用户名: 密码: 验证码:
基于潜在农户需求的农资运输管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提供农资送货上门服务,是目前农资企业争取客户的重要竞争手段,直接关系到企业的农资销量和市场占有率。面对我国农户地理位置分散、需求量少、配送时间不集中等现状,“最后一公里”的车辆配送占农资企业配送成本和配送时间的一半以上,如何安排农资车辆配送路线直接影响到配送成本和服务水平。同时,由于农资客户需求的不确定性,受到农民的群体购买行为、左邻右舍的比较因素、以及作物的种植面积、天气因素等的影响,在进行农资配送过程中会经常发生潜在需求。如果将这些潜在农资需求提前装载在物流配送的车辆上,可以减少配送车辆的发货次数,进而减少配送成本,提高企业的配送效率,增加企业的经济收益。另外,在农资车辆配送过程中,往往存在各种干扰事件:农资需求量方面,如农户增加或减少需要的农资数量、农户因某种原因取消原来农资订单、出现新的农资需求用户等;配送时间及地址方面,如农户因临时有事等原因改变接货时间、农户因运输需要改变配送的地址等;配送车辆方面,存在车辆损坏、道路堵塞等干扰事件。如何在这些干扰事件发生后,生成新的农资车辆配送路线是一个非常有挑战的问题。
     基于以上分析,本文拟研究考虑潜在需求的农资车辆调度及其干扰管理,主要包括潜在农资需求预测方法、考虑潜在需求的农资车辆调度优化模型与算法,以及考虑潜在农户的农资车辆调度干扰管理模型三个方面。本文的贡献和可能的创新之处有四点:
     (1)针对农资配送过程中潜在农资需求的影响因素复杂、各影响因素维度不一和预测指标数据难以获得等难点,本研究首先根据全面性原则、目的性原则、实用性原则和可操作性原则,从农资产品、配送区域农户和农资企业三个方面识别出了影响潜在农资需求的16个具体指标,然后利用粗糙集的遗传算法约简法则,提出基于粗糙集的潜在农资需求预测指标约简方法,把潜在需求预测指标约简到6个指标,最后在此基础上,构建了基于RS-SVM的潜在农资需求预测方法,可以对农资配送过程中的潜在需求进行有效预测,进而能够为考虑潜在农资需求的车辆路线优化提供了基础。
     (2)考虑到在实际农资车辆配送过程中由于农户间的购买行为相互影响,本研究首先对考虑潜在农资需求的农资车辆调度问题进行描述,并给出模型假设,构建出了带有软时间窗的考虑农资需求车辆路线优化模型,接着通过采用遗传算法对约束满足算法的优化机制进行优化,提出了基于CSGA的模型求解算法,并通过数值试验验证了模型和算法的有效性,能够使得农资企业提前将潜在农资需求装载在配送车辆上,可以减少配送车辆的发货次数,进而减少配送成本,提高企业收益。
     (3)针对农资配送过程中可能发生的各种干扰事件,本研究首先构建了新增农户十扰事件识别与度量方法,从服务农户的时间干扰、农资配送司机的路线干扰和农资配送商的成本干扰三个方面并对新增农户干扰事件对原计划带来的负面影响进行定量化,并提出其他类型干扰事件转换成新增农户干扰事件的方法;接着提出了农资配送车辆最优出发时间的确定方法,在此基础上,并根据对干扰事件识别与度量的基础上,建立了考虑潜在农户的农资车辆调度干扰恢复模型,并设计了模型求解的遗传算法和嵌套分割算法,最后数据实验验证了构建模型与算法的有效性。
     (4)以邯郸市永年县某农资有限公司为实际应用研究对象,按照产品类型和重量选取邯科玉1号、邯682、沃尔森玉米施用肥和银棉棉花施用肥四种农资产品作为实际研究对象,首先分别采用提出的基于RS-SVM的潜在农资需求预测方法对该四种农资产品的100次配送过程中的潜在需求进行了预测,通过与实际发生的新增需求对比,验证了方法的有效性;接着根据该企业每次配送农户需求数据,并考虑潜在农资需求量,利用建立的考虑潜在农资需求量的车辆调度优化模型及算法对该企业的50次配送路线进行优化,为该企业的配送路线进行了有效优化;最后,通过对该企业100次配送过程中的干扰事件进行统计,选择出5次邯科玉1号配送过程为例,为该企业进行实时配送路线调整,并为该企业提出了冗余装载策略、车辆差异化策略、延迟发货策略和实时调整策略,可以有效降低企业配送成本。
     本文的主要内容安排如下:
     第一章首先给出本论文的研究背景及意义、研究问题和目标,介绍了本文的研究思路、技术路线和主要研究内容,以及研究方法与实验手段。
     第二章详细地论述和评价了相关理论基础:粗糙集理论、支持向量机原理和支持向量机回归、遗传算法原理。全面、系统地对的农资物流配送与客户挖潜、粗糙集与支持向量机、车辆调度优化、干扰管理文献进行回顾与评述。
     第三章分别从农资本身、农户和配送企业方面构建农资潜在需求预测的初始指标体系,根据预测指标体系建立了基于RS-SVM的农资物流配送过程中潜在农资需求预测模型,根据实际调查数据,使用粗糙集获得了约简后的潜在农资需求预测指标体系,并使用实际数据验证了基于RS-SVM潜在农资需求量预测方法的有效性。
     第四章考虑到在实际车辆配送过程中由于客户间的购买行为相互影响,建立考虑潜在客户需求的农资车辆调度优化数学模型,并针对该模型在标准遗传算法和约束满足技术的基础上,提出了一种新的约束满足-遗传算法用于求解所建立多约束数学模型,最后通过仿真实验验证所提出模型的有效性和算法的可行性。
     第五章针对配送过程中可能发生的各种干扰事件,首先从服务农户的时间干扰、配送司机的路线干扰和农资配送商的成本干扰三个方面并对新增农户干扰事件对原计划带来的负面影响进行定量化,并提出其他类型干扰事件转换成新增农户干扰事件的方法;接着提出了农资配送车辆最优出发时间的确定方法,进而建立了考虑潜在农户的农资车辆调度干扰恢复模型,设计了模型求解的遗传算法和嵌套分割算法。数据实验验证了构建模型与算法的有效性。
     第六章以邯郸市永年县某农资有限公司为实际应用研究对象,按照产品类型和重量选取邯科玉1号、邯682、沃尔森玉米施用肥和银棉棉花施用肥四种农资产品作为实际研究对象,进行实际应用研究,为实际企业提出具体配送策略。
     第七章总结论文研究结论。
Providing door-to-door services in agricultural materials delivery is an important competition means for agricultural materials enterprise to acquire customers, which is directly related to the agricultural materials sales and market share of enterprises. Due to the current situations in farmers in China, for example, dispersed geographically, less demand, different delivery time, it make "the last kilometer" vehicle distribution of agricultural materials account for the half of the shipping cost and delivery time. Therefore, how to arrange for agricultural materials vehicle delivery route directly affects the distribution cost and service level. At the same time, because of the demand uncertainty of the agricultural materials, the affect from the farmer group purchasing behavior, the comparison of neighbors, the crop planting area, and the influence of weather factors, the potential demand often occur in the process of agricultural materials distribution. If these potential agricultural materials requirements