用户名: 密码: 验证码:
轮毂电机驱动电动汽车的电制动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外轮毂电机驱动技术的研究主要集中在轮毂电机的设计和针对采用轮毂电机直接驱动电动汽车的悬架设计上,也有部分学者对轮毂电机对车辆平顺性的影响、轮毂电机与整车性能的匹配、轮毂电机的驱动和制动控制进行了研究。长期从事节能与新能源汽车研究的吉林大学电动汽车及混合动力汽车关键技术创新团队对轮毂电机驱动汽车的防滑驱动技术、自适应差速控制和复合制动等核心课题进行了系统的研究,并且在路面附着识别、电动汽车差动转向和再生制动等方面取得了一定的科研成果。随着线控技术的发展和底盘控制系统集成度的提高,传统的液压制动系统和机械式驻车制动系统势必会被淘汰,开发出一套适合轮毂电机直接驱动电动汽车并兼顾行车制动与驻车制动功能且安全有效的制动系统成为亟待解决的问题。本文以轮毂电机驱动电动汽车的电制动特性为研究内容,对应用轮毂电机制动转矩的行车制动控制策略和驻车制动控制策略进行了深入的研究:
     本文首先分析了轮毂电机驱动技术的优势,同时对国内外轮毂电机驱动技术的应用现状和研究现状做了简要介绍。
     在AMESim中建立了采用盘式制动器的液压制动系统模型,其中包括真空助力器模型、制动主缸模型和制动钳模型;然后根据轮毂电机的数学模型,建立了基于滞环比较控制方法的轮毂电机控制模型;基于所建立模型,应用离线仿真的方法,对比分析了液压制动系统和轮毂电机电制动在阶跃输入下的瞬态响应特性和常规制动工况下的稳态响应特性,仿真结果表明:应用轮毂电机的转矩进行电制动不但可以大大提高制动系统的响应速度,而且每个车轮的制动力矩都可以进行独立控制,提高了电动汽车的制动性能,同时也充分证实了轮毂电机电制动方案的可行性。
     对于轮毂电机直接驱动的电动汽车,提出基于轮毂电机动态响应特性的防抱死制动控制方法,以提高制动性能和制动时的行驶稳定性。在AMESim15自由度底盘模型的基础上加入轮毂电机模型、悬架模型(包括弹簧,减震器,防倾杆模型等)车身空气动力学模型,传感器模型,轮胎地面模型等,建立了轮毂电机驱动电动汽车的整车模型,并基于逻辑门限值算法设计了轮毂电机电制动防抱死控制策略,通过AMESim与Simulink联合仿真的方法对该控制策略进行了仿真验证,仿真结果表明,本文设计的防抱死控制算法充分发挥了轮毂电机电制动响应速度快,单一车轮制动转矩独立可控的特点,提升了电动汽车在紧急制动工况下的制动性能,同时也提高了电动汽车的主动安全性。
     通过分析驻车制动系统的发展趋势,提出了以轮毂电机电制动转矩进行驻车制动的方案,并对比制动钳集成式电子驻车制动系统,对轮毂电机的电制动驻车控制方案的可行性进行了分析。在AMESim中建立了螺杆螺母螺旋副模型及制动钳集成式电子驻车制动系统执行机构的仿真模型;又根据永磁同步电机滞环比较控制模型,对比仿真分析了电子驻车制动系统与轮毂电机电制动驻车控制的瞬态与稳态响应特性,得出结论:螺杆螺母摩擦副的非线性运动规律是制约制动钳集成式电子驻车制动系统瞬态响应性能的主要因素,并且随负荷的增加,螺母输出力的波动也增大,影响了制动系统的稳定性。最后,通过对路面附着系数的估算和车辆状态信息的获取,设计了轮毂电机实现短时间驻车的控制策略,从而精确控制轮毂电机的输出转矩,并通过离线仿真的方式进行了验证。
     分析了目前智能化驻车制动系统的功能性需求,并基于这些需求,应用轮毂电机的制动转矩对车轮施加制动力矩的方式,在常规的驻车功能基础上,对轮毂电机电制动驻车控制进行了功能上的扩展,设计了基于轮毂电机电制动方案的智能驻车系统:首先,针对由于驾驶经验的不足或对路况判断的失误,引起车辆在坡路上起步困难或者不平稳的现象,本文设计了坡路起步功能,通过对路面附着及坡度的识别,智能协调前后轮毂电机的输出转矩,辅助驾驶员坡路起车;再次,为了应对由于液压制动系统失灵或无法操作行车制动系统等突发的紧急状况,设计了紧急制动功能,通过电制动驻车控制使车辆按照一定的减速度制动,为了保证紧急制动时车辆的操作稳定性,本文还创新性地将防抱死控制策略应用于轮毂电机电制动,并得到了良好的制动效果;最后,为了辅助驾驶员制动,使驾驶员在拥堵的交通环境下或山路上行车时更加轻松,本文设计了自动驻车功能。通过离线仿真的方法对电制动驻车方案进行了功能上的验证。
     最后通过软件在环研究,对轮毂电机电制动控制器功能进行验证,将控制策略模型下载到dSPACE处理器板卡中,进行与真实环境交互的实时仿真分析,验证了控制模型在受控环境下的可行性,并根据仿真结果对模型进行调整。基于dSPACESimulator液压制动系统和轮毂电机的半实物仿真平台,以TTC200为整车控制器进行了轮毂电机电制动硬件在环仿真实验,实验结果验证了轮毂电机电制动控制的功能性:轮毂电机电制动控制器可以准确有效地实现智能驻车控制,提升车辆的安全性,同时也验证了轮毂电机电制动防抱死控制算法在紧急制动工况下的有效性。
Nowadays, hub motor driving technology mainly focused on hub motor design andsuspension design worldwide, but researches involved with matches between hub motorsand EV (electric vehicle), driving and braking control of hub motors were rarely presented,which is also an obstacle in applications of hub motors. Dedicated to the research onenergy-saving and New-energy Vehicle with so many years, Professor WANG.Qingnian,led his team-the innovation research team of EV&HEV Key Technology, carried outanti-skid driving technology, adaptive differential control and blend braking control of hubmotor drive electric vehicles, also some scientific achievement: road adhesion recognizing,diferential steering and regenerative braking. As X-by-wire and chassis integrated controltechnology develop, conventional hydraulic brake system and parking brake systembecome outdated and will be eliminated in one day, therefore, a new brake system for hubmotor drive electric vehicle, which combined service brake and parking brake functionsafely, should be developed. In the thesis, electric brake characteristics of hub motor driveEV are studied, also the service brake chararcteristics and parking brake characteristics.
