用户名: 密码: 验证码:
贝氏隐孢子虫鸡胚气管组织培养模型建立与初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贝氏隐孢子虫(Crptosporidium baileyi,C. baileyi)是世界各地禽类感染的优势虫种,可感染30多种禽类,导致雏鸡较高发病率和一定死亡率,研究者通过扫描电镜观察发现在感染雏鸡气管上皮细胞上粘附有大量各发育阶段虫体,可引起禽类严重呼吸道感染。更重要的是C. baileyi可污染环境并通过水、食物、空气传播。有研究表明在中国上海生活废水中已发现C. baileyi卵囊。C. baileyi卵囊对环境抵抗力很强,保存在4℃2.5%重铬酸钾溶液中18个月的卵囊仍可引起雏鸡明显感染。目前,对于隐孢子虫病尚无有效防控药物,研究表明抗球虫药物单独或联合使用均不能减轻或治疗由该病原引起的呼吸道症状。此外,通过免疫印迹和免疫荧光检测,C. baileyi和C. parvum在抗原上的相似性高于C. muris。因此,研究C. baileyi具有重要的医学和兽医学价值,并且对C. baileyi生物学等特性研究可作为其他隐孢虫研究模型。雏鸡感染C. baileyi后繁殖大量卵囊用于生物学试验研究,有助于阐明C. parvum的生物学特性。
     自1983年开始,人们开始尝试体外培养隐孢子虫,但至目前为止,关于禽类隐孢子虫体外细胞培养研究较少。有研究证明:完整的C. baileyi体外发育只在鸡、火鸡、鸭、鹧鸪、鹌鹑胚内完成。由于在实验感染雏鸡呼吸道内通过电镜观察可看到C. baileyi有性和无性内生发育阶段,并且C. baileyi在一些禽类和哺乳动物的原代细胞和一些哺乳动物传代细胞系内不发育,而在鸡胚内发育但不利于实验观察,所以本研究尝试用鸡胚气管组织培养模型培养C. baileyi。本试验将C. baileyi卵囊和子孢子混合物或子孢子接种鸡胚气管环,通过观察气管环接种虫体后纤毛摆动强弱、虫体内生发育过程,了解C. baileyi在鸡胚气管环培养模型中虫体的发育状况及繁殖数量,并建立了鸡胚气管环体外培养模型中C. baileyi SYBR GreenⅠ实时定量PCR检测方法。此外,应用建立的气管环培养体系试验性比较了硝唑尼特(Nitazoxanide, NTZ)和巴龙霉素(Paromomycin ,PRM)对气管环和鸡胚培养模型中C. baileyi的作用,为今后研究C. baileyi毒力、感染性、代谢途径、内源和外源基因表达、治疗药物筛选等奠定了基础。
     一、C. baileyi卵囊纯化、脱囊技术研究
     将自河南林州自然感染隐孢子虫病鸡分离的虫体基于18S rRNA基因巢式PCR-RFLP鉴定后卵囊经雏鸡传代扩增。将鸡粪收集混匀,采用饱和蔗糖溶液漂浮法收集卵囊,用1:1.2、1:1.5、1:2三个梯度不连续蔗糖溶液密度梯度离心法(饱和蔗糖溶液和蒸馏水的体积比)进行纯化。纯化后卵囊用0.5%商用次氯酸钠(PBS工作液10倍稀释)4℃处理10 min后用灭菌并含200 IU/mL双抗的PBS工作液无菌清洗4次除去次氯酸钠,加入含200 IU/mL双抗的DMEM培养基计数后用于气管环培养。同时,本试验比较了由不同浓度胰酶和胆酸盐组成的5种脱囊液分别在38~40℃水浴中脱囊不同时间的脱囊率。子孢子用孔径为5μm双层聚碳酸酯过滤纯化,血细胞计数板计数后使用。结果显示:用1:1.2、1:1.5、1:2(2次)蔗糖溶液纯化的贝氏隐孢子虫卵囊在不含胰酶和胆酸盐的DMEM培养液中40℃水浴脱囊率最高,达77%。
     二、C. baileyi鸡胚气管环体外培养模型建立
     将C. baileyi卵囊和子孢子感染鸡胚气管环,气管环置于24孔培养板内,每孔1个环,每孔加1mL含2.5%热灭活血清DMEM培养液,于40℃5% CO2培养,每组10个气管环。第Ⅰ组接种约5×104个C. baileyi卵囊40℃水浴脱囊后混合物,第Ⅱ、Ⅲ、Ⅳ组分别接种5×105、1×106、2×106个纯化子孢子,第Ⅴ组不接种虫体作为空白对照。经过特定时间培养后结果显示:(1)鸡胚气管环感染鸡源贝氏隐孢子虫后6~9 d,各感染组(第Ⅰ、Ⅱ、Ⅲ、Ⅳ组)气管环纤毛脱落明显比空白对照组多,纤毛摆动活性减弱。统计结果显示:各感染组气管环纤毛上皮细胞纤毛摆动相对活力与空白对照组比较有统计学意义(P<0.05)。(2)接种虫体后第4 d,在第Ⅰ、Ⅱ、Ⅲ、Ⅳ各感染组培养液内发现平均大小为6.5μm×0.9μm的子孢子或裂殖子样左右摆动虫体。接种虫体后第6 d,可观察到平均大小约为3.5μm×3.5μm的裂殖体样虫体。在接种子孢子的第Ⅱ、Ⅲ、Ⅳ各感染组培养液内没有发现新生卵囊(第Ⅰ组因接种卵囊脱囊后混合物未进行观察)。(3)通过电镜和间接免疫荧光检查发现:虫体寄生在气管环纤毛上皮细胞边缘,虫体寄生部位纤毛倒伏,甚至脱落,通过PCR-RFLP分析寄生虫体为C. baileyi。
     三、鸡胚气管环体外培养模型中C. baileyi SYBR GreenⅠ实时定量PCR检测方法建立
     为了测定鸡胚气管环体外培养模型中C. baileyi发育动态,并评价硝唑尼特(NTZ)和巴龙霉素(PRM)对该培养体系中C. baileyi的作用,本试验建立了鸡胚气管环体外培养模型中C. baileyi SYBR GreenⅠ实时定量PCR检测方法。该方法同时测定虫体和鸡胚气管环组织细胞18S rRNA基因,采用相对定量法计算组织细胞中虫体相对量。具体为将约5×104 C. baileyi个卵囊40℃水浴脱囊后混合物接种于培养在24孔培养板内鸡胚气管环,每孔1个环,加1 mL含2.5%热灭活血清DMEM培养液于40℃5% CO2培养。分别提取接种后3 h、6 h、12 h、24 h、48 h、72 h、96 h、120 h、144 h、168 h、192h、240 h以及NTZ和PRM作用后72 h、96 h、120 h、168 h气管环细胞基因组DNA,应用实时定量PCR检测方法测定虫体繁殖水平。结果显示:C. baileyi感染鸡胚气管环后72~96 h虫体量最高,96 h以后虫体量开始明显下降。NTZ和PRM对鸡胚气管环培养模型中C. baileyi具有一定抑制作用,且这2种药物的抑制作用强度差异具有统计学意义(P<0.05)。
     四、鸡胚培养模型中NTZ和PRM抗C. baileyi活性研究
     为了探讨NTZ和PRM对鸡胚培养模型中C. baileyi的作用,将10日龄SPF鸡胚每枚接种3×105个C. baileyi卵囊,每组10枚鸡胚,40℃培养7 d,每天记录鸡胚和虫体的发育及虫体数量来评价NTZ和PRM在鸡胚培养模型中抗隐孢子活性。结果表明:每枚鸡胚分别加入125μg NTZ和10 mg PRM,感染168 h后尿囊液中平均卵囊数分别为对照组的0.33% (0.04/12.11),2.48% (0.30/12.11),NTZ和PRM对鸡胚培养模型中C. baileyi抑制作用效果不同于气管环培养模型中效果,且药效差异比较具有统计学意义(P<0.01)。
Cryptosporidium baileyi is one of three avian Cryptosporidium spp., and probably the most common avian species, it has been reported in a wide range of avian hosts. Sexual stages of C. baileyi were seen attached to the tracheal epithelium and free in the tracheal lumen by Scanning electron microscopy, which can cause severe respiratory infections. and result in high morbidity and mortality of birds, especially broiler chickens. More importantly , C. baileyi is an ubiquitous contaminant of water and food which serves as an excellent vehicle for transmission and C. baileyi oocysts have been identified in domestic wastewater in Shanghai, China. C. baileyi oocysts appear to be environmentally robust as studies have shown that chickens inoculated with C. baileyi oocysts that had been stored in 2.5% potassium dichromate at 4℃for 1 to 18 months developed patent infections. At present, no effective chemotherapy is available for the treatment of avian cryptosporidiosis. Experimental studies have shown that most commonly used anticoccidials when used alone or in combination do not prevent or reduce respiratory disease in chickens inoculated with C. baileyi oocysts . Moreover, C. baileyi and C. parvum were more closely related antigenically to one another than to C. muris examined by western blotting and immunofluorescence, and is of medical and veterinary importance. To study characterization of C. baileyi can serve as a model for other species. Furthermore, chicken infected with C. baileyi can produce prodigious numbers of oocysts, which can be used for experimental study and developed in C. parvum or other species.