can be loaded in advance on the logistics distribution vehicles, the number of shipments for delivery vehicle and the distribution cost may reduce, improving the distribution efficiency of enterprises and increasing enterprise economic benefits. In addition, in the process of agricultural materials vehicle distribution, there are often various kinds of interference events:firstly, in the demand of agricultural materials, such as farmers increase or decrease the amount of agricultural materials demand, farmers cancel the original agricultural materials orders for some reason and the new customers emerges, etc.; secondly, in the delivery time and address, such as farmers change the receiving time by reason of temporary something and farmers change the delivery address because of transport need, etc.; in the delivery vehicles, such as vehicle fails, road blockage, etc.. How to generate new agricultural materials vehicle distribution route after these interference events occur is a very challenging problem.
     Based on the above analysis, this paper studies the agricultural materials vehicle scheduling and interference management considering the potential demand, which mainly includes the forecasting method of potential agricultural materials demand, the agricultural materials vehicle scheduling model and algorithm considering the potential demand, and the agricultural materials vehicle scheduling interference model based on the potential demand. The contributions of this paper and the possible innovation places are as follows:
     (1) Aiming at some difficulties in the process of agricultural materials distribution, such as the complex factors affecting the potential agricultural materials demand, different influence dimensions and the forecast indicators data is difficult to obtain, this study is based on overall principle, objective principle, the principles of practicability and operability, identifies16specific indicators affecting the potential agricultural materials demand from products, customers and enterprises three aspects. Then using the reduction rule of rough set (RS), the reduction method of potential agricultural materials demand forecasting index based on rough set is presented.6indicators is obtained based on the proposed reduction method and finally, the agricultural materials potential demand forecasting method based on RS-SVM (Rough Set Support Vector Machine) is constructed to effectively predict the potential demand in the process of agricultural materials distribution that provides the basis for the vehicle route optimization considering potential agricultural materials demand.
     (2) Considering the buying behavior influence between farmers each other in the process of the actual agricultural materials vehicle distribution, this study first describes the potential agricultural materials vehicle scheduling problem by considering the potential demand, then the model assumptions are given, and the agricultural materials vehicle route optimization model with soft time windows considering the potential demand is established. The CSGA algorithm (Constraint Satisfaction-Genetic Algorithm) is developed by optimizing the optimization mechanism of constraint satisfaction algorithm using genetic algorithm. Finally, Numerical examples verify the effectiveness of the proposed model and algorithm that make the agricultural materials enterprises load the potential demand in advance on the distribution vehicles such that it helps to decrease the number of shipments for delivery vehicles and the distribution cost, improve enterprise benefits.
