P. Li, W.H. Deng, Chaos synchronization of fractional-order differential systems, Int. J. Modern Phys. B 20 (2006), pp.791-803.
    [6]R. METZLER, J. KLAFTER, The random walk's guide to anomalous diffusion:A frac-tioanl dynamics approach, Phys. Rep.339 (2000), pp.1-77.
    [7]B. Mandelbrot, Some noises with 1/f spectrum, a bridge between direct current and white noise, IEEE Trans. Inform. Theory 13 (1967), pp.289-298.
    [8]M. Ichise, Y. Nagayanagi, T. Kojima, An analog simulation of non-integer order trans-fer functions for analysis of electrode processes, J. Electroanal. Chem. Interfacial Elec-trochem.33 (1971), pp.253-265.
    [9]H.H. Sun, A.A. Abdelwahab, B. Onaral, Linear approximation of transfer function with a pole of fractional order, IEEE Trans. Auto. Contr.29 (1984), pp.441-444.
    [10]S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives:Theory and Applications, Gordon and Breach Science Publishers, Amsterdam,1993.
    [11]K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differ-ential Equations, John Wiley &sons Inc., New York,1993.
    [12]A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theorey and applications of fractional dif-ferential equations, edited by J.V. Mill, Elsevier, Amsterdam,2006.
    [13]K.B. Oldham, J. Spanier, The Fractional Calculus:Theory and Applications of Differ-entiation and Integration to Arbitrary Order, New York, London,1974.
    [14]A.C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions, Res. Notes in Math., no.31, Pitman Press, San Franciso,1979.
    [15]R. Gorenflo, S. Vessella, Abel Integral Equations:Analysis and Applications in:Lecture Notes in Mathematics, Springer, Berlin Heidelberg,1991.
    [16]K. Nishimoto, An Essence of Nishimoto's Fractional Calculus, Descartes Press, Ko-riyama,1991.
    [17]S.M. Kenneth, R. Bertram, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience Publication, US,1993.
    [18]V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Math., no.301, longman, Harlow,1994.
    [19]B. Rubin, Fractional Integrals and Potentials, Pitman Monographs and Surveys in Pure and Applied Mathematics,82, Longman, Harlow,1996.
    [20]I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA,1999.
    [21]J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus, Springer-Verlag Berlin Heidelberg,2007.
    [22]S. Das, Functional Fractional Calculus for System Identification and Controls, Springer-Verlag Berlin Heidelberg,2008.
    [23]F. Biagini, Y.Z. Hu, B. Qksendal, T.S. Zhang, Stochastic Calculus for Fractional Brow-nian Motion and Application, Springer-Verlag Berlin Heidelberg,2008.
    [24]周激流,蒲亦非,廖科,分数阶微积分原理及其在现代信号分析与处理中的应用,科学出版社,ISBN 9787030267450,2010.
    [25]陈文,孙洪广,李西成,力学与工程问题的分数阶导数建模,科学出版社,ISBN9787030268570,2010.
    [26]G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl.135 (1988), pp.501-504.
    [27]G. Adomian, Solution of coupled nonlinear partial differential equations by decomposi-tion, Appl. Math. Comput.31 (1996), pp.117-120.
    [28]H.L. Arora, F.I. Abddwahidi, Solution of non-integer order differential equations via the Adomian decomposition method, Appl. Math. Lett.6 (1993), pp.21-23.
    [29]A.J. George, A. Chakrabarti, The Adomian method applied to some extraordinary dif-ferential equations, Appl. Math. Lett.8 (1993), pp.91-97.
    [30]C.P. Li, Y.H. Wang, Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput. Math. Appl.57 (2009), pp.1672-1681.
    [31]J.H. He, Asymptotology by homotopy perturbation method, Appl. Math. Comput.156 (2004), pp.591-529.
    [32]H. Jafari, S. Momani, Solving fractional diffusion and wave equations by modified homo-topy perturbation method, Phys. Lett. A 370 (2007), pp.388-396.
    [33]J.H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput.114(2000) pp.115-123.