     First of all, advantages of hub motor driving technology are discussed. Applicationbackground of hub motor driving system and scientific research background areintroduced briefly.
     Secondly, conventional hydraulic brake system model with disc actuator is built inAMESim, including pneumatic vacuum booster model, master cylinder model and brakecaliper model. Then, a hub motor control model based on Permanent Magnet SynchronousMotor (PMSM) Hysteresis Comparison Control method is built. With off-line simulation,transient state response characteristics under step input and steady state responsecharacteristics of hydraulic brake system and electric brake system.action are compared.The simulation results indicate: electric brake exerted by hub motor torque not onlyenhances the response speed of the system, but also makes the torque of each wheelcontrollable independently, which inproves the brake performance of EV, and proves theelectric brake scheme feasible.
     Thirdly, according to the transient state response characteristics of hub motors, in thepaper, with electric brake utilized, an anti-lock brake control strategy is designed for the EV driven by hub motors. Besides, based on15dimensions of freedom chassis model inAMESim, we add hub motor model, suspension model-spring, damper, end stop, antirollbar, aerodynamic model, tire and road model, sensors model and steering system model tothe multibody chassis model to form hub motor drive EV model. Also, an anti-lock brakecontrol model is established, referred to logical threshold algorithm. With AMESimCo-simulation with MATLAB/Simulink, simulation of electric brake anti-brake control iscarried out. The simulation result indicate: the anti-brake control strategy designed forelectric brake not only improves the brake performance in emergency brake mission, butalso perfectly fits for hub motor drive EVs and enhances the active safety.
     Fourthly, parking brake system trend is discussed, and the hypothesis applying hubmotor torque to parking brake control is presented. Therefore, compared to the CaliperIntegrated Electric Parking Brake System, the feasibility is analyzed. To investigate thefeasiblilty of electric brake replaceing the EPB system, the EPB actuator model is built inAMESim, including screw-nut transmission model, gear redactor model and servo-motormodel. Also compared to PMSM hysteresis comparison control model, transient andsteady state performance of EPB system and parking brake system with hub motor areanalyzed through the simulation, and the simulation result shows: the non-linar motion ofscrew-nut transmission structure restricts the EPB system response performance andcauses the delay. As the load of brake pad increase, the force on nut fluctuates a lot,affecting the braking stability. However, when taking the hub motor as parking brakeactuator, the stability of braking is enhanced, besides, the energy consumption of hubmotor during parking is relatively small, making no difference to daily use.
     Fifthly, functional requirements of intelligent parking brake system are analysed,based on these requirements, ultilizing the hub motor torque, electric parking brake systemis design for hub motor drive EVs. Except the basic parking brake function, otherextended intelligent functions are developed. To deal with insufficient driving experienceand complex road conditions, dynamic drive-off assistant function is designed to helpdriver to drive the EV along the slope smoothly and allows the vehicle to be driven offwithout jolts or backroll. To tackle the emergency situation: the brake pedal loses itsfunction or becomes blocked, dynamic emergency stop function is designed to ensure thevehicle can be braked heavily by means of hub motor torque. To handle with the trafficjam or slow moving traffic or drive-off on steep slope, the AUTOHOLD function isdesigned to assist automatic brake of EV. The AUTOHOLD function assures an automaticand controlled hold over the vehicle when stationary, irrespective of the way the vehiclewas brought to a halt.Since the driver no longer has to hold the vehicle on the brake pedal all the time, driving is made easier. At last, the control strategies to fulfill these functionsare simulated off-line.