     (3) For all kinds of possible interference events in the process of agricultural materials distribution, this study constructs the new farmers interference event recognition and measurement method, then quantifies the negative effects of the new farmers interference event on the original plan in farmers service time interference, agricultural materials distribution route interference and the cost of agricultural materials distributors three aspects, and presents the method converting other types of interference events into the new farmers interference event. In the following, the method to find the optimal departure time of the agricultural materials distribution vehicle is presented, based on which the agricultural materials vehicle scheduling interference recovery model is established and the genetic algorithm and nested segmentation algorithm is designed for solving the model. Finally, the numerical simulation illustrates the effectiveness of the proposed model and algorithm.
     (4) Taking an agricultural materials co., LTD in Yongnian handan city as the study object, Hankeyu1, Han682, Warsun Corn applied fertilizer and Silver cotton applied fertilizer four kinds of agricultural materials products are chosen as the actual research objects in this study according to the product type and weight. Firstly, the potential agricultural materials demand forecasting method based on RS-SVM is used to predict the potential demand of these four agricultural materials products during100times distribution process, and the method is proved to be effective by comparing the predicting results with the actual demands. Then, in terms of the farmer demand data in the distribution process and considering the potential demands, the50times distribution route in this case is optimized by adopting the agricultural materials vehicle route optimization model and algorithm; finally, by the interference event statistics in100times distribution process and choosing5times distribution process of Hankeyu1as an example, the real-time distribution route adjustment is shown, also the redundant loading strategy, differentiation strategy, late delivery vehicle and real-time adjustment strategy are proposed to reduce the enterprise distribution costs.
     The main contents of this paper are organized as following:
     Chapter1firstly introduces the research background and significance, research questions and objectives of this work, then the research thought, the technical route and the main research contents, research method and experimental means are also introduced briefly.
     Some related theoretical foundations are reviewed in detailed in Chapter2, for example, rough set, support vector machine and support vector machine regression, and genetic algorithm. Moreover, the review of the previous work on agricultural materials logistics distribution and finding the new customers, rough set and support vector machine, vehicle scheduling optimization and interference management are made comprehensively and systematically.
     In Chapter3, the initial index system of the agricultural materials potential demand prediction is constructed in agricultural materials itself, farmers and distribution enterprises three aspects; then in the light of the index system, the agricultural materials potential demand forecasting model based on RS-SVM is developed. According to the real-world data, the agricultural materials potential demand forecasting index system after reduction by rough set is obtained and the effectiveness of the agricultural materials potential demand forecasting method based on RS-SVM is illustrated by simulating the collected real-world data.
     Chapter4considers the buying behavior influence between farmers each other in the process of the actual agricultural materials vehicle distribution, establishes the agricultural materials vehicle route optimization model considering the potential demand. Based on standard genetic algorithm and constraint satisfaction technique, a novel CSGA algorithm is developed to solve the multi-constrains mathematical model and finally, simulation results show that the proposed model and algorithm is effective.
     In Chapter5, by aiming at all kinds of possible interference events in the process of agricultural materials distribution, this study quantifies the negative effects of the new farmers interference event on the original plan in farmers service time interference, agricultural materials distribution route interference and the cost of agricultural materials distributors three aspects, and presents the method converting other types of interference events into the new farmers interference event. In the following, the method to find the optimal departure time of the agricultural materials distribution vehicle is given, also the agricultural materials vehicle scheduling interference recovery model is then established; and the Genetic algorithm and nested segmentation algorithm is designed for solving the model. Finally, the numerical simulation illustrates the effectiveness of the proposed model and algorithm.
     Chapter6takes an agricultural materials co., LTD in Yongnian handan city as the study object, Hankeyu1, Han682, Warsun Corn applied fertilizer and Silver cotton applied fertilizer four kinds of agricultural materials products are chosen as the actual research objects in this study according to the product type and weight. The case study is finished based on the proposed methods and algorithms which provide the concrete the distribution strategy for enterprises.
     The conclusions are remarked in Chapter7.
引文
1. 刘军,杨化云.农资物流研究与发展状况分析[A].智能处理与应用,2013,(3):75-77.
    2. 刘茂松.最优化方法在农资商品物流管理中的运用[J].山西财经学院学报,1984:27-32.
    3. 常浩.城市配送最后一公里问题的研究[J].商品与质量,2012:40.
    4. 刘飞驰,邹小梅,陈泽民.我国农资物流发展中存在的问题与对策分析[J].中小企业管理与科技(上旬刊),2010:145-146.
    5. 付卫红,张歆艳.多类型物流配送优化策略研究[B].计算机仿真,2012,29(9):251-254.