     Since 1983, attempts have been made to cultivate Cryptosporidium species in vitro, yet, Little research has been conducted on the cell culture of avian Cryptosporidium species. Complete development of C. baileyi has only been described from the chorioallantoic membrane (CAM) of chicken, turkey, duck, partridge and quail embryos. Considering sexual development and other stages of C. baileyi were found in the respiratory tract of experimentally infected broiler chickens on an ultrastructural level , and C. baileyi had failed in development in primary cell from either avian or mammalian hosts, or in mammalian cell lines and the inconvenience observation of embryos cultivation model ,the cultivation in vitro with tracheal organ culture (TOC) for C. baileyi should be carried out.
     Here we report on a new method for cultivation of C.baileyi in vitro by inoculation infective oocysts and, or sporozoites to chick embryo tracheal rings, and a real-time qPCR-based with SYBR GreenⅠmethod has been introduced for assessment of C. baileyi cultured in chick embryo tracheal rings by detecting the level of parasite 18S rRNA gene. Comparative effecte of nitazoxanide (NTZ) and paromomycin(PRM) against C.baileyi cultured in chick embryo tracheal rings and cultured in chick embryo were carried out, respectively. The primary aim of this study was to produce in vitro culture models for C. baileyi in chick embryo tracheal organ, and also sought to determine precisely a variety of biological characteristics of this intracellular parasite. These findings will contribute to investigators for further study on its antigens, virulence, infectivity, metabolize, endogenous or exogenous gene expression, and assessing potential drug therapies.
     1. C. baileyi oocyst purification and excystation
     C.baileyi oocysts originally derived from naturally infected chicken, from Linzhou city, Henan province, China, genotyped according to the method described by Xiao et al based on nested polymerase chain reaction(PCR)analysis and sequencing of the 18S rRNA and subsequently been passaged through chicken. Chicken feces were homogenized and floated with Sheather’s solution and then applied to classical discontinuous sucrose gradient centrifugation to purify. Sheather’s solution was diluted with distilled water to yield 1:1.2, 1:1.5, 1:2 (Sheather’s solution : distilled water by volume =1:1.2, 1:1.5, 1:2respectively) solutions for use in density centrifugation with the modified method as previously described. The purified oocysts were“sanitized”with 0.5% sodium hypochlorite for 10min at 4°C and then washed 4 times (3000 r/min, 10 min) with PBS containing penicillin (200 IU/ml) and streptomycin (200 μg/ml). For chick embryo tracheal organ culture studies, five excystation protocols have been developed with different concentration trypsin and sodium taurocholate solution for the achievement of high excystation rates in water bath at 38-40°C. Sporozoites purified by filtration through double layer 5μm polycarbonate track etch membranes, followed by counting with hemocytometer. The results indicate that 77% excystation rate of C. baileyi oocysts purified with 1:1.2, 1:1.5, 1:2 Sheather’s solution can be reached incubated in free trypsin and sodium taurocholate DMEM culture medium for 90 min at 40℃.
     2. Producing in vitro culture models for C. baileyi in chicken embryo tracheal Organ
     The study describes the protocol of in vitro cultivation in chick embryo tracheal organ by oocysts or sporozoites of C. baileyi. Approximately 5×104 sporozoites and oocysts mixture for groupⅠ, 5×105, 1×106 , 2×106 purified sporozoites for groupⅡ, groupⅢand groupⅣ, were inoculated respectively into one chick embryo tracheal ring maintained in DMEM supplemented with 2.5% heat-inactivated FBS ,and cultured in one well(with 1ml medium)of the 24-well culture plate at 40℃in 5% CO2. groupⅤt hat received no parasites was included in each experiment. Ten rings were used in each group for different investigation.
     After the given time cultivation, the results showed that:(1) In infection group (groupⅠ, groupⅡ, groupⅢ, groupⅣ), parasite caused significant ciliostasis and loss of cilia (P < 0.05) when compared with control group 6-9 days post inoculation of tracheal rings. (2) Sporozoite or merozoite-like with an average size 6.5×0.9μm and type I or II meronts–like with 3.4×3.4μm in diameter appeared in the medium 4-6d post inoculation, no newly formed oocysts were observed in sporozoites infection group medium(3)The parasites budded on the epithelial cell membrane and loss of cilia induced by C.baileyi in infected group by electron microscopy,indirect immunofluorescence and PCR-RFLP analysis.
     3. Application of quantitative real-time PCR in assessing drug efficacy against the C.baileyi in chick embryo tracheal organ cultures
     A real time quantitative PCR (q-PCR) was developed for assessing the C.baileyi infection of in vitro cultivated chick embryo tracheal organ cultures and verifying efficacy of nitazoxanide (NTZ) and paromomycin(PRM) against C.baileyi. The q-PCR assay detects 18S rRNA gene from both parasites and chick embryo tracheal organ , and evaluates the relative expression between parasite and host rRNA gene levels to minimize experimental and operational errors. Approximately 5×104 C.baileyi oocysts were inoculated into one chick embryo tracheal ring maintained in DMEM supplemented with 2.5% heat-inactivated FBS ,and each cultured in one well of the 24-well culture plate at 40℃in 5% CO2. In order to estimate efficacy of washing steps, negative controls that received equally parasites thermally inactivated at 80℃for 10 min were included in each experiment. The genomic DNA were extracted at 3, 6, 12, 24, 48, 72, 96, 120, 144 , 168, 192, 216 and 240 h ,and at 72, 96, 120 and 168 h incubated with NTZ and PRM post inoculation (P.i)and subjected to qPCR targeting the 18SrRNA gene to quantify the development of C.baileyi. The results indicate that qPCR analysis revealed the highest amplification of parasite DNA at 72-96 h P.i , the growth of parasites apparently starts to decline after cultivation in vitro for 96 h or longer. Both compounds displayed inhibitions, and there are statistically significant differences between NTZ and PRM(P<0.05).