     Finally, software-in-the-loop simulation is carried out to verify the electric brakecontrol strategies, in the way of downloading the control model into the dSPACEprocessor board. The real-time simulation provides real environment interaction to controlmodel, and adjusts control strategy in time according to the simulation result. Byconnecting the hub motor and other sensors to I/O interface, Dspace hub motor electricbrake simulation platform is created. Besides, taking TTC200as the vehicle controller, thehardware-in-the-loop simulation is performed to testify the functionality of hub motorelectric brak control strategy. The simulation results demonstrates that the regular parkingbrake function, the dynamic drive-off assistant function, the dynamic emergence brakefunction are all valid and reliable, also the hub motor drive EV brake performance andsafety are improved by applying anti-lock brake control strategy.
引文
[1]靳立强.电动汽车电动轮驱动理论与应用技术[D].长春:吉林大学汽车工程学院,2006:14-17.
    [2] Yoichi Hori: Future Vehicle driven by Electricity and Control-Research on4WheelMotored 'UOT March II'[C], Proceedings of IEEE Trans. on Industrial Electronics,2004.51(5):954-962.
    [3] Yoichi Hori, Yasushi Toyoda and Yoshimasa Tsuruoka,Traction Control of ElectricVehicle based on the Estimation of Road Surface Condition Basic ExperimentalResults using the Test EV UOT Electric March[C], Proceedings of PCC Nagaoka,1997.1:1-8
    [4] Kiumars Jalali, Kai Bode, Steve Lambert and John McPhee. Design of an AdvancedTraction Controller for an Electric Vehicle Equipped with Four Direct DrivenIn-Wheel Motors[J]. SAE2008-01-0589.
    [5] Makoto KAMACHI, Kevin WALTERS, Hiroaki YOSHIDA. Improvement ofVehicle Dynamic Performance by Means of In-Wheel Electric Motors. MitsubishiMotors. Technical review[R],2006
    [6] Kazim Cakir. In-wheel Motor Design For Electric Vehicles[D]. Master of Science,SABANCI UNIVERSITYC.2004:23-28.
    [7] K. Cakir, A. Sabanovic. In-wheel Motor Design for Electric Vehicles[C].Proceedings of AMC’06-Istanbul, Turkey.2006,3:55-59.
    [8]柴陆路,刘洲辉,罗廖.轮毂电机式纯电动汽车平台的建立[J].汽车工程,2009(8):28-30.
    [9] A. Tashakori, M. Ektesabi and N. Hosseinzadeh. Characteristic of Suitable DriveTrain for Electric Vehicle[C]. Proceedings of2011International Conference onInstrumentation, Measurement, Circuits and Systems, ICIMCS2011.5:98-102.
    [10] J. S. Dunning, Electric vehicles and battery technology[C], Proceedings of Int. Symp.Low-Pollution Vehicles,1990:13-17.
    [11] N. Irie et al., Nissan FEV-A: A new concept electric vehicle[C], Proceedings ofEVS.1992.11:22-27.
    [12]靳立强,王庆年,张缓缓,王军年.电动轮驱动电动汽车差速技术研究[J,]汽车工程,2007,29(8):700-704.
    [13]宁国宝,王阳,余卓平,后轮轮毂电机驱动电动汽车的液压复合制动系统匹配方法[J],汽车技术,2009(11):11-16.
    [14] Y. Kaya et al., Research and development project for an advanced electric vehicle,IZA[C], Proceedings of EVS.1992.11:185-189.
    [15] M. Terashima et al., Drive system with4in-wheel motors for electric vehicle[C],Proceedings of the6th Annu. Conf. IEE Japan-IAS (JIASC), Nagoya, Japan,1992.3:344-348.
    [16] K. Shinohara.Performance analysis of permanent magnet AC servo motor driven bycurrent controlled PWM inverter[C]. Proceedings of IEEE Japan,1990.110(10):1081-1086.
    [17] H. Shimizu. A simulation program for the design and evaluation of a highperformance electric vehicle[J]. Jpn. Soc. Simul. Technol.1991.10(3):63-68.
    [18] M. Ono. Development of the chassis, suspension, and body of the advanced electricvehicle, IZA[C]. Proceedings of EVS.1992,11(5):6-11.
    [19] Hiroaki Kataoka, Hideo Sado, Shin'ichiro Sakai and Yoichi Hori, Optimal Slip RatioEstimator for Traction Control System of Electric Vehicle Based on FuzzyInference[J], Electrical Engineering in Japan,2001,135(3):581-586.
    [20] Shin'ichiro Sakai and Yoichi Hori, Advanced Motion Control of Electric Vehiclewith Fast Minor Feedback Loops: Basic Experiments using the4Wheel MotoredEV "UOT Electric March II", JSAE Review (Elsevier Science),2001.22(4):527-536.
    [21] King-Jet Tseng, and G. H. Chen. Computer-Aided Design and Analysis ofDirect-Driven Wheel Motor Drive[J]. IEEE TRANSACTIONS ON POWERELECTRONICS,1997,12(3):517-523.
    [22] H. Huang and W. M. Anderson, High power density and high efficiency motors forelectric vehicle applications[C], Proceedings of Int. Conf. Electric Machines (ICEM),1990:309–314.
    [23] C. C. Chan and K. T. Chau, Advanced ac propulsion systems for electric vehicles[C],Proceedings of Int. Symp. Automotive Tech. Florence, Italy,1991:119–125.