    6. Refael Hassin, Shlomi Rubinstein. On the complexity of the k-customer vehicle routing problem [J]. Operations Research Letters, 2005,33(1):71-76
    7. David Mester, Olli Braysy, Wout Dullaert. A multi-parametric evolution strategies algorithm for vehicle routing problems [J]. Expert Systems with Applications, 2011,32(02):508-517
    8. Gabriel Gutierrez-Jarpa, Guy Desaulniers, Gilbert Laporte, Vladimir Marianov. A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows [J]. European Journal of Operational Research, 2012,206(2):341-349
    9. 胡祥培,黄敏芳,Zeng Amy Z.环状区域的车辆路径方案生成系统及优化模型[J].管理科学学报,2008,11(6):103-111
    10.张钦,李辉.带有时间窗约束的车辆路径问题的一种改进遗传算法[J].系统管理学报,2010,19(5):589-592
    11. George loannou, Manolis Kritikos, Gregory Prastacos. A problem generator-solver heuristic for vehicle routing with soft time windows [J]. Omega,2013,31(1):41-53
    12. Herminia I. Calvete, Carmen Gale, Maria-Jose Oliveros, Belen Sanchez-Valverde. A goal programming approach to vehicle routing problems with soft time windows[J]. European Journal of Operational Research,2012,177(3):1720-1733
    13. A. G. Qureshi, E. Taniguchi, T. Yamada. An exact solution approach for vehicle routing and scheduling problems with soft time windows [J]. Transportation Research Part E:Logistics and Transportation Review,2009,45(6):960-977
    14.邓爱民,毛超,周彦霆.带软时间窗的集配货一体化VRP改进模拟退火算法优化研究[J].系统工程理论与实践,2009,29(5):186-192
    15. Hsiao-Fan Wang, Yu-Pin Wen. Time-constrained Chinese postman problems [J]. Computers & Mathematics with Applications,2002,44(34):375-387
    16.张建勇,李军,郭耀煌.带模糊预约时间的动态VRP的插入启发式算法[J].西南交通大学学报,2008,43(1):108-114
    17. Jia-fu Tang, Zhen-dong Pan, Richard Y K Fung, Henry Lau. Vehicle routing problem with fuzzy time windows[J]. Fuzzy Sets and Systems,2012,160(5):683-695
    18.苑静蕾.农资连锁经营配送车辆实时调度优化模型与算法研究[J].北京交通大学硕十学位论文集,2010.
    19.杨云超.村镇农资连锁经营物流配载与配送组合优化理论及应用研究[J].北京交通大学硕士学位论文集,2010.
    20. Eunju Kim, Wooju Kim, Yillbyung Lee. Combination of multiple classifiers for the customer's purchase behavior prediction[J]. Decision Support Systems, 2003,34(2):167-175.
    21.刘林,喻国平.基于自组织特征映射(SOM)网络对潜在客户的挖掘[J].南昌大学学报(理科版),2006,30(5):507-510.
    22.过蓓蓓,方兆本.基于SVM的Web日志挖掘及潜在客户发现[A].管理工程学报,2010,(1):129-133.
    23. Clausen Jens Clausen, Jesper Hansen, Jesper Larsen and Allan Larsen. Disruption Management, OR/MS Today,2001,28(5),40-43.
    24. Xiangpei Hu, Lijun Sun, Linlin Liu: A PAM approach to handling disruptions in real-time vehicle routing problems. Decision Support Systems 54(3):1380-1393 (2013)
    25.王旭坪,阮俊虎,张凯,马超.有模糊时间窗的车辆调度组合干扰管理研究[J].管理科学学报,2011,14(6):2-15.
    26. Pawlak Z, Rough sets. International Journal of Information and Computer Science,11,1982.
    27.王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[A].计算机学报,2009,32(7):1229-1240.
    28.韩祯祥,张琦,文福拴.粗糙集理论及其应用[J].信息与控制,1998,27(1):37-45.
    29. H. Xiaohua. Knowledge Diseoveryin Databases: an Attribute-oriented Rough Set Approaeh. Ph.D. Thesis, University of Regiona, Canada,1995.
    30.李文娟.基于粗糙集与支持向量机的个人信用评估[D].重庆大学,2011.
    31.邹铁英.基于粗糙集与支持向量机的电力短期负荷预测研究[D].南昌大学,2008.
    32.汪琼枝.不完备信息系统的属性约简算法[D].安徽大学,2011.
    33.菅利荣.面向不确定性决策杂合粗糙集方法及其应用[M].北京:科学出版社,2008.
    34.孙晶晶,刘镔,刘粉林.基于遗传算法的不完备信息表约简算法[J].计算机工程与应用,2005,41(22):174-176.
    35.徐宗本,张讲社,郑亚林.计算智能中的仿生学:理论与算法[M].北京:科学出版社,2003.
    36. V. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995.
    37. V. Vapnik, A. Lerner. Pattern Recognition Using Generalized Portrait Method. Automation and Remote Control,1963,24(6):774-780.
    38. V. Vapnik, A. Y. Chervonenkis. A Note on one Class of Perceptrons. Automation and Remote Control,1964,25.
    39.唐发明.基于统计学习理论的支持向量机算法研究[D].华中科技大学,2005.
    40.张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.
    41.袁玉萍,陈庆华,汪洪艳.关于支持向量机VC维问题证明的研究[C].农业与技术,2006,26(3):210-211.
    42.阮俊虎.基于GA-SVM的区域物流需求预测研究[D].河北工程大学,2010.