     4. Evaluation of curative anticryptosporidial activity of NTZ and PRM of Potential Drugs in Chick Embryo and Chicken
     To explore the effect of oocyst multiplication and pathogenicity of Cryptosporidium baileyi from chicken in chick embryo by NTZ and PRM, ten 10-day-old specific pathogen free chick embryos of each group were inoculated with C.baileyi oocysts (3×105oocysts/embryo)and incubated at 40℃up to 7 days. The develepment of chick embryo and C. baileyi were both evaluated , and the quantity of oocyst in chick embryo were counted at 24-hour intervals . The anticryptosporidial activity of NTZ and PRM were observed in chick embryo infected artificially with C. baileyi oocyst from chicken. The results showed that the number of oocysts in chick embryo treated with NTZ or PRM(125μg NTZ or 10mg PRM per chick embry)in comparison to control is 0.33% (0.04/12.11),2.48% (0.30/12.11) at 168 h post innoculation, respectively. Drug Efficacy against the intracellular pathogen C. baileyi cultured in chick embryo is significantly different to that cultured in chick embryo tracheal rings(P<0.01).
引文
[1] Fayer R, Xiao L. Cryptosporidium and Cryptosporidiosis(second edition) [M]. New York, USA. : CRC Press,Taylor & Francis Group, 2008.
    [2] Xiao L, Fayer R, Ryan U, et al. Cryptosporidium taxonomy: recent advances and implications for public health[J].Clin Microbiol Rev,2004, 17(1): 72-97.
    [3] Xiao L, Fayer R. Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission[J].Int J Parasitol,2008, 38(11): 1239-1255.
    [4] Feng Y, Dearen T, Cama V, et al. 90-kilodalton heat shock protein, Hsp90, as a target for genotyping Cryptosporidium spp. known to infect humans[J].Eukaryot Cell,2009, 8(4): 478- 482.
    [5] Fayer R, Santin M. Cryptosporidium xiaoin. sp. (Apicomplexa: Cryptosporidiidae) in sheep (Ovis aries)[J].Vet Parasitol,2009,164(2-4):192-200.
    [6] Egyed Z, Sreter T, Szell Z, et al. Polyphasic typing of Cryptosporidium baileyi: a suggested model for characterization of cryptosporidia[J].J Parasitol,2002, 88(2): 237-243.
    [7] Woodmansee DB, Pohlenz, J.F.L.. Development of Cryptosporidium sp. in a human rectal tumor cell line in Proc. 4th Int. Symp. on Neonatal Diarrhea[J].Vet Infect Dis Org (VIDO),1983, 306-319.
    [8] Ryan UM, Power M, Xiao L. Cryptosporidium fayeri n. sp. (Apicomplexa: Cryptosporidiidae) from the Red Kangaroo (Macropus rufus)[J].J Eukaryot Microbiol,2008, 55(1): 22-26.
    [9] Power ML, Ryan UM. A new species of Cryptosporidium (Apicomplexa: Cryptosporidiidae) from eastern grey kangaroos (Macropus giganteus)[J].J Parasitol,2008, 94(5): 1114-1117.
    [10] Fayer R, Santin M, Trout JM. Cryptosporidium ryanae n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus)[J].Vet Parasitol,2008, 156(3-4): 191-198.
    [11] Jirku M, Valigurova A, Koudela B, et al. New species of Cryptosporidium Tyzzer, 1907 (Apicomplexa) from amphibian host: morphology, biology and phylogeny[J].Folia Parasitol (Praha),2008, 55(2): 81-94.
    [12] Lumb R, Smith K, O'Donoghue PJ, et al. Ultrastructure of the attachment of Cryptosporidium sporozoites to tissue culture cells[J].Parasitol Res,1988, 74(6): 531-536.
    [13] Hijjawi NS, Meloni BP, Ng'anzo M, et al. Complete development of Cryptosporidium parvum in host cell-free culture[J].Int J Parasitol,2004, 34(7): 769-777.
    [14] Current WL, Long PL. Development of human and calf Cryptosporidium in chicken embryos [J].J Infect Dis,1983, 148(6): 1108-1113.
    [15] Current WL, Haynes TB. Complete development of Cryptosporidium in cell culture [J]. Science,1984, 224(4649): 603-605.
    [16] Naciri M, Yvore P, de Boissieu C, et al. Multiplication de Cryptosporidium muris (Tyzzer1907) in vitro entretien d’une souche sur oeufs embryonne[J].Rec Med Vet,1986, 162(51-56).
    [17] Datry A, Danis M, Gentilini M. Développement complet de Cryptosporidium en culture cellulaire:applications[J].Méd Sci,1989, (5) :762-766.
    [18] McDonald V, Stables R, Warhurst DC, et al. In vitro cultivation of Cryptosporidium parvum and screening for anticryptosporidial drugs[J].Antimicrob Agents Chemother,1990, 34(8): 1498-1500.
    [19] Griffiths JK, Moore R, Dooley S, et al. Cryptosporidium parvum infection of Caco-2 cell monolayers induces an apical monolayer defect, selectively increases transmonolayer permeability, and causes epithelial cell death[J].Infect Immun,1994, 62(10): 4506-4514.
    [20] Lawton P, Naciri M, Mancassola R, et al. In vitro cultivation of Cryptosporidium parvum in the non-adherent human monocytic THP-1 cell line[J].J Eukaryot Microbiol,1997, 44(6): 66S.
    [21] Akiyoshi DE, Dilo J, Pearson C, et al. Characterization of Cryptosporidium meleagridis of human origin passaged through different host species[J].Infect Immun,2003, 71(4): 1828-1832.
    [22] Dawson DJ, Samuel CM, Scrannage V, et al. Survival of Cryptosporidium species in environments relevant to foods and beverages[J].J Appl Microbiol,2004, 96(6): 1222-1229.
    [23] Hijjawi N, Estcourt A, Yang R, et al. Complete development and multiplication of Cryptosporidium hominis in cell-free culture[J].Vet Parasitol,2010,169(1-2):29-36.
    [24] Lindsay DS, Sundermann CA, Blagburn BL. Cultivation of Cryptosporidium baileyi: studies with cell cultures, avian embryos, and pathogenicity of chicken embryo-passaged oocysts[J].J Parasitol,1988, 74(2): 288-293.
    [25]赵亚荣,宋生贵,张晋英,等.贝氏隐孢子虫在鸡胚绒毛CAM上发育过程的研究[J].中国农业科学,1995, 28(6): 83-89.
    [26]张西臣,胡力生,李得昌.免的隐孢子虫在鸡胚上培养成功[J].中国兽医学报,1990, 10(2): 117.
    [27]张西臣.鼠大型隐孢子虫和兔的隐孢子虫在人胚肺细胞上培养成功[J].中国兽医学报1990, 10(2): 110.
    [28] Flanigan TP, Aji T, Marshall R, et al. Asexual development of Cryptosporidium parvum within a differentiated human enterocyte cell line[J].Infect Immun,1991, 59(1): 234-239.
    [29] Gut J, Petersen C, Nelson R, et al. Cryptosporidium parvum: in vitro cultivation in Madin-Darby canine kidney cells[J].J Protozool,1991, 38(6): 72S-73S.
    [30] Kuhls TL, Mosier DA, Crawford DL. Effects of carbohydrates and lectins on cryptosporidial sporozoite penetration of cultured cell monolayers[J].J Protozool,1991, 38(6): 74S-76S.
    [31] Rasmussen KR, Larsen NC, Healey MC. Complete development of Cryptosporidium parvum in a human endometrial carcinoma cell line[J].Infect Immun,1993, 61(4): 1482-1485.
    [32] Arrowood MJ, Xie LT, Hurd MR. In vitro assays of maduramicin activity against Cryptosporidium parvum[J].J Eukaryot Microbiol,1994, 41(5): 23S.
    [33] Adams RB, Guerrant RL, Zu S, et al. Cryptosporidium parvum infection of intestinal epithelium: morphologic and functional studies in an in vitro model[J].J Infect Dis,1994, 169(1): 170-177.