    [34]S. Momani, Z. Odibat, V.S. Erturk, Generalized differential transform method for solving a space-and time-fractional diffusion-wave equation, Phys. Lett. A 370 (2007), pp.379-387.
    [35]C.P. Li, X.H. Dao, On the fractional Adams method, Comput. Math. Appl.58 (2009), pp.1573-1588.
    [36]K. Dithelm, An algorithm for the numeicial solution of differential equations of fractional order, Elec. Tran. Numer. Anal.5 (1997), pp.1-6.
    [37]K. Dithelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonl. Dyn.29 (2002), pp.3-22.
    [38]C.P. Li, A. Chen, J.J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys.239 (2011), pp.3352-3368.
    [39]R. Gorenflo, E.A. Abdel-Rehim, Convergence of the Grunwald-Letnikov scheme for time-fractional diffusion, J. Comput. Appl. Math.205 (2007), pp.871-881.
    [40]F. Liu, V. Anh, I. Turner, P. Zhuang, Time fractional advection dispersion equation, J. Appl. Math. Comput.13 (2003), pp.233-245.
    [41]M.M. Meerschaert, Charles Tadjeran, Finite difference approxiamtion for two-sided space-fractional partial differential equations, J. Appl. Math.56 (2006), pp.80-90.
    [42]S.B. Yuste, L. Acedo, An explicit finite difference method and a new von Numann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal.42 (2005), pp.1862-1874.
    [43]J.S. Liang, Y.Q. Chen, Hybrid symbolic and numerical simulation studies of time-fractional order wave-diffusion systems, Int. J. Control 79 (2006), pp.1462-1470.
    [44]C. Tadjeran, M.M. Meerschaert, A second order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys.220 (2007), pp.813-823.
    [45]M.S. Tavazoei, M. Haeri, S. Bolouki, M. Siami, Stability preservation analysis for frequency-based methods in numerical simulation of fractional order systems, SIAM J. Numer. Anal.47 (2008), pp.321-338.
    [46]P. Zhuang, F. Liu, V. Anh, I. Turner, New solution and analytical techniques of the implicit numerical method for the sub-diffusion equation, SIAM J. Numer. Anal.46 (2008), pp.1079-1095.
    [47]X.J. Li, C.J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal.47 (2009), pp.2108-2131.
    [48]G.H. Gao, Z.Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys.230 (2011), pp.586-595.
    [49]Y.Y. Zheng, C.P. Li, Z.G. Zhao, A note on the finite element method for the space-fractional advection diffusion equation, Comput. Math. Appl.59 (2010), pp.1718-1726.
    [50]Y.Y. Zheng, C.P. Li, Z.G. Zhao, A fully discrete discontinuous Galerkin method for non-linear fractional Fokker-Planck equation, Mathematical Problems in Engineering 2010 (2010), Article ID:279038,26 pages, doi:10.1155/2010/279038.
    [51]G.J. Fix, J.P. Roop, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl.48 (2004), pp.1017-1033.
    [52]J.P. Roop, Computational aspects of FEM approximation of fractional advection dis-persion equations on bounded domains in R2, J. Comput. Appl. Math.193 (2006), pp. 243-268.
    [53]V.J. Ervin, J.P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in Rd, Numer. Meth. Partial Diff. Equ.23 (2006), pp.256-281.
    [54]V.J. Ervin, J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Meth. Partial Diff. Equ.22 (2006), pp.558-576.
    [55]V.J. Ervin, N. Heuer, J.P. Roop, Numerical approximation of a time dependent nonlin-ear, space-fractional diffusion equation, SIAM J. Numer. Anal.45 (2007), pp.572-591.
    [56]C.P. Li, Z.G. Zhao, Y.Q. Chen, Numerical approximation of nonlinear fractional differ-ential equations with subdiffusion and superdiffusion, Comput. Math. Appl. (2010),21 pages, doi:10.1016/j.camwa.2011.02.045.
    [57]李火林,关于分数阶积分与导数的性质,数学进展,6(1963),pp.187-190.