    43.魏善冠.基于支持向量机的高速公路交通量预测研究[D].长安大学,2010.
    44. V.Vapnik,Levin E,Le Cun Y. Measuring the VC dimension of a learning machine[J]. Neural Computation,1994,6:851-876.
    45.邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2004:11-20.
    46. J‘世匕,齐丙娟,谭红艳.支持向量机理论与算法研究综述[A].电子科技大学学报,2011,40(1):2-7.
    47.陈继超,支持向量机技术及其应用[J].科技信息,2007,(25):196-197.
    48.李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):28-30.
    49. Steve Gunn,Support vector machines for classification and regression,ISIS. Southamp-ton University.1998.
    50. A.Smola,Regression Estimation with Support Vector Learning Machines,Master's Thesis, Technische Universita Mu nehen,Germany,1996.
    51. Aizerman M.A. etc. Theoretical foundations of the potential function method in pattern recognition learning. Journal of Machine Learning Research 2000:113-141.
    52.张永利.基于支持向量机的信息融合技术研究及应用[D].西安科技大学,2008.
    53. Scholkopf B.. Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J]. IEEE Trans. On process,1997,(45):2578-2765.
    54. Carozza, M.Rampone, S.Towards an incremental SVM for regression. Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Volume 6.24-27 July 2000:405-410.
    55. Mohsen Behzad, Keyvan AsghariMorteza Eazi, Maziar Palhang. Generalization performance of Support vector machines and neural networks in runoff modeling[J]. Expert Systems with Applications,2009,36(4):7624-7629.
    56.董雁萍.支持向量机预测模型的构建及其应用[D].西安理工大学,2010.
    57.阎纲.支持向量机在股市预测中的应用[J].科学技术与工程,2008,8(2):804-805,905,533.
    58.王磊.河南省农资物流发展研究[D].河南工业大学,2010.
    59.卜苏华.我国物流配送业的发展现状及对策探讨[J].商业流通,2008,(33),34-35.
    60.王之泰.新编现代物流学[M].北京:首都经济贸易大学出版社,2005:8.
    61.杨胜.对农资配送走合作性竞争之路的探讨[A].邮政研究,2005,21(5):42-43.
    62.王慧玲,王磊.农资配送物流发展策略初探[A].理论建设,2007,(1):26-28.
    63.朱鹏颐.基于现代物流理念创建农资配送新体系[J].海峡科技,2008,(3):7-8.
    64.李宝侠.依托地方龙头企业建立陕西农资物流配送模式研究[A].现代商贸工业,2010,(20):115-117.
    65.唐海亨.食品企业自营物流配送设计及优化研究[D].吉林大学,2012.
    66.沈亚镁.基于行为特征的潜在客户发现摸型研究[D].杭州电子科技大学,2011.
    67. Eunju Kim, Wooju Kim, Yillbyung Lee. Combination of multiple classifiers for the customer's purchase behavior prediction[J], Decision Support Systems, 2003,34(2):167-175.
    68.刘林,喻国平.基于自组织特征映射(SOM)网络对潜在客户的挖掘[J].南昌大学学报(理科版),2006,30(5):507-510.
    69.刘献,吴清烈.浅析大规模定制客户需求获取方法[A].价值工程,2009,(2):90-91.
    70.过蓓蓓,方兆本.基于SVM的Web日志挖掘及潜在客户发现[A].管理工程学报,2010,(1):129-133.
    71.李元诚,方廷健.基于粗糙集理论的支撑向量机预测方法研究[A].数据采集与处理,2003,18(2):199-203.
    72.李波,李新军.—种基于粗糙集和支持向量机的混合分类算法[A].计算机应用,2004,24(3):65-67.
    73.肖云,韩崇昭,郑庆华,赵婷.基于粗糙集-支持向量机理论的过滤误报警方法[A].电子与信息学报,2007,29(12):3011-3014.
    74.韩虎,党建武,任恩恩.基于邻域粗糙集的支持向量机分类方法研究[J].计算机科学,2010,37(2):229-231.
    75.何满辉,逯林,刘拴宏.基于模糊粗糙集与支持向量机的区域物流量预测[A].交通运输系统工程与信息,2012,12(3):129-134.