    [34] Yang S, Healey MC, Du C, et al. Complete development of Cryptosporidium parvum in bovine fallopian tube epithelial cells[J].Infect Immun,1996, 64(1): 349-354.
    [35] Deng MQ, Cliver DO. Cryptosporidium parvum development in the BS-C-1 cell line[J].J Parasitol,1998, 84(1): 8-15.
    [36]黄克和,杨世广,唐建霞.从感染小鼠获得微小隐孢子虫卵囊方法的改进[J].中国寄生虫学与寄生虫病杂志,2001, 19(6): 360-362.
    [37] Hijjawi NS, Meloni BP, Ryan UM, et al. Successful in vitro cultivation of Cryptosporidium andersoni: evidence for the existence of novel extracellular stages in the life cycle and implications for the classification of Cryptosporidium[J].Int J Parasitol,2002, 32(14): 1719-1726.
    [38] Rosales MJ, Cordon GP, Moreno MS, et al. Extracellular like-gregarine stages of Cryptosporidium parvum[J].Acta Trop,2005, 95(1): 74-78.
    [39] Girouard D, Gallant J, Akiyoshi DE, et al. Failure to propagate Cryptosporidium spp. in cell-free culture[J].J Parasitol,2006, 92(2): 399-400.
    [40] Perez Cordon G, Marin C, Romero D, et al. More productive in vitro culture of Cryptosporidium parvum for better study of the intra- and extracellular phases[J].Mem Inst Oswaldo Cruz,2007, 102(5): 567-571.
    [41] Zhang L, Sheoran AS, Widmer G. Cryptosporidium parvum DNA replication in cell-free culture[J].J Parasitol,2009, 95(5): 1239-1242.
    [42] Hijjawi N. Cryptosporidium: new developments in cell culture[J].Exp Parasitol,2010, 124(1): 54-60.
    [43] Sampaolo CL, Sampaolo G. Differentiation in organ specific culture of embryonic chick trachea [J]. Boll Soc Ital Biol Sper,1957, 33(1-2): 173-176.
    [44] Colwell WM, Lukert PD. Effects of avian infectious bronchitis virus (IBV) on tracheal organ cultures[J].Avian Dis,1969, 13(4): 888-894.
    [45] Cherry JD, Taylor-Robinson D. Large-quantity production of chicken embryo tracheal organ cultures and use in virus and mycoplasma studies[J].Appl Microbiol,1970, 19(4): 658-662.
    [46] Cherry JD, Taylor-Robinson D. Growth and Pathogenesis of Mycoplasma mycoides var. capri in Chicken Embryo Tracheal Organ Cultures[J].Infect Immun,1970, 2(4): 431-438.
    [47] Hamdy AH, Blanchard CJ. In vitro activity of lincomycin and spectinomycin against serotypes of avian mycoplasma[J].Appl Microbiol,1970, 20(1): 26-30.
    [48] Cherry JD, Roden VJ, Rejent AJ, et al. The inhibition of ciliary activity in tracheal organ cultures by sera from children with cystic fibrosis and control subjects[J].J Pediatr,1971, 79(6): 937-942.
    [49] Blaskovic P, Rhodes AJ, Doane FW, et al. Infection of chick embryo tracheal organ cultures with influenza A2 (Hong Kong) virus. II. Electron microscopy[J].Arch Gesamte Virusforsch, 1972, 38(2): 250-266.
    [50] Higgins PG, Ellis EM. The isolation of influenza viruses[J].J Clin Pathol,1972, 25(6): 521-524.
    [51] Carney FE, Jr., Taylor-Robinson D. Growth and effect of Neisseria gonorrhoeae in organ cultures[J].Br J Vener Dis,1973, 49(5): 435-440.
    [52] Cummiskey JF, Hallum JV, Skinner MS, et al. Persistent Newcastle disease virus infection in embryonic chicken tracheal organ cultures[J].Infect Immun,1973, 8(4): 657-664.
    [53] Iida T, Ajiki Y. Growth characteristics of Bordetella pertussis in the chick tracheal organ culture[J].Jpn J Microbiol,1974, 18(2): 119-126.
    [54] Denny FW. Effect of a toxin produced by Haemophilus influenzae on ciliated respiratory epithelium[J].J Infect Dis,1974, 129(2): 93-100.
    [55] Stetsenko OG, Baizhomartov MS, Irzhanov SD. Comparative evaluation of the sensitivity to Mycoplasma pneumoniae of organ cultures of the trachea and lungs of certain animals[J].Zh Mikrobiol Epidemiol Immunobiol,1976, (6): 44-46.
    [56] Atherton JG, Kratzing CC, Fisher A. The effect of ascorbic acid on infection chick-embryo ciliated tracheal organ cultures by coronavirus[J].Arch Virol,1978, 56(3): 195-199.
    [57] Ide PR. Sensitivity and specificity of the fluorescent antibody technique for detection of infectious laryngotracheitis virus[J].Can J Comp Med,1978, 42(1): 54-62.
    [58] Gerganov G, Surtmadzhiev K. Cultivation of various avian viruses in pheasant trachea organ cultures and chick embryos[J].Vet Med Nauki,1982, 19(2): 18-24.
    [59] Cook JK, Ellis MM. Attenuation of turkey rhinotracheitis virus by alternative passage in embryonated chicken eggs and tracheal organ cultures[J].Avian Pathol,1990, 19(1): 181-185.
    [60] Blaskovic P, Rhodes AJ, Labzoffsky NA. Combined cell and organ culture for isolation of influenza A2 viruses. Brief report[J].Arch Gesamte Virusforsch,1972, 39(1): 299-302.
    [61] Blaskovic P, Rhodes AJ, Labzoffsky NA. Infection of chick embryo tracheal organ cultures with influenza A2 (Hong Kong) virus. I. Cytopathology, histopathology, immunofluorescence, hemadsorption, and titration of the released infectious progeny virus[J].Arch Gesamte Virusforsch,1972, 37(1): 104-113.
    [62] Neumann U, Kaleta EF. Detection of Newcastle disease virus in chicken tracheal organ cultures by the fluorescent antibody technique and by the embryonated egg method[J].Avian Pathol,1975, 4(3): 227-232.
    [63] Merritt SN, Maassab HF. Characteristics of a live avian influenza virus[J].Health Lab Sci,1977, 14(2): 122-125.
    [64] Darbyshire JH. Assessment of cross-immunity dm chickens to strains of avian infectious bronchitis virus using tracheal organ cultures[J].Avian Pathol,1980, 9(2): 179-184.
    [65] Takagi H, Arakawa A. The growth and cilia-stopping effect of Mycoplasma gallisepticum 1RF in chicken tracheal organ cultures[J].Res Vet Sci,1980, 28(1): 80-86.
    [66] Nicholas RA, Wood GW, Thornton DH. Comparison of techniques for the detection of avian infectious bronchitis virus as a contaminant of vaccines[J].J Biol Stand,1983, 11(1): 75-81.
    [67]江国托,王永坤.气管环组织培养中和试验及间接血凝试验检测鸡传染性支气管炎病毒[J].中国畜禽传染病,1996, (2): 45-48.
    [68]吴延功,王永玲.应用气管环组织培养鉴定肾型传染性支气管炎病毒[J].中国兽医杂志,1996, 22(4): 16-18.
    [69]吴全忠,王红宁,廖得惠,等.鸡胚气管环纤毛对不同类型AIBV毒株的敏感性[J].中国兽医学报,1998, 18(5): 448-450.
    [70]彭丽英.鸡传染性鼻气管炎病毒的抗体检测及其致病性的研究[D].预防兽医学硕士论文.太原:山西农业大学, 2000; 5.