    [24] C. C. Chan, J. Z. Jiang, G. H. Chen, and X. Y. Wang, A novel high power densitypermanent magnet variable-speed motor[J], IEEE Trans. Energy Conversion,1993,8:297–303.
    [25] K. S. Rajashekara, History of electric vehicles in general motors[J], IEEE Trans. Ind.Applicat.1994,30:897–904.
    [26] K. S. Rajashekara and R. Martin, Present and future trends for electric vehicles:Review of electrical propulsion systems[C], Proceedings of IEEE Workshop onPower Electronics in Transportation, Dearborn, MI.1992:7–12.
    [27] K. J. Tseng and G. H. Chen, Design of wheel motor using Maxwell2D simulator[C],Proceedings of Int. Conf. on Energy Management and Power Delivery, Singapore,1995:634–639.
    [28] T. S. Low, K. J. Tseng, T. H. Lee, K. W. Lim, and K. S. Lock, Strategy for theinstantaneous torque control of permanent-magnet brushless DC drives[C],Proceedings of Inst. Elect. Eng.1990.137:355–363.
    [29] E. J. Triche, Jr., J. H. Beno, H. E. Tims, M. T. Worthington and J. R. Mock. ShockLoading Experiments and Requirements for Electric Wheel Motors on MilitaryVehicles[J]. SAE2005-01-0278
    [30] H. Tims, Suspension Travel Requirements for Vehicle Active SuspensionSystems[D], M.S.E. thesis, University of Texas at Austin,2003.
    [31] J.H. Beno and D.A. Weeks, Active Suspension Technology Development for HighPerformance Off-Road Vehicles[C], Proceedings of Fourth International AECVConference, Noordwijkerhout, The Netherlands, Sept.2001.9:145-154.
    [32] W. Bylsma, A.M. Guenin, J.H. Beno, D.A. Weeks, D. Bresie, and M.E. Raymond,Electromechanical Suspension Performance Testing[C], Proceedings of SAE WorldCongress, Detroit, Michigan,2001.3:377-386.
    [33] D. A. Weeks, J. H. Beno, D.A. Bresie, and A. Guenin, Laboratory Testing of anActive Electromagnetic Near Constant Force Suspension[C], Proceedings of1997SAE International Congress and Exposition, Detroit, MI,1997,2:486-493.
    [34] D.A. Weeks, J.H. Beno, A.M. Guenin, and D.A Bresie, Electromechanical ActiveSuspension Demonstration for Off-Road Vehicles at The University of Texas Centerfor Electromechanics[C], Proceedings of SAE International Congress andExposition, Detroit, Michigan,2000.3:332-339.
    [35] J.H. Beno, D. Bresie, G. Frazier, J. Kajs, H. Liu, and J. Lutz, CHPS Product DesignTechnology Development[R], CHPS Produce Design Review,2000.12:88-96.
    [36] K. Cakir A. Sabanovic. In-wheel Motor Design for Electric Vehicles[C].Proceedings of IEEE AMC’06-Istanbul, Turkey.2006.6:13-20.
    [37] Krishnan. R. Switched Reluctance Motor Drives[C], Proceedings of CRC Press,2001.3:434-441.
    [38] Miller, T.J.E. and M. McGilp, Nonlinear theory of the switched reluctance motor forcomputer-aided design[C], Proceedings of IEEE,1990.137(6):337-346
    [39] Evers, W., Reichel, J., Eisenkolb, R., Enhart, I. The wheel dynamometer as a tool forchassis development[R], Kistler Instrumente AG, SD920-234e,2002
    [40] Amman, M., Evers, W., Streilein, V., RoaDyn-a development Tool for BrakingSystems[R], Kistler Instrumente AG, SD920-234e,2002
    [41] Radun, A.V., Design considerations for switched reluctance motor[J]., IEEE Trans.On Industry Appl.,1995.31:1049-1087.
    [42] Arumugam, R., J.F. Lindsay, and R. Krishnan, Sensitivity pole arc/pole pitch ratioon switched reluctance motor performance[C]., Proceedings of IEEE Ind. Appl. Soc.Ann. Mtg. Conf. Rec., Pitsburg, PA,1998:50-54.
    [43] Leo Laine and Jonas Fredriksson. Coordination of Vehicle Motion and EnergyManagement Control Systems for Wheel Motor Driven Vehicles [C]. Proceedings ofthe2007IEEE Intelligent Vehicles Symposium Istanbul, Turkey,2007.6:875-882.
    [44] A. Kimura, T. Abe, and S. Sasaki, Drive force control of a parallelseries hybridsystem [J]. Society of Automotive Engineers of Japan JSAE Rev.1999.20:337341.
    [45] A. Emadi, S. Williamson, and A. Khaligh, Power electronics intensive solutions foradvanced electric, hybrid electric, and fuel cell vehicular power systems [J], PowerElectronics, IEEE Transactions.2006.21(3):567577.
    [46] T. Johansen, T. Fossen, and S. P. Berge, Constrained nonlinear control allocationwith singularity avoidance using sequential quadratic programming [J], IEEETransactions on Control Systems Technology,2004.12(1):655-661.