    [58]王斯雷,关于“分数阶积分与导数的性质”的一点注记,数学进展,3(1964),pp.346-348.
    [59]C.P. Li, W.H. Deng, G.R. Chen, Scaling attractors of fractional differential systems, Fractals 14 (2006), pp.303-313.
    [60]W.H. Deng, C.P. Li, J.H. Lu, Stability analysis of linear fractional differential systems with multiple time-delays, Nonl. Dyn.48 (2007), pp.409-416.
    [61]D.L. Qian, C.P. Li, R.P. Agarwal, et al., Stability analysis of fractional differential system with Riemann-Liouville derivative, Math. Comput. Model.52 (2010), pp.862-874.
    [62]C.P. Li, Z.Q. Gong, D.L. Qian, et al., On the bound of the Lyapunov exponents for the fractional differential systems, Chaos 20 (2010), pp.013127.
    [63]E.M. Stein, A. Zygmund, On the fractional differentiability of functions, Proc. London Math. Soc.14A (1965), pp.249-264.
    [64]N.H. Abel, Solution de quelques problemes a l'aide d'integrales definies, In Gesammelte mathematische Werke. Leipzig:Teubner,1 (1881), pp.11-27. (First publ. in Mag. Naturvidenkaberne 1 (1823))
    [65]N.H. Abel, Auflosung einer mechanischen Aufgabe, J. fur reine angew. Math.1 (1826), pp.153-157.
    [66]C.P. Li, Z.G. Zhao, Introduction to fractional integrability and differentiability, Eur. Phys. J. Special Topics,193 (2011), pp.5-26.
    [67]L. Tonelli, Su un problema di Abel, Anna. Math.99 (1928), pp.183-199.
    [68]J.D. Tamarkin, On integrable solutions of Abel's integral equation, Anna. Math. Ser.31 (1930), pp.219-229.
    [69]J. Liouville, Memoire sur quelques questions de geometrie et de mecanique, et sur un-nouveau genre de calculpour resoudre ces questions, J. l'Ecole Roy. Polytechn.13 (1832), pp.1-69.
    [70]J. Liouville, Memoire sur le calcul des differentielles a indices quelconques, Ibid. (1832), pp.71-162.
    [71]J. Liouville, Memoire sur I'integration de I'equation:(mx2+nx+p)d2y/d2+(qx+ pr)dy/dx+sy= 0 a laide des differentielles indices quelconques, Ibid. (1832), pp. 163-186.
    [72]J. Liouville, Memoire sur le theoreme des fonctions complementaires, J. fur reine angew. Math.11 (1834), pp.1-19.
    [73]J. Liouville, Memoire sur une formule d'analyse, Ibid.12 (1834), pp.273-287.
    [74]J. Liouville, Memoire sur l'usage que l'on peut faire de la formule de Fourier, dans le calcul des differentielles a indices quelconques, Ibid.13 (1835), pp.219-232.
    [75]J. Liouville, Memoire sur le changement de la variable independante dans le calcul des differentielles indices quelconques, J. l'Ecole Roy. Polytechn.15 (1835), pp.17-54.
    [76]J. Liouville, Memoire sur I'integration des equations differentielles a indices fraction-naires, Ibid.15 (1837), pp.58-84.
    [77]B. Riemann, Versuch einer allgemeinen auffassung der integration und differentiation, Gesammelte Mathematische Werke und Wissenschaftlicher (1876), pp.331-344.
    [78]A. Zygmund, A theorem on fractional derivatives, Duke Math. J.12 (1945), pp.455-464.
    [79]G.V. Welland, On the fractional differentiation of a function of several variables, Trans. Amer. Math. Soc.132 (1968), pp.487-500.
    [80]C.P. Li, D.L. Qian, Y.Q. Chen, On Riemann-Liouville and Caputo derivatives, Dis-crete Dynamics in Nature and Society, (2011), Article ID:562494,15 pages, doi: 10.1155/2011/562494.
    [81]K.M. Kolwankar, A.D. Gangal, Fractional differentiability of nowhere differentiable func-tions and dimension, Chaos 6 (1996), pp.505-513.