    [71]秦卓明,赵继勋,陆友龙,等.用气管环交叉中和试验鉴IBV山东分离株的血清型[J].畜牧与兽医,2000, 32(3): 8-9.
    [72]黄兵,艾武,马秀丽,等.鸡毒支原体SJ株的生物学特性及结构蛋白分析[J].山东家禽,2002, (1): 4-5.
    [73] Wambura PN. Comparative propagation of shape Newcastle disease virus (strains I-2 and V4) on chicken embryo tracheal explants[J].Vet Res Commun,2006, 30(6): 673-677.
    [74] Aydelotte MB. The effect of vitamin A and citral on epithelial differentiation in vitro. I. The chick tracheal epithelium[J].J Embryol Exp Morphol,1963, 11: 279-291.
    [75] Herbst-Laier R. Organ cultures in evaluation of antiviral drugs. I. Virus infection in trachea explants as potential model systems for evaluation of antiviral drugs against respiratory viruses[J].Arch Gesamte Virusforsch,1970, 30(4): 379-396.
    [76] Colwell WM, Ashley RC, Simmons DG, et al. The relative in vitro sensitivity to aflatoxin B1 of tracheal organ cultures prepared from day-old chickens, ducks, Japanese quail, and turkeys[J].Avian Dis,1973, 17(1): 166-172.
    [77] Iida T, Ajiki Y. The effect of 2, 4-dinitrophenol on the growth of Bordetella pertussis in chick tracheal organ culture[J].Jpn J Microbiol,1975, 19(5): 381-386.
    [78] Dudley JP, Cherry JD. The effect of mucolytic agents and topical decongestants on the ciliary activity of chicken tracheal organ cultures[J].Pediatr Res,1977, 11(8): 904-906.
    [79] Dudley JP, Cherry JD. Effect of topical anesthetics on ciliary activity of chicken embryo tracheal origin cultures. Study using total immersion and intratracheal injection[J].Ann Otol Rhinol Laryngol,1978, 87(4 Pt 1): 533-537.
    [80] Dudley JP, Cherry JD. Effects of topical nasal decongestants on the cilia of a chicken embryo tracheal organ culture system[J].Laryngoscope,1978, 88(1 Pt 1): 110-116.
    [81] van de Donk HJ, Muller-Plantema IP, Zuidema J, et al. The effects of preservatives on the ciliary beat frequency of chicken embryo tracheas[J].Rhinology,1980, 18(3): 119-133.
    [82] Williams CM, Colwell WM, Rose LP. Genetic resistance of chickens to aflatoxin assessed with organ-culture techniques[J].Avian Dis,1980, 24(2): 415-422.
    [83] Van de Donk HJ, Zuidema J, Merkus FW. The effects of nasal drops on the ciliary beat frequency of chicken embryo tracheas[J].Rhinology,1981, 19(4): 215-230.
    [84] Pettersson B, Curvall M, Enzell CR. Effects of tobacco smoke compounds on the ciliary activity of the embryo chicken trachea in vitro[J].Toxicology,1982, 23(1): 41-55.
    [85] Van de Donk HJ, Merkus FW. Decreases in ciliary beat frequency due to intranasal administration of propranolol[J].J Pharm Sci,1982, 71(5): 595-596.
    [86] Van de Donk HJ, Zuidema J, Merkus FW. Correlation between the sensitivity of the ciliary beat frequency of human adenoid tissue and chicken embryo tracheas for some drugs[J]. Rhinology,1982, 20(2): 81-87.
    [87] Lukacsi K, Molnar M, Siroki O, et al. Combined effects of amantadine and interferon on influenza virus replication in chicken and human embryo trachea organ culture[J].Acta Microbiol Hung,1985, 32(4): 357-362.
    [88] Pettersson B, Curvall M, Enzell C. The inhibitory effect of tobacco smoke compound on ciliary activity[J].Eur J Respir Dis Suppl,1985, 139:89-92.
    [89] Pieckova E, Jesenska Z. Filamentous microfungi in raw flax and cotton for textile industry and their ciliostatic activity on tracheal organ cultures in vitro[J].Mycopathologia,1996, 134(2): 91-96.
    [90] Boek WM, Romeijn SG, Graamans K, et al. Validation of animal experiments on ciliary function in vitro. II. The influence of absorption enhancers, preservatives and physiologic saline[J].Acta Otolaryngol,1999, 119(1): 98-101.
    [91] Boek WM, Romeijn SG, Graamans K, et al. Validation of animal experiments on ciliary function in vitro. I. The influence of substances used clinically[J].Acta Otolaryngol,1999, 119(1): 93-97.
    [92] Thanou MM, Verhoef JC, Romeijn SG, et al. Effects of N-trimethyl chitosan chloride, a novel absorption enhancer, on caco-2 intestinal epithelia and the ciliary beat frequency of chicken embryo trachea[J].Int J Pharm,1999, 185(1): 73-82.
    [93] Merkus P, Romeijn SG, Verhoef JC, et al. Classification of cilio-inhibiting effects of nasal drugs[J].Laryngoscope,2001, 111(4 Pt 1): 595-602.
    [94] Pieckova E, Wilkins K. Airway toxicity of house dust and its fungal composition[J].Ann Agric Environ Med,2004, 11(1): 67-73.
    [95] Ganapathy K, Cargill PW, Jones RC. Effects of cold storage on detection of avian infectious bronchitis virus in chicken carcasses and local antibodies in tracheal washes[J].J Virol Methods,2005, 126(1-2): 87-90.
    [96]何颖,谢芝勋,刘伟.中药抑制传染性支气管炎病毒IBV增殖的体外试验研究[C].中国畜牧兽医学会家畜传染病学分会第六届全国会员代表大会暨第11次学术研讨会论文集, 2005; 797-798.
    [97]刘伟,何颖,谢芝勋.中药对传染性支气管炎病毒的体外抑制试验[C].中国畜牧兽医学会中兽医学分会2005年学术年会论文集, 2005; 203-206.
    [98] Amidi M, Romeijn SG, Borchard G, et al. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system[J].J Control Release,2006, 111(1-2): 107-116.
    [99] Henning A, Schneider M, Bur M, et al. Embryonic chicken trachea as a new in vitro model for the investigation of mucociliary particle clearance in the airways[J].AAPS PharmSciTech,2008, 9(2): 521-527.
    [100] Winter C, Herrler G, Neumann U. Infection of the tracheal epithelium by infectious bronchitis virus is sialic acid dependent[J].Microbes Infect,2008, 10(4): 367-373.
    [101]刘玉芹,杨宗泽,杨彩然,等.抗IBV中药的筛选[J].中国兽医学报,2009, 29(6): 756-795.
    [102]罗茂春,郑小峰,范小萍.筋骨草对鸡传染性支气管炎病毒的体外抑制作用[J].龙岩学院学报,2009, 27(2): 77-79.
    [103] Blaskovic P, Rohoman K, Rhodes AJ, et al. The effect of different media on maintenance of chick embryo tracheal organ cultures and replication of influenza virus. Brief report[J].Arch Gesamte Virusforsch,1973, 42(2): 210-213.
    [104] Yachida S, Aoyama S, Takahashi N, et al. Plastic multiwell plates to assay avian infectious bronchitis virus in organ cultures of chicken embryo trachea[J].J Clin Microbiol,1978, 8(4): 380-387.
    [105] Yachida S, Iritani Y, Katagiri K. Effect of incubation temperature on infectivity titration of mouse brain-passaged avian infectious bronchitis virus in laboratory host systems[J].Acta Virol,1979, 23(5): 398-402.
    [106] Van de Donk HJ, Zuidema J, Merkus FW. The influence of the pH and osmotic pressure upon tracheal ciliary beat frequency as determined with a new photo-electric registration device[J].Rhinology,1980, 18(2): 93-104.