    76. Dantzig G. B., Ramser J. H.. The truck dispatching problem[J]. Management Science, 1959,6(1): 80-91
    77. Garey M. R., Johnson D. S.. Computers and Intractability:A Guide to Theory of NP-Completeness [M]. San Francisco:W.H. Freeman and Company, 1979:17-38
    78. Refael Hassin, Shlomi Rubinstein. On the complexity of the k-customer vehicle routing problem [J]. Operations Research Letters,2005,33(1):71-76
    79. David Mester, Olli Braysy, Wout Dullaert. A multi-parametric evolution strategies algorithm for vehicle routing problems [J]. Expert Systems with Applications,2011,32(02):508-517
    80. Gabriel Gutierrez-Jarpa, Guy Desaulniers, Gilbert Laporte, Vladimir Marianov. A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows [J]. European Journal of Operational Research,2012,206(2):341-349
    81.李军.有时间窗的车辆调度问题的网络启发式算法[J].系统工程,1999,17(2):66-71
    82.胡祥培,黄敏芳,Zeng Amy Z.环状区域的车辆路径方案生成系统及优化模型[J].管理科学学报,2008,11(6):103-111
    83.张钦,李辉.带有时间窗约束的车辆路径问题的一种改进遗传算法[J].系统管理学报,2010,19(5):589-592
    84. Y. A.Koskosidis, W. B. Powell and M. M. Solomon. An optimization-based heuristic for vehicle routing and scheduling with soft time window constraints[J]. Transportation Science,1992,26(2): 69-85
    85. George Ioannou, Manolis Kritikos, Gregory Prastacos. A problem generator-solver heuristic for vehicle routing with soft time windows [J]. Omega,2013,31(1):41-53
    86. Herminia I. Calvete, Carmen Gale, Maria-Jose Oliveros, Belen Sanchez-Valverde. A goal programming approach to vehicle routing problems with soft time windows[J]. European Journal of Operational Research,2012,177(3):1720-1733
    87. A. G. Qureshi, E. Taniguchi, T. Yamada. An exact solution approach for vehicle routing and scheduling problems with soft time windows [J]. Transportation Research Part E: Logistics and Transportation Review, 2009,45(6):960-977
    88.邓爱民,毛超,周彦霆.带软时间窗的集配货一体化VRP改进模拟退火算法优化研究[J].系统工程理论与实践, 2009,29(5):186-192
    89. Hsiao-Fan Wang, Yu-Pin Wen. Time-constrained Chinese postman problems [J]. Computers & Mathematics with Applications, 2002,44(34):375-387
    90.张建勇,李军,郭耀煌.具有模糊预约时间的VRP混合遗传算法[J].管理科学学报,2005,8(3):64-71
    91.张建勇,李军,郭耀煌.带模糊预约时间的动态VRP的插入启发式算法[J].西南交通大学学报,2008,43(1):108-114
    92. Jia-fu Tang, Zhen-dong Pan, Richard Y K Fung, Henry Lau. Vehicle routing problem with fuzzy time windows[J]. Fuzzy Sets and Systems,2012,160(5):683-695
    93.王旭坪,阮俊虎,张凯,马超.有模糊时间窗的车辆调度组合干扰管理研究[J].管理科学学报,2011,14(6):2-15.
    94. Wang Xuping, Fu Kejun, Hu Xiangpei. Modeling on Emergency Logistics Scheduling System Based on Object-oriented. International Symposium on Management Engineering 2006, March 10-12,2006, Fukuoka, Japan
    95. Wang Xuping, Fu Kejun, Hu Xiangpei. Research on Emergency Logistics System and Its Emergent Response Mechanism [C], Proceedings of 2005 IEEE International Conference on Service Operations and Logistic, and Informatics, August 10-12,2005, Beijing, P.R.China. 203-206
    96.王旭坪,傅克俊,胡胡祥培.应急物流系统及其快速反应机制研究,中国软科学,2005(6):127-131
    97. Yu G., M. Arguello, M. Song, S. McCowan and A. White. A new Era for Crew Recovery at Continental Airlines, Interfaces, in Press.
    98. Thengvall, B., J.F. Bard, and G. Yu. Balancing User Preferences for Aircraft Recovery during Airline Irregular Operations, ⅡE Transactions on Operations Engineering, 2000(32):181-193.
    99. Clausen J, Hansen J, Larsen J, et al. Disruption Management [J]. ORMS Today,2011(28):40-43.
    100. Van de Vonder, Stijn; Demeulemeester, Erik; Herroelen, Willy; Leus, Roel. The use of buffers in project management:The trade-off between stability and makespan [J]. Int. J. Production Economics,2005(97):227-240
    101. Xia Yu-sen, Qi Xiang-tong, Yu Gang. Real-time Production and Inventory Disruption Management under the Continuous Rate EPQ Model [J]. Naval Research Logistics, 2002.
    102.刘春林,何建敏,盛昭瀚.应急系统调度问题的模糊规划方法[J].系统工程学报,1999,14(4):351-355
    103.王岑,高成修.投资决策中的0-1背包问题的扰动修复[J].武汉大学学报(理学版),2004,50(5):542-546
    104.杨静,陈建明,赵红.应急管理中的突发事件分类分级研究[J].管理评论,2011,17(4):37-41
    105.于辉,陈剑,于刚.协调供应链如何应对突发事件[J].系统工程理论与实践,2009(7):9-16
    106. Portougal, Victor; Trietsch, Dan. Setting due dates in a stochastic single machine environment[J]. Computers & Operations Research, 2012 (33):1681-1694
    107. Walker, Cameron G.; Snowdon, Jody N; Ryan, David M. Simultaneous disruption recovery of a train timetable and crew roster in real time [J]. Computers & Operations Research, 2011(32): 2077-2094
    108. Wu, Cheng-Lung. Inherent delays and operational reliability of airline schedules [J]. Journal of Air Transport Management, 2005(11):273-282
    109. Gang Yu, Xiangtong Qi. Disruption Management[M], World Scientific, 2004
    110.蒋长兵.现代物流学导论[M].北京:中国物资出版社,2006.