    [82]M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, Geophys. J. Roy. Astron. Soc.13 (1963), pp.529-539.
    [83]M. Caputo, Elasticita e Dissipazione (Zanichelli, Bologna,1969)
    [84]A.M.A. El-Sayed, Multivalued fractional differential equations, Appl. Math. Comput.80 (1994), pp.1-11.
    [85]A.M.A. El-Sayed, Fractional order evolution equations, J. Frac. Calc.7 (1995), pp.89-100.
    [86]邓伟华,分数阶微分方程的理论分析与数值计算,上海大学博士论文,2007.
    [87]F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Soli. Frac.7 (1996), pp.1461-1477.
    [88]R. Gorenflo, F. Mainardi, Fractional Calculus:Integral and Differential Equations of Fractional Order, in A. Carpinteri and F. Mainardi (Editors):Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, (1997) pp.223-276.
    [89]F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time frac-tional diffusion equation, Frac. Calc. Appl. Anal.4 (2001), pp.153-192.
    [90]F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation processes:a tutorial survey, Frac. Calc. Appl. Anal.10 (2007), pp.269-308.
    [91]F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London,2010.
    [92]C.P. Li, W.H. Deng, Remarks on fractional derivatives, Appl. Math. Comp.187 (2007), pp.777-784.
    [93]C.P. Li, X.H. Dao, P. Guo, Fractional derivatives in complex plane, Nonl. Anal. TMA 71 (2009), pp.1857-1869.
    [94]M.F. Shlesinger, B.J. West, J. Klafter, Levy dynamics of enhanced diffusion:Application to turbulence, Phys. Rev. Lett.58 (1987), pp.1100-1103.
    [95]M.M. Meerschaert, D. Benson, B. Baumer, Multidimensional advection and fractional dispersion, Phys. Rev. E 59 (1999), pp.5026-5028.
    [96]D.A. Benson, S.W. Wheatcraft, M.M. Meerschaeert, The fractional order governing equations of Levy motion, Water Resour. Res.36 (2000), pp.1413-1423.
    [97]B. Baeumer, M.M. Meerschaert, J. Mortensen, Space-time fractional derivative operator, Proceedings of the American Mathematical Society,133 (2005), pp.2273-2282.
    [98]M. Bologna, C. Tsallis, P. Grigolini, Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation, Phys. Rev. E 62 (2000), pp.2213-2218.
    [99 J.R. Liang, F.Y. Ren, W.Y. Qiu, J.B. Xiao, Exact solution for nonlinear fractional anomalous diffusion equations, J. Phys. A 385 (2007), pp.80-94.
    [100]T.A. Hewett, Fractal Distributions of Reservoir Heterogeneity and their Influence on Fluid Transport, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana,1986.
    [101]C. Tsallis, E.K. Lenzi, Anomalous diffusion:nonlinear fractional Fokker-Planck equa-tion, Chem. Phys.284 (2002), pp.341-347.
    [102]E.K. Lenzi, G.A. Mendes, R.S. Mendes, L.R. da Silva, L.S. Lucena, Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption, Phys. Rev. E 67 (2003), pp.051109.
    [103]E.K. Lenzi, R.S. Mendes, L.C. Malacarne, I.T. Pedron, Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions, Phys. A 319 (2003), pp.245-252.
    [104]E.K. Lenzi, R.S. Mendes, K.S. Fa, L.C. Malacarne, Anomalous diffusion:Frational Fokker-Planck equation and its solutions, J. Math. Phys.44 (2003), pp.2179-2185.
    [105]M.K. Lenzi, E.K. Lenzi, M.F. Andrade, L.R. Evangelista, L.R. da Silva, Fractional nonlinear diffusion equation:exact solutions, Phys. A 385 (2006), pp.80-94.
    [106]S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, Berlin,1994.
    [107]J.G. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, Part IV:Error analysis for the second-order time discrezation, SIAM J. Numer. Anal.27 (1990), pp.353-384.