    [107] Yachida S, Aoyama S, Takahashi N, et al. Influence of temperature of incubation on chicken embryo tracheal organ cultures and chick embryos infected with strains of avian infectious bronchitis virus[J].Res Vet Sci,1981, 31(1): 14-18.
    [108] Marquardt WW, Snyder DB, Kadavil SK. A rapid method for preparing avian tracheal rings for organ culture[J].Avian Dis,1982, 26(1): 196-199.
    [109]杨小燕,甘孟侯.气管环组织培养的一种简易方法探讨[J].中国兽医杂志1995, 21(12): 18-19.
    [110]林丽妹,陈能煜,何玉琴.鸡胚气管环组织体外分离培养的探讨[J].龙岩学院学报,2009, 27(2): 80-82.
    [111] DeBey MC, Ross RF. Ciliostasis and loss of cilia induced by Mycoplasma hyopneumoniae in porcine tracheal organ cultures[J].Infect Immun,1994, 62(12): 5312-5318.
    [112] Arrowood MJ, Xie LT, Rieger K, et al. Disinfection of Cryptosporidium parvum oocysts by pulsed light treatment evaluated in an in vitro cultivation model[J].J Eukaryot Microbiol,1996, 43(5): 88S.
    [113] Arrowood MJ, Sterling CR. Comparison of conventional staining methods and monoclonal antibody-based methods for Cryptosporidium oocyst detection[J].J Clin Microbiol,1989, 27(7): 1490-1495.
    [114] Arrowood MJ, Sterling CR, Healey MC. Immunofluorescent microscopical visualization of trails left by gliding Cryptosporidium parvum sporozoites[J].J Parasitol,1991, 77(2): 315-317.
    [115] Harlow E, Lane D. Cell staining, in Antibodies[R].A Laboratory Manual. New York: Cold Spring Harbor, 1988.
    [116] Augustine PC. Effect of polyions, Ca++, and enzymes on penetration of cultured cells by Eimeria meleagrimitis sporozoites[J].J Parasitol,1980, 66(3): 498-505.
    [117] Upton SJ, Tilley M, Nesterenko MV, et al. A simple and reliable method of producing in vitro infections of Cryptosporidium parvum (Apicomplexa)[J].FEMS Microbiol Lett,1994, 118(1-2): 45-49.
    [118] Woods KM, Nesterenko MV, Upton SJ. Development of a microtitre ELISA to quantify development of Cryptosporidium parvum in vitro[J].FEMS Microbiol Lett,1995, 128(1): 89-94.
    [119] You X, Arrowood MJ, Lejkowski M, et al. A chemiluminescence immunoassay for evaluation of Cryptosporidium parvum growth in vitro[J].FEMS Microbiol Lett,1996, 136(3): 251-256.
    [120] Upton SJ. In vitro culture, in Cryptosporidium and Cryptosporidiosis[M]. Boca Raton, FL: CRC Press, 1997.
    [121] Pfefferkorn ER, Pfefferkorn LC. Specific labeling of intracellular Toxoplasma gondii with uracil[J].J Protozool,1977, 24(3): 449-453.
    [122] Schwartzman JD, Pfefferkorn ER. Toxoplasma gondii: purine synthesis and salvage in mutant host cells and parasites[J].Exp Parasitol,1982, 53(1): 77-86.
    [123] Upton SJ, Tilley M, Mitschler RR, et al. Incorporation of exogenous uracil by Cryptosporidium parvum in vitro[J].J Clin Microbiol,1991, 29(5): 1062-1065.
    [124] Rochelle PA, Ferguson DM, Handojo TJ, et al. An assay combining cell culture with reverse transcriptase PCR to detect and determine the infectivity of waterborne Cryptosporidium parvum[J].Appl Environ Microbiol,1997, 63(5): 2029-2037.
    [125] Rochelle PA, Marshall MM, Mead JR, et al. Comparison of in vitro cell culture and a mouse assay for measuring infectivity of Cryptosporidium parvum[J].Appl Environ Microbiol,2002, 68(8): 3809-3817.
    [126] Di Giovanni GD, LeChevallier MW. Quantitative-PCR assessment of Cryptosporidium parvum cell culture infection[J].Appl Environ Microbiol,2005, 71(3): 1495-1500.
    [127] Shahiduzzaman M, Dyachenko V, Keidel J, et al. Combination of cell culture and quantitative PCR (cc-qPCR) to assess disinfectants efficacy on Cryptosporidium oocysts under standardized conditions[J].Vet Parasitol,2009.
    [128] Schroeder AA, Brown AM, Abrahamsen MS. Identification and cloning of a developmentally regulated Cryptosporidium parvum gene by differential mRNA display PCR[J].Gene,1998, 216(2): 327-334.
    [129] Di Giovanni GD, Hashemi FH, Shaw NJ, et al. Detection of infectious Cryptosporidium parvum oocysts in surface and filter backwash water samples by immunomagnetic separation and integrated cell culture-PCR[J].Appl Environ Microbiol,1999, 65(8): 3427-3432.
    [130] Jenkins MC, Trout J, Abrahamsen MS, et al. Estimating viability of Cryptosporidium parvum oocysts using reverse transcriptase-polymerase chain reaction (RT-PCR) directed at mRNA encoding amyloglucosidase[J].J Microbiol Methods,2000, 43(2): 97-106.
    [131] Deng M, Templeton TJ, London NR, et al. Cryptosporidium parvum genes containing thrombospondin type 1 domains[J].Infect Immun,2002, 70(12): 6987-6995.
    [132] Bukhari Z, LeChevallier M. Assessing UV reactor performance for treatment of finished water[J].Water Sci Technol,2003, 47(3): 179-184.
    [133] Jenkins M, Trout JM, Higgins J, et al. Comparison of tests for viable and infectious Cryptosporidium parvum oocysts[J].Parasitol Res,2003, 89(1): 1-5.
    [134] Keegan AR, Fanok S, Monis PT, et al. Cell culture-Taqman PCR assay for evaluation of Cryptosporidium parvum disinfection[J].Appl Environ Microbiol,2003, 69(5): 2505-2511.
    [135] LeChevallier MW, Di Giovanni GD, Clancy JL, et al. Comparison of method 1623 and cell culture-PCR for detection of Cryptosporidium spp. in source waters[J].Appl Environ Microbiol,2003, 69(2): 971-979.
    [136] Cai X, Lancto CA, Abrahamsen MS, et al. Intron-containing beta-tubulin transcripts in Cryptosporidium parvum cultured in vitro[J].Microbiology,2004, 150(Pt 5): 1191-1195.
    [137] Rochelle PA, Fallar D, Marshall MM, et al. Irreversible UV inactivation of Cryptosporidium spp. despite the presence of UV repair genes[J].J Eukaryot Microbiol,2004, 51(5): 553-562.
    [138] Cai X, Woods KM, Upton SJ, et al. Application of quantitative real-time reverse transcription-PCR in assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum in vitro[J].Antimicrob Agents Chemother,2005, 49(11): 4437-4442.
    [139] Najdrowski M, Joachim A, Daugschies A. An improved in vitro infection model for viability testing of Cryptosporidium parvum oocysts[J].Vet Parasitol,2007, 150(1-2): 150-154.
    [140] Parr JB, Sevilleja JE, Samie A, et al. Detection and quantification of Cryptosporidium in HCT-8 cells and human fecal specimens using real-time polymerase chain reaction[J].Am J Trop Med Hyg,2007, 76(5): 938-942.
    [141] Alcantara Warren C, Destura RV, Sevilleja JE, et al. Detection of epithelial-cell injury, and quantification of infection, in the HCT-8 organoid model of cryptosporidiosis[J].J Infect Dis,2008, 198(1): 143-149.