    [47] T. Johansen, T. Fuglseth, P. T ndel, and T. I. Fossen, Optimal constrained controlallocation in marine surface vessels with rudders [C], Proceedings of IFAC Conf.Manoeuvring and Control of Marine Craft, Girona,2003.
    [48] P. T ndel and T. A. Johansen, Control allocation for yaw stabilization in automotivevehicles using multiparametric nonlinear programming [C], in Proc. of AmericanControl Conf., Portland, OR,2005.6:77-81.
    [49] J. Plumlee, D. Bevly, and A. Hodel, Control of a ground vehicle using quadraticprogramming based control allocation techniques [C], Proceedings of AmericanControl Conf., Boston, MA,2004.7:638-643..
    [50] J. Plumlee, Mult-Input Ground Vehicle Control Using Quadratic ProgrammingBased Control Allocation [D]. Master thesis report, Auburn University, Alabama,2004.
    [51] J. Andreasson, L. Laine, and J. Fredriksson, Evaluation of a generic vehicle motioncontrol architecture[C], Proceedings of the F′ed′eration Internationale des Soci′et′esd’Ing′enieurs des Techniques de l’Automobile (FISITA), Barcelona, Spain,2004.5:598-605.
    [52] J. Schiffer, O. Bohlen, R. D. Doncker, D. U. Sauer, and K. Ahn, Optimized energymanagement for fuelcell-supercap hybrid electric vehicles [C], Proceedings ofVehicle Power and Propulsion,2005IEEE Conference,2005.9:328-334.
    [53] Kiyotaka Kawashima and Toshiyuki Uchida, Rolling Stability Control of In-wheelElectric Vehicle Based on Two-Degree-of-Freedom Control[C], Advanced MotionContro, Proceedings of AMC '08.10th IEEE International Workshop,2008.3:751-756.
    [54] Kiumars Jalali, Kai Bode, Steve Lambert and John McPhee, Design of an AdvancedTraction Controller for an Electric Vehicle Equipped with Four Direct DrivenIn-Wheel Motors[C], Proceedings of SAE Int. J. Passeng. Cars-Electron. Electr.Syst.2008.1:211-220, SAE2008-01-0589.
    [55] Terashima Masayuki et al: Novel motors and Controllers for a High-PerformanceElectric Vehicle with Four In-Wheel Motors[J], IEEE Transactions on IndustrialElectronics,1999.44(1):277-283.
    [56] Larminie, James and John, Lowry: Electric Vehicle Technology Explained[R], JohnWiley and Sons,2003.
    [57] Sakai, Shinichiro, Hideo, Sado, and Yoichi Hori: Motion control in an electricvehicle with four independently driven in-wheel motors[C], Proceedings ofIEEE/ASME Transactions on Mechatronics,1999.4:306-312.
    [58] Rake, Heinrich: Control Engineering: Course Notes, Edition24[M], AachenUniversity of Technology, Institute of Control Technology,2000.
    [59] Manu Jain and Sheldon S. Williamson, Suitability Analysis of In-Wheel MotorDirect Drives for Electric and Hybrid Electric Vehicles[C], Proceedings of2009IEEE Electrical Power&Energy Conference.2009.7:66-72.
    [60] W. D. Jones, Putting electricity where the rubber meets the road[J], IEEE Spectrum,2007.44(7):18-20.
    [61] Argonne National Laboratory, Hybrid electric vehicle technology assessment:methodology, analytical issues, and interim results[R], Report No. ANL/ESD/02-2,Oct.2001.
    [62] A. Benoudjit, A. Guettafi, and N. Said, Axial flux induction motor for on-wheeldrive propulsion system[J], Journal of Electric Power Components and Systems,2000.28(12):1107-1125.
    [63] K. Nakamura, Y. Suzuki, H. Goto, and O. Ichinokura, Design of outerrotor typemultipolar SR motor for electric vehicle[J], Journal of Magnetism and MagneticMaterials,2005.290-291(2):1334-1337.
    [64] B. Francois and A. Bouscayrol, Control of two induction motors fed by a five-phasevoltage-source inverter[C], Proceedings of ELECTRIMACS’99,1999.9:313-318.
    [65] M. Hizume, S. Yokomizo, and K. Matsuse, Independent vector control ofparallel-connected two induction motors by a five-leg inverter[C], Proceedings ofIEEE Japan Technical Meeting on Semiconductor Power Converter,2008.4:5-10.
    [66] T. Kominami and Y. Fujimoto, Proposal of a nine-switch inverter that canindependently control two PM motors[C], Proceedings of IEEE Japan IndustryApplications Society Conf.,2006.1:187-190.
    [67] Javier Gutiérrez, Javier Romo, etc., Control Algorithm Development forIndependent Wheel Torque Distribution with4In-Wheel Electric Motors[C],Proceedings of UKSim5th European Symposium on Computer Modeling andSimulation.2011.2:1024-1031.
    [68] Van Zanten, A.T., etc., Control Aspects of the Bosch-VDC[C], Proceedings ofInternational Symposium on Advanced Vehicle Control, AVEC,1996.6:18-22.
    [69] Limroth, J., Real-Time vehicle parameter estimation and adaptive stabilitycontrol[D], PhD Thesis, Clemson University,2009.