    111.侯文英,余晓东.农产品企业物流配送模式决策研究[A].安徽农业科学,2010,38(6):3169-3170.
    112.李玉春.基于RS和SVM的建设工程投标报价研究[D].天津大学,2010.
    113. Szladow A, Ziarko Z. Rough Sets:Working with Imperfect Data, AI Expert, July,1993.
    114. Slow inski R. Rough Set Approach to Decision Analysis, AI Expert, March,1995.
    115. Pawlak Z, et al. Rough Sets, Communications of ACM, November,1995.
    116.杜婷.基于粗糙集支持向量机的个人信用评估模型[A].统计与决策,2012,(1):94-96.
    117.翟永杰.基于支持向量机的故障智能诊断方法研究[D].华北电力大学(河北),2004.
    118.肖文兵,费奇.基于支持向量机的个人信用评估模型及最优参数选取研究[J].系统工程理论与实践,2006,(10):73-79.
    119.王润华.基于改进支持向量机的消费信贷个人信用评估模型[J].统计与决策,2010,(11):54-56.
    120. Laporte G.. The vehicle routing problem:An overview of exact and approximate algorithms[J]. European Journal of Operational Research,1992,59(3):345-358.
    121. Liu F. F., Shen S.. An overview of a heuristic for vehicle routing problem with time windows[J]. Computers & Industrial Engineering, 1999, 37(1-2):331-334.
    122. Eksioglu B., Vural A. V., Reisman A.. The vehicle routing problem: A taxonomic review[J]. Computers & Industrial Engineering, 2009,57(4):1472-1483.
    123. Pillac V., Gendreau M., Gueret C., Medaglia A. L.. A review of dynamic vehicle routing problems[J]. European Journal of Operational Research,2013,225(1):1-11.
    124. Junger M., Reinelt G, Rinaldi G. The traveling salesman problem, In: M.O. Ball, T.L. Magnanti, C.L. Monma and GL. Nemhauser, Editor(s), Handbooks in Operations Research and Management Science, Elsevier, 1995,7:225-330.
    125.李军,郭耀煌.物流配送车辆优化调度理论与方法[M].中国物资出版社,2001.
    126.赵斐.基于GA-ACO的港口集卡路径优化研究[D].河北工程大学,2011.
    127. Laporte G. The traveling salesman problem: An overview of exact and approximate algorithms[J]. European Journal of Operational Research, 1992,59(2):231-247.
    128. Korner F.. On the relationship of approximation algorithms for the minimum and the maximum traveling salesman problem [J]. European Journal of Operational Research, 1986,26(2):262-265.
    129. Yang G.. Transformation of multidepot multisalesmen problem to the standard travelling salesman problem[J]. European Journal of Operational Research, 1995,81(3):557-560.
    130. Moon C., Kim J., Choi G, Seo Y.. An efficient genetic algorithm for the traveling salesman problem with precedence constraints[J]. European Journal of Operational Research, 2002,140(3): 606-617.
    131.Bassetto T., Mason F.. Heuristic algorithms for the 2-period balanced Travelling Salesman Problem in Euclidean graphs[J]. European Journal of Operational Research, 2011,208(3): 253-262.
    132. Prins C.. A simple and effective evolutionary algorithm for the vehicle routing problem[J]. Computers & Operations Research, 2004, 31(12):1985-2002.
    133.唐立新.旅行商问题(TSP)的改进遗传算法[J].东北大学学报,1999,01:43-45.
    134.高尚,韩斌,吴小俊,杨静宇.求解旅行商问题的混合粒子群优化算法[J].控制与决策,2004,11:1286-1289.
    135. Gouveia L., VoB S.. A classification of formulations for the (time-dependent) traveling salesman problem[J]. European Journal of Operational Research, 1995,83(1):69-82.
    136.胡文韬.基于蚁群算法的车辆调度问题研究[D].华中科技大学,2011.
    137. Solomon M. M.. Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints [J]. Operations Research, 1987,35(2):254-265.
    138. Banos R., Ortega J., Gil C., L. Marquez A. L., de Toro F.. A hybrid meta-heuristic for multi-objective vehicle routing problems with time windows[J]. Computers & Industrial Engineering, 2013,65(2):286-296.
    139. Chang T., Wan T., OOI W. T.. A stochastic dynamic traveling salesman problem with hard time windows, European Journal of Operational Research, 2009, 198(3):748-759.
    140. Brandao J., Mercer A.. A tabu search algorithm for the multi-trip vehicle routing and scheduling problem [J]. European Journal of Operational Research, 1997,100(1):180-191.
    141. Eliiyi D. T., Ornek A., Karakiitiik S. S.. A vehicle scheduling problem with fixed trips and time limitations [J]. International Journal of Production Economics,2009,117(1):150-161.
    142. Garcia-Najera A., Bullinaria J. A.. An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows [J]. Computers & Operations Research,2011,38(1): 287-300.