    [142] Jenkins MC, Higgins J, Abrahante JE, et al. Fecundity of Cryptosporidium parvum is correlated with intracellular levels of the viral symbiont CPV[J].Int J Parasitol,2008, 38(8-9): 1051-1055.
    [143] Keegan A, Daminato D, Saint CP, et al. Effect of water treatment processes on Cryptosporidium infectivity[J].Water Res,2008, 42(6-7): 1805-1811.
    [144] Lee SU, Joung M, Yang DJ, et al. Pulsed-UV light inactivation of Cryptosporidium parvum[J]. Parasitol Res,2008, 102(6): 1293-1299.
    [145] Lee SU, Joung M, Nam T, et al. Quantitative evaluation of infectivity change of Cryptosporidium parvum after gamma irradiation[J].Korean J Parasitol,2009, 47(1): 7-11.
    [146] Shahiduzzaman M, Dyachenko V, Khalafalla RE, et al. Effects of curcumin on Cryptosporidium parvum in vitro[J].Parasitol Res,2009, 105(4): 1155-1161.
    [147] Shahiduzzaman M, Dyachenko V, Obwaller A, et al. Combination of cell culture and quantitative PCR for screening of drugs against Cryptosporidium parvum[J].Vet Parasitol, 2009, 162(3-4): 271-277.
    [148] Wu L, Chen SX, Jiang XG, et al. Effect of select medium supplements on in vitro development of Cryptosporidium andersoni in HCT-8 cells[J].Parasitol Res,2009, 105(5): 1419-1424.
    [149] Slapeta J, Keithly JS. Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria[J].Eukaryot Cell,2004, 3(2): 483-494.
    [150] Carey CM, Lee H, Trevors JT. Comparison of most probable number-PCR and most probable number-foci detection method for quantifying infectious Cryptosporidium parvum oocysts in environmental samples[J].J Microbiol Methods,2006, 67(2): 363-372.
    [151] Koloren Z, Dincer S. Transient expression of red and yellow fluorescent protein vectors in HCT-8 cells infected with Cryptosporidium parvum[J].Parasitol Res,2009, 105(4): 1023- 1029.
    [152] Mele R, Gomez MM, Tosini F, et al. Detection and counting of Cryptosporidium parvum in HCT-8 cells by flowcytometry[J].Parasite,2003, 10(4): 297-302.
    [153] Amer S, Wang C, He H. First Detection of Cryptosporidium baileyi in Ruddy Shelduck (Tadorna ferruginea) in China[J].J Vet Med Sci,2010,Epub ahead of print.
    [154] Surl CG, Kim SM, Kim HC. Viability of preserved Cryptosporidium baileyi oocysts[J]. Korean J Parasitol,2003, 41(4): 197-201.
    [155] Nina JM, McDonald V, Dyson DA, et al. Analysis of oocyst wall and sporozoite antigens from three Cryptosporidium species[J].Infect Immun,1992, 60(4): 1509-1513.
    [156] Wunderlin E, Wild P, Eckert J. Comparative reproduction of Cryptosporidium baileyi in embryonated eggs and in chickens[J].Parasitol Res,1997, 83(7): 712-715.
    [157] Arrowood MJ, Donaldson K. Improved purification methods for calf-derived Cryptosporidium parvum oocysts using discontinuous sucrose and cesium chloride gradients [J].J Eukaryot Microbiol,1996, 43(5): 89S.
    [158]胡景辉,蒋金书,朱引洁.鼠隐孢子虫卵囊及子孢子的纯化[J].中国兽医杂志,1995, 21(4): 3-4.
    [159] Morita S, Namikoshi A, Hirata T, et al. Efficacy of UV irradiation in inactivating Cryptosporidium parvum oocysts[J].Appl Environ Microbiol,2002, 68(11): 5387-5393.
    [160] Feng Y, Li N, Duan L, et al. Cryptosporidium genotype and subtype distribution in raw wastewater in Shanghai, China: evidence for possible unique Cryptosporidium hominis transmission[J].J Clin Microbiol,2009, 47(1): 153-157.
    [161] Ruecker NJ, Braithwaite SL, Topp E, et al. Tracking host sources of Cryptosporidium spp. in raw water for improved health risk assessment[J].Appl Environ Microbiol,2007, 73(12): 3945-3957.
    [162] Arrowood MJ, Sterling CR. Isolation of Cryptosporidium oocysts and sporozoites using discontinuous sucrose and isopycnic Percoll gradients[J].J Parasitol,1987, 73(2): 314-319.
    [163] Kilani RT, Sekla L. Purification of Cryptosporidium oocysts and sporozoites by cesium chloride and Percoll gradients[J].Am J Trop Med Hyg,1987, 36(3): 505-508.
    [164] Arrowood MJ. In vitro cultivation of Cryptosporidium species[J].Clin Microbiol Rev,2002, 15(3): 390-400.
    [165]黄磊,张素梅,朱雷,等.安氏隐孢子虫卵囊分离纯化方法研究[J].中国热带医学,2009, 9(7): 1184-1186.
    [166] Robertson LJ, Campbell AT, Smith HV. In vitro excystation of Cryptosporidium parvum[J].Parasitology,1993, 106 ( Pt 1):13-19.
    [167] Parlasek I. Experimental infection of cat and chicken with Cryptosporidium sp. oocysts isolated from a calf[J].Folia Parasitol (Praha),1983, 30(2): 121-122.
    [168] Fayer R, Leek RG. The effects of reducing conditions, medium, pH, temperature, and time on in vitro excystation of Cryptosporidium[J].J Protozool,1984, 31(4): 567-569.
    [169] Sundermann CA, Lindsay DS, Blagburn BL. In vitro excystation of Cryptosporidium baileyi from chickens[J].J Protozool,1987, 34(1): 28-30.
    [170] Woodmansee DB. Studies of in vitro excystation of Cryptosporidium parvum from calves[J].J Protozool,1987, 34(4): 398-402.
    [171] Gomez-Couso H, Fontan-Sainz M, Fernandez-Alonso J, et al. Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection [J].Parasitology,2009, 136(4): 393-399.
    [172] Current WL, Reese NC. A comparison of endogenous development of three isolates of Cryptosporidium in suckling mice[J].J Protozool,1986, 33(1): 98-108.
    [173] Jones BV, Hennion RM. The preparation of chicken tracheal organ cultures for virus isolation, propagation, and titration[J].Methods Mol Biol,2008, 454:103-107.
    [174] Sawaguchi K, Yachida S, Aoyama S, et al. Comparative use of direct organ cultures of infected chicken tracheas in isolating avian infectious bronchitis virus[J].Avian Dis,1985, 29(2): 546-551.
    [175] Lai M, Lampert IA, Lewis PD. The influence of fixation on staining of glycosaminoglycans in glial cells[J].Histochemistry,1975, 41(3): 275-279.
    [176] Klein JD, Collier AM. Pathogenesis of human parainfluenza type 3 virus infection in hamster tracheal organ culture[J].Infect Immun,1974, 10(4): 883-888.
    [177] Wang R, Zhang L, Ning C, et al. Multilocus phylogenetic analysis of Cryptosporidium andersoni (Apicomplexa) isolated from a bactrian camel (Camelus bactrianus) in China[J].Parasitol Res,2008, 102(5): 915-920.
    [178] Xiao L, Escalante L, Yang C, et al. Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locus[J].Appl Environ Microbiol,1999, 65(4): 1578-1583.
    [179] Morgan UM, Monis PT, Xiao L, et al. Molecular and phylogenetic characterisation of Cryptosporidium from birds[J].Int J Parasitol,2001, 31(3): 289-296.
    [180] Xiao L, Bern C, Limor J, et al. Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru[J].J Infect Dis,2001, 183(3): 492-497.