    [70] Qian, H. et al., Energy management for four-wheel independent driving vehicle[C],Proceedings of IEEE/RSJ International Conference on Intelligent Robots andSystems,2010.6:315-321.
    [71] Kawakami, K., Tanabe, H. Shimizu, H. Yoshida, H., Advanced redundancytechnology for a drive system using in-wheel motors[J], The World Electric VehicleAssociation Journal,2007.1:88-94.
    [72] Horiuchi, S. and N. Yuhara, An Analytical Approach to the Prediction of HandlingQualities of Vehicles With Advanced Steering Control System Using Multi-InputDriver Model[J], Journal of Dynamic Systems, Measurement, and Control,2000.122(3):490-497.
    [73] Dalmau,J.M., Boltshauser, S., Aparicio, A., On the assesment of active safetysystems and vehicle stability using objective test methods-Latest developments ofE-Value project[C], Proceedings of FISITA2010World Automotive Congress,2010.7:232-236.
    [74] Wongun Kim, Kyongsu Yi, and Jongseok Lee. Drive control algorithm for anindependent8in-wheel motor drive vehicle[J], Journal of Mechanical Science andTechnology2011.25(6):1573-1581.
    [75] A. T. Zanten, R. Erhardt, K. Landesfeind and G. Pfaff, VDC Systems development ayaw moment control using braking forces[J], JSME International Journal,1999.42(2):301-308.
    [76] Y. Shibahata, K. Shimada and T. Tomari, The improvement of vehiclemaneuverability by direct yaw moment control[C], Proceedings of Int. Symp.Advanced Vehicle Control.1992:452-457.
    [77] T. Shino and M. Nagai, Yaw moment control of electric vehicle for improvinghandling and stability[J], JSAE Review.2001.22:473-480.
    [78] K. Huh, J. Kim and J. Hong, Handling and driving characteristics for six-wheeledvehicle, Proceedings of the Institution of Mechanical Engineers, Part D[J], Journalof Automobile Engineering,2000.214(2):159-170.
    [79] A. Jackson and D. Crolla, Improving performance of a6x6off-road vehicle throughindividual wheel control[J], SAE2002-01-0968.
    [80] S. J. An et al., Desired yaw rate and steering control method during cornering for asix-wheeled vehicle[J], IJAT,2008.9(2):173-181.
    [81] Peter Juris, Andre Brune and Bernd Ponick, A Coupled Thermal-ElectromagneticEnergy Consumption Calculation for an Electric Vehicle with Wheel Hub DriveConsidering Different Driving Cycles[C], Proceedings of2012IEEE Vehicle Powerand Propulsion Conference, Seoul, Korea.2012.10:238-242.
    [82] A. Kock, M. Groninger and A. Mertens, Fault Tolerant Wheel Hub Drive withintegrated Converter for Electric Vehicle Applications[C], Proceedings of VehiclePower and Propulsion Conference (VPPC),2012.34:288-293.
    [83] A. Brune, P. Diick, A. Kock, M. Groninger and B. Ponick, Evaluation of anEfficiency-optimized Calculation of PM Synchronous Machines' Operating RangeUsing Time-saving Numerical and Analytical Coupling[C], Proceedings of VehiclePower and Propulsion Conference (VPPC).2012.33:676-680.
    [84] L. Alberti and N. Bianchi, A Coupled Thermal-Electromagnetic Analysis for a Rapidand Accurate Prediction of1M Performance[J],. Industrial Electronics. IEEETransactions.2008.11:281-287.
    [85] D.G. Dorrell, Combined Thermal and Electromagnetic Analysis ofPermanent-Magnet and Induction Machines to Aid Calculation[J], IndustrialElectronics. IEEE Transactions.2008.21:54-62.
    [86] J. Ojeda,E. Hoang, M. Gabsi and M. Lecrivain, Thermal-Electromagnetic Analysisfor Driving Cycles of Embedded FluxSwitching Permanent-Magnet Motors[C],Proceedings of Vehicular Technology. Proceedings of IEEE Transactions,2012.5:114-118.
    [87] Li. Guangjin.1. Ojeda.E. Hoang. M. Gabsi and M. Lecrivain. Comparative StudiesBetween Classical and Mutually Coupled Switched Reluctance Motors UsingThermal-Electromagnetic Analysis for Driving Cycles[J], Magnetics. IEEETransactions2011.9:98-104.
    [88] Alexander Kock, Axel Mertens and Michael Groninger, Fault Tolerant Wheel HubDrive with Integrated Converter for Electric Vehicle Applications[C], Proceedings of2012IEEE Vehicle Power and Propulsion Conference, Seoul,Korea.2012.33(6):136-140.
    [89] Tuncay. R.N. et al.. Design and Implementation of an Electric Drive System forIn-Wheel Motor Electric Vehicle Applications[C]. Proceedings of Vehicle Power andPropulsion Conference (VPPC). Chicago.2011.7:345-349.
    [90] Fischer. R.etc. Elektrische Radnabenmotoren: Konstruktionskriterien undFahrzeugintegration[C]. Proceedings of ATZ Elektronik. Springer Fachmedien.Miinchen.2010.9:25-29.