    [108]J. Reif, R. Barakat, Numerical solution of the Fokker-Planck equation via Chebyschev polynomiations with reference to first passage time probability density functions, J. Com-put. Phys.23 (1997), pp.425-445.
    [109]W. Wyss, The fractional diffusion equation, J. Math. Phys.27 (1986), pp.2782-2785.
    [110]M.E. Gurtin, A.C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal.31 (1968), pp.113-126.
    [111]P.J. Chen, M.E. Gurtin, On Second sound in materials with memory, ZAMP.21 (1970), pp.232-241.
    [112]T.B. Moodi, R.J. Tait, On the thermal transients with finite wave speeds, Acta Mech. 50 (1983), pp.97-104.
    [113]F.R. Norwood, Transient thermal waves in the general theory of heat conduction with finite wave speeds, J. Appl. Mech.39 (1972), pp.673-676.
    [114]A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation, J. Elast.31 (1993), pp.189-208.
    [115 D.S. Chandrasekharaiah, Thermoelasticity with second sound:a review, Appl. Mech. Rev.39 (1986), pp.355-376.
    [116]Y.Z. Povstenko, Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equa-tion, J. Solids and Stru.44 (2007), pp.2324-2348.
    [117]P. Inizan, Fractional traps& frational dynamics, Dynamiques Practionnaires et Appli-cations, Pau,2010.
    [118]P. Biler, W.A. Woyczynski, Global and exploding solutions for nonlocal quadratic evo-lution problems, SIAM J. Appl. Math.59 (1998), pp.845-869.
    [119]N. Sugimoto, Burgers equation with a fractional derivative:hereditary effects on non-linear acoustic waves, J. Fluid Mech.225 (1991), pp.631-653.
    [120]Y. Lin, C.J. Xu, Finite difference/spectral approximations for the time-fractional diffu-sion equation, J. Comput. Phys.225 (2007), pp.1533-1552.
    [121]R.A. Adams, Sobolev Space, Academic Press, the second press, New York,2003.
    [122]O.P. Agrawal, Solution for a fractional difusion-wave equation defined in a bounded domain, Nonl. Dyn.29 (2002), pp.145-155.
    [123]张艳珠,薛定宇,一类时间分数阶传输线模型及仿真分析,东北大学学报(自然科学版),29(2008),pp.170-173.
    [124]E.C. Eckstein, J.A. Goldstein, M. Leggas, The mathematics of suspensions:kac walks and asymptotic analyticity, Fourth Mississippi State Conference on Differential Equa-tions and Computational Simulations, Electronic Journal of Differential Equations 3, (1999), pp.39-50.
    [125]E.C. Eckstein, M. Leggas, B. Ma, J.A. Goldstein, Linking theory and measurements of tracer particle position in suspension flows, Proc. ASME Fluids Engineering Division Summer Meeting 251 (2000), pp.1-8.
    [126]R.C. Cascaval, E.C. Eckstein, C.L. Frota, J.A. Goldstein, Fractional telegraph equa-tions, J. Math. Anal. Appl.276 (2002), pp.145-159.
    [127]E. Orssingher, X. Zhao, The space fractional telegraph equation and the related tele-graph process, Chinese Ann. Math.24B (2003), pp.45-56.
    [128]E. Orssingher, L. Beghin, Time fractional telegraph equation and telegraph process with brownian time, Probabilty Theory Related Fields 128 (2004), pp.141-160.
    [129]S. Momani, Analytic and approximate solutions of the space and time fractional tele-graph equations, Appl. Math. Comput.170 (2005), pp.1126-1134.
    [130]J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl.338 (2008), pp.1364-1377.
    [131]M. Dehghan, S.A. Yousefi, A. Lotfi, The use of He's variational iteration method for solving the telegraph and fractional telegraph equations, Int. J. Numer. Meth. Biomed. Engng.27 (2011), pp.219-231.
    [132]R. Figueiredo Camargo, A.O. Chiacchio, E. Capelas de Oliveira, Differentiation to fractional orders and the fractional telegraph equation, J. Math. Phys.49 (2008), pp. 033505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700