    [181] Current WL, Upton SJ, Haynes TB. The life cycle of Cryptosporidium baileyi n. sp. (Apicomplexa, Cryptosporidiidae) infecting chickens[J].J Protozool,1986, 33(2): 289-296.
    [182] Upton SJ, Tilley M, Brillhart DB. Effects of select medium supplements on in vitro development of Cryptosporidium parvum in HCT-8 cells[J].J Clin Microbiol,1995, 33(2): 371-375.
    [183] Fayer R, Morgan U, Upton SJ. Epidemiology of Cryptosporidium: transmission, detection and identification[J].Int J Parasitol,2000, 30(12-13): 1305-1322.
    [184] Meloni BP, Thompson RC. Simplified methods for obtaining purified oocysts from mice and for growing Cryptosporidium parvum in vitro[J].J Parasitol,1996, 82(5): 757-762.
    [185] Woods KM, Upton SJ. In vitro development of Cryptosporidium parvum in serum-free media[J].Lett Appl Microbiol,2007, 44(5): 520-523.
    [186] Hijjawi N. Cryptosporidium: New developments in cell culture[J].Exp Parasitol,2010,124 (1):54-60.
    [187] Cherry JD, Taylor-Robinson D. Growth and pathogenicity studies of Mycoplasma gallisepticum in chicken tracheal organ cultures[J].J Med Microbiol,1971, 4(4): 441-449.
    [188] Schmidt RC, Maassab HF. Local immunity to influenza virus in chicken tracheal organ cultures[J].J Infect Dis,1974, 129(6): 637-643.
    [189] Abdul-Wahab OM, Ross G, Bradbury JM. Pathogenicity and cytadherence of Mycoplasma imitans in chicken and duck embryo tracheal organ cultures[J].Infect Immun,1996, 64(2): 563-568.
    [190] Bearson SM, Collier SD, Bearson BL, et al. Induction of a mycoplasma gallisepticum pMGA gene in the chicken tracheal ring organ culture model[J].Avian Dis,2003, 47(3): 745-749.
    [191] Lindsay DS, Blagburn BL, Hoerr FJ, et al. Cryptosporidiosis in zoo and pet birds[J].J Protozool,1991, 38(6): 180S-181S.
    [192] Blagburn BL, Lindsay DS, Giambrone JJ, et al. Experimental cryptosporidiosis in broiler chickens[J].Poult Sci,1987, 66(3): 442-449.
    [193] Lindsay DS, Blagburn BL, Hoerr FJ. Experimentally induced infections in turkeys with Cryptosporidium baileyi isolated from chickens[J].Am J Vet Res,1987, 48(1): 104-108.
    [194] MacDonald LM, Sargent K, Armson A, et al. The development of a real-time quantitative-PCR method for characterisation of a Cryptosporidium parvum in vitro culturing system and assessment of drug efficacy[J].Mol Biochem Parasitol,2002, 121(2): 279-282.
    [195] Hijjawi NS, Meloni BP, Morgan UM, et al. Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture[J].Int J Parasitol,2001, 31(10): 1048-1055.
    [196] Slifko TR, Friedman D, Rose JB, et al. An in vitro method for detecting infectious Cryptosporidium oocysts with cell culture[J].Appl Environ Microbiol,1997, 63(9): 3669- 3675.
    [197] Armson A, Meloni BP, Reynoldson JA, et al. Assessment of drugs against Cryptosporidium parvum using a simple in vitro screening method[J].FEMS Microbiol Lett,1999, 178(2): 227- 233.
    [198] Godiwala NT, Vandewalle A, Ward HD, et al. Quantification of in vitro and in vivo Cryptosporidium parvum infection by using real-time PCR[J].Appl Environ Microbiol,2006, 72(6): 4484-4488.
    [199] Chen SX, Wu L, Shen YJ, et al. Real-time PCR in analyzing DNA extraction from Cryptosporidium oocysts[J].Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi,2009, 27(2): 130-134.
    [200] Wu L, Zhang QX, Li TT, et al. DNA purification methods of Cryptosporidium oocysts[J].Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi,2009, 27(4): 365-367.
    [201] Schnyder M, Kohler L, Hemphill A, et al. Prophylactic and therapeutic efficacy of nitazoxanide against Cryptosporidium parvum in experimentally challenged neonatal calves [J].Vet Parasitol,2009, 160(1-2): 149-154.
    [202]张可煜,王国永,薛飞群.抗寄生虫新药硝唑尼特研究进展[J].兽医导刊,2007, (12): 30-32.
    [203] Armitage K, Flanigan T, Carey J, et al. Treatment of cryptosporidiosis with paromomycin. A report of five cases[J].Arch Intern Med,1992, 152(12): 2497-2499.
    [204] Umejiego NN, Gollapalli D, Sharling L, et al. Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis[J].Chem Biol,2008, 15(1): 70-77.
    [205] Xie MQ, Fukata T, Gilbert JM, et al. Evaluation of anticoccidial drugs in chicken embryos[J].Parasitol Res,1991, 77(7): 595-599.
    [206] Yang TS. Teratogenic effects of sulfadimethoxypyrimidines and sulfadimethylpyrimidines in chick embryos[J].Taiwan Yi Xue Hui Za Zhi,1973, 72(8): 450-457.
    [207] Theodos CM, Griffiths JK, D'Onfro J, et al. Efficacy of nitazoxanide against Cryptosporidium parvum in cell culture and in animal models[J].Antimicrob Agents Chemother,1998, 42(8): 1959-1965.
    [208] Long PL, Jeffers TK. Studies on the stage of action of ionophorous antibiotics against Eimeria[J].J Parasitol,1982, 68(3): 363-371.
    [209] Ball SJ, Pittilo RM, Johnson J, et al. Effect of lasalocid on the development of Eimeria tenella in chicken embryos[J].Vet Parasitol,1990, 36(3-4): 337-341.
    [210] Conway DP, Johnson JK, Guyonnet V, et al. Efficacy of semduramicin and salinomycin against different stages of Eimeria tenella and E. acervulina in the chicken[J].Vet Parasitol,1993, 45(3-4): 215-229.
    [211] Anderson VR, Curran MP. Nitazoxanide: a review of its use in the treatment of gastrointestinal infections[J].Drugs,2007, 67(13): 1947-1967.
    [212] Gargala G. Drug treatment and novel drug target against Cryptosporidium[J].Parasite,2008, 15(3): 275-281.
    [213] Phelps KK, Lindsay DS, Sumner SS, et al. Immunohistochemistry based assay to determine the effects of treatments on Cryptosporidium parvum viability[J].J Eukaryot Microbiol,2001, Suppl:40S-41S.
    [214] Marshall RJ, Flanigan TP. Paromomycin inhibits Cryptosporidium infection of a human enterocyte cell line[J].J Infect Dis,1992, 165(4): 772-774.
    [215] Giacometti A, Burzacchini F, Cirioni O, et al. Efficacy of treatment with paromomycin, azithromycin, and nitazoxanide in a patient with disseminated cryptosporidiosis[J].Eur J Clin Microbiol Infect Dis,1999, 18(12): 885-889.
    [216] Verdon R, Keusch GT, Tzipori S, et al. An in vitro model of infection of human biliary epithelial cells by Cryptosporidium parvum[J].J Infect Dis,1997, 175(5): 1268-1272.
    [217] You X, Schinazi RF, Arrowood MJ, et al. In-vitro activities of paromomycin and lasalocid evaluated in combination against Cryptosporidium parvum[J].J Antimicrob Chemother,1998, 41(2): 293-296.
    [218] Giacometti A, Cirioni O, Barchiesi F, et al. Activity of nitazoxanide alone and in combination with azithromycin and rifabutin against Cryptosporidium parvum in cell culture[J].J Antimicrob Chemother,2000, 45(4): 453-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700