    [91] C.J. Ifedi et al.. Fault Tolerant In-Wheel Motor Topologies for High PeiformanceElectric Vehicles[C]. Proceedings of IEEE International Electric Machines&DrivesConf.2011.5:281-285.
    [92] Schiferl. R.-F.. Six P hase Synchronous Machine with AC and DC StatorConnections[C]. Proceedings of IEEE Trans. on Power Apparatus and Systems.2008.13:102-106.
    [93] Brune. A. et al, Evaluation of the efficiency optimized calculation ofPMSynchronous Machines Operation Range Using Time·Saving Numerical andAnalytical Coupling[C]. Proceedings of VPPC. Korea.2012.
    [94]陈辛波,万钢,余卓平,周平,独立悬架电动轮模块的双横臂悬架机构设计[J],汽车工程,2004,26(5):513-520
    [95]廖凌霄,四轮独立驱动电动汽车控制策略的研究[D],武汉:武汉理工大学,电力电子与电力传动,2010.
    [96]宫海龙,高转矩永磁轮毂电机磁系统的研究[D],哈尔滨:哈尔滨工业大学电机与电器专业,2011.
    [97]余卓平,左建令,陈慧,基于四轮轮边驱动电动车的路面附着系数估算方法[J],汽车工程,2007,29(2):141-145.
    [98]余卓平,张元才,徐乐,张立军,熊璐,复合制动系统制动力协调分配方法仿真研究[J],汽车技术,2008,5:1-4.
    [99]余卓平,姜炜,张立军,四轮轮毅电机驱动电动汽车扭矩分配控制[J],同济大学学报(自然科学版),2008,36(8):1115-1119.
    [100]宁国宝,王阳,余卓平,后轮轮毅电机驱动电动汽车的液压复合制动系统匹配方法[J],汽车技术,2009,11:11-16.
    [101]熊璐,余卓平,轮毅电机驱动电动汽车各轮毅电机扭矩分配算法的仿真和评价[J],计算机辅助工程,2010,19(1):27-31.
    [102]张立军,钱敏,余卓平.轮毅电机一轮胎总成非线性动力学特性仿真分析[C],第五届中国智能交通年会,2012.3:58-64.
    [103] Li Feiqiang, Wang Jun and Liu Zhaodu, Fuzzy-logic-based Controller Design forFour-wheel-drive Electric Vehicle Yaw Stability Enhancement[C], Proceedings ofSixth International Conference on Fuzzy Systems and KnowledgeDiscovery.2009.3:187-193.
    [104] Li Feiqiang, Wang Jun and Liu Zhaodu, Motor Torque Based Vehicle StabilityControl for Four-wheel-drive Electric Vehicle[J], Applied Mechanics and Materials,2009:29-32
    [105] Xie Shaobo, Lin Cheng, Stability Control of a Dual-motor Vehicle Based onCoordinated Application of Motor and Hydraulic Actuator[C], Proceedings of PowerElectronics Systems and Applications (PESA),20114th International Conference,2011:1–5.
    [106]靳立强,王庆年,张缓缓,王军年.电动轮驱动电动汽车差速技术研究[J],汽车工程,2007,29(8):700-704
    [107]靳立强,王庆年,宋传学,电动轮驱动汽车动力学仿真模型及试验验证[J],吉林大学学报(工学版),2007,37(4):745-750.
    [108]靳立强,王庆年,周雪虎,宋传学.电动轮驱动汽车电子差速控制策略及仿真[J],吉林大学学报(工学版),2008,38:1-6.
    [109]王庆年,王军年,靳立强,胡长健,张向忠.用于电动轮驱动汽车的差动助力转向[J],吉林大学学报(工学版),2009,39(1):1-6.
    [110]靳立强,王庆年,宋传学.电动轮驱动汽车的最佳车轮滑移率实时识别[J],吉林大学学报(工学版),2010,40(4):889-894.
    [111] Min-Hung Hsiao and Chien-Hen Lin, Antilock Braking Control of Electric Vehicleswith Electric Brake[J], SAE2005-01-1581.
    [112]邵汉卿,基于DSP的高频电液激振平台的控制器研究[D],杭州:浙江工业大学,2011
    [113]张琨,六相盘式永磁同步电机的设计研究[D],天津:天津大学,2007
    [114]刘艳,基于HALBACH阵列的盘式无铁心永磁同步电动机分析与计算[D],天津:天津大学,2004
    [115]高天宇,张俊,张龙,何勇,章双胜,基于模糊控制策略的PMSM随动系统设计及仿真[J],自动化技术与应用,2010,29(9):11-14
    [116]张铁军,永磁同步电动机数字化控制系统研究[D],长沙:湖南大学,2006
    [117]齐利晓,盘式无铁心永磁电机气隙磁场与永磁体涡流损耗分析[D],天津:天津大学,2006
    [118]曹建伟,低速永磁同步电机的电磁分析[D],天津:天津大学,2007.
    [119]杨光亮,车用永磁同步电机控制方法研究[D],大连:大连理工大学,2009.
    [120]唐丽婵,齐亮,永磁同步电机的应用现状与发展趋势[J],装备机械,2011,5:89-92.
    [121]叶海翔,基于神经网络逆系统的永磁同步电机的控制[D],南京:南京理工大学,2009.
    [122]李文阳,基于小型水源多联式空调控制系统设计与实现方法研究[D],济南:山东大学,2012.
    [123]朱星波,异步起动稀土永磁电动机起动性能的研究[D],杭州:浙江大学,2010.
    [124]孙仁云,郭辛,龙行现,基于门限值控制的汽车ABS控制器的研制[J],西南交通大学学报,2003,38(4):408-413.
    [125]王伟达,丁能根,张为,余贵珍,徐向阳,ABS逻辑门限值自调整控制方法研究与试验验证[J],机械工程学报,2010,46(22):91-104.
    [126]周勇,李声晋,田海波,方宗德,周奇勋,四轮独立驱动电动车的ABS控制方法[J],汽车工程,2007,29(12):1046-1050
    [127]王吉,电动轮汽车制动集成控制策略与复合ABS控制研究[D],长春:吉林大学汽车工程学院,2011
    [128]李建华,基于ESC控制系统的ABS控制策略研究及试验[D].长春:吉林大学汽车工程学院,2010
    [129]陈炯,王会义,宋健,基于滑移率和减速度的ABS模糊控制仿真研究[J],汽车工程,2006,28(2):148-180
    [130]房永,基于快速控制原型的商用车ABS控制算法开发及试验验证[D].长春:吉林大学汽车工程学院,2007.
    [131]能根,邹红明,余贵珍,王伟达,张坚. ABS硬件在环仿真的车辆系统建模[J],江苏大学学报,2008,29(6):478-481
    [132]唐国元,车辆防抱死制动系统及制动稳定性控制策略的仿真研究[D].武汉:华中科技大学机械科学与工程学院,1996.
    [133]张坚,汽车ABS硬件在环仿真研究[D].北京:北京航空航天大学汽车工程系,2007.
    [134]郭孔辉,刘溧,丁海涛,等.汽车防抱制动系统的液压特性[J].吉林工业大学学报:自然科学版,1999,29(4):1-5.
    [135]司利增.,汽车防滑控制系统ABS与ASR [M].北京人民交通出版社,1999.
    [136]陈昌巨,刘家良,刘晓军.汽车ABS的控制方法研究[J].武汉理工大学学报,2003,25(1):72-74.
    [137]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D].长春:吉林工业大学,2000.
    [138]薛定宇,陈阳泉.基于MATLAB/Smi u link的系统仿真技术与应用[M].北京:清华大学出版社,2004.
    [139]梁鹏霄.汽车制动防抱死系统计算机仿真研究[D].北京:北京理工大学,2003.
    [140]李君,喻凡,张建武.基于道路自动识别ABS模糊控制系统的研究[J].农业机械学报,2001,32(5):26-29.
    [141]王吉,李建华,靳立强,宋传学,基于AMESim与Simulink/Stateflow的汽车ABS联合建模与仿真研究[J],汽车技术,2010,1:25-33
    [142]黎薇,彭忆强,张津蕾,黎长青.线控驻车制动系统驱动部件的动态模拟[J],机械与电子,2008,3:21-28.
    [143] J. S. Cheon, J. W. Jeon, H. M. Jung, I. U. Park, C. H. Park, Main Design Factors andUnified Software Structure for Cable Puller and Caliper Integrated Type ElectricParking Brakes[J],SAE2009-01-3022.
    [144] Chien-Tai. Huang, Chien-Tzu Chen, Shou-Yi Cheng. Design and Testing of a NewElectric Parking Brake Actuator[J],SAE2008-01-2555.
    [145] H.M. Jung, C.H. Park, J.W. Jeon, H. Yeo, Development of Electric Parking BrakeSystem[C], Proceedings of SAE2007Fall Conference,2007.8:962-967.
    [146] Zhao Yu-liang, Zhang Yu-ye, Wang Shu-juan, Research of Gathering Parking Gradeof Vehicle Electric Parking Brake System[C], Proceedings of2010InternationalConference on System Science, Engineering Design and ManufacturingInformatization,2010:266-268.
    [147]吴利军,王跃建,李克强.面向汽车纵向安全辅助系统的路面附着系数估计方法[J],汽车工程,2009,31(3):239-243.
    [148]胡丹,基于双扩展卡尔曼滤波的汽车状态及路面附着系数估计算法研究[D].长春:吉林大学汽车工程学院,2009.
    [149]张乐祎,余卓平,熊璐.基于广义卡尔曼滤波器的路面辨识[J],计算机辅助工程,2008,17(3):32-35.
    [150]丁能根,李丹华,余贵珍.基于卡尔曼滤波和ABS控制输入的车速估计[J],北京航空航天大学学报,2011,37(1):67-71.
    [151] Bolland, P. J. and Connor, J. T., Multivariate Non-Linear Kalman Filters[R],Technical Report, London Business School, June1995.
    [152]邹红明,丁能根,王伟达,余贵珍. ABSV模式开发中的快速控制器样件制作和硬件在环仿真的研究[J],汽车工程,2009,4(31):357-361
    [153]刘志茄,王庆年,曾小华. HEV控制器硬件在环仿真平台的研究与开发[J],汽车技术,2006,3:22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700