    143. Hassin R., Rubinstein S.. On the complexity of the k-customer vehicle routing problem [J]. Operations Research Letters, 2005,33(1):71-76.
    144. Mester D., Braysy O., Dullaert W.. A multi-parametric evolution strategies algorithm for vehicle routing problems [J]. Expert Systems with Applications,2011,32(02):508-517.
    145. Gutierrez-Jarpa G., Desaulniers G., Laporte G., Marianov V.. A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows [J]. European Journal of Operational Research, 2012, 206(2):341-349.
    146.冷德惠,张金海,李大卫.遗传算法在有时间窗车辆路径问题上的应用[J].鞍山钢铁学院学报,1999,03:2-5.
    147.刘志硕,柴跃廷,申金升.蚁群算法及其在有硬时间窗的车辆路径问题中的应用[J].计算机集成制造系统,2006,04:596-602.
    148.宋厚冰,蔡远利.有时间窗约束的车辆路径问题的改进遗传算法[J].交通与计算机,2003,04:25-27.
    149.刘小兰,郝志峰,汗国强,符克强.有时间窗的车辆路径问题的近似算法研究[J].计算机集成制造系统,2004,07:825-831.
    150.杨宇栋,朗茂祥,胡思继.有时间窗车辆路径问题的模型及其改进模拟退火算法研究[J].管理 工程学报,2006,03:104-107.
    151.邹彤,李宁,孙德宝,李菁.多车场车辆路径问题的遗传算法[J].计算机工程与应用,2004,21:82-83.
    152.李军.有时间窗的车辆调度问题的网络启发式算法[J].系统工程,1999,17(2):66-71
    153.胡祥培,黄敏芳,Zeng Amy Z.环状区域的车辆路径方案生成系统及优化模型[J].管理科学学报,2008,11(6):103-111
    154.张钦,李辉.带有时间窗约束的车辆路径问题的一种改进遗传算法[J].系统管理学报,2010,19(5):589-592
    155. Favarettoa D., Morettib E., Pellegrinic P.. Ant colony system for a VRP with multiple time windows and multiple visits [J]. Journal of Interdisciplinary Mathematics, 2007,10(2):263-284
    156. Doerner K. F., Gronalt M., Haitl R. F., Kiechle G., Reimann M.. Exact and heuristic algorithms for the vehicle routing problem with multiple interdependent time windows [J]. Computers & Operations Research,2008,35(9):3034-3048.
    157. Belhaiza S., Hansen P., Laporte G.. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows[J]. Computers & Operations Research, 2013(Available online).
    158. Cetinkaya C., Karaoglan I., Gokcen H.. Two-stage vehicle routing problem with arc time windows: A mixed integer programming formulation and a heuristic approach[J]. European Journal of Operational Research,2013,230(3):539-550.
    159. Taillard E., Badeau P., Gendreau M, Guertin F., Potvin J.. A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows [J]. Transportation Science,1997,31(2):170-186.
    160. Ioachim I., Gelinas S., Soumis F., Desrosiers J.. A dynamic programming algorithm for the shortest path problem with time windows and linear node costs [J]. Networks,1998,31:193-204.
    161.Qureshi A.G., Taniguchi E., Yamada T. An exact solution approach for vehicle routing and scheduling problems with soft time windows [J]. Transportation Research Part E:Logistics and Transportation Review,2009,45(6):960-977.
    162. Calvete H.I., GaleC., Oliveros M.J., Sanchez-Valverde B.. Vehicle routing problems with soft time windows:An optimization based approach, in:M.C. Lopez de Silanes et al. (Eds.), Proceedings of VIII Journees Zaragoza-Pau de Mathematiques Appliquees et Statistiques, vol.31, Monografi'as del Seminario Matematico Garci'a Galdeano, Univ. de Zaragoza, 2004, pp.295-304.
    163. Park Y.. A hybrid genetic algorithm for the vehicle scheduling problem with due times and time deadlines [J]. International Journal of Production Economics,2001,73(2):175-188.
    164. Koskosidis Y. A., Powell W. B., Solomon M. M.. An optimization-based heuristic for vehicle routing and scheduling with soft time window constraints[J]. Transportation Science,1992,26(2): 69-85.
    165. Ioannou G., Kritikos M., Prastacos G.. A problem generator-solver heuristic for vehicle routing with soft time windows [J]. Omega, 2013,31(1):41-53.
    166. Calvete H. I., Gale C., Oliveros M., Sanchez-Valverde B.. A goal programming approach to vehicle routing problems with soft time windows[J]. European Journal of Operational Research, 2012,177(3):1720-1733.
    167. Qureshi A. G., Taniguchi E., Yamada T.. An exact solution approach for vehicle routing and scheduling problems with soft time windows [J]. Transportation Research Part E:Logistics and Transportation Review, 2009,45(6):960-977.
    168.刘诚,陈治亚,封全喜.带软时间窗物流配送车辆路径问题的并行遗传算法[J].系统工程,2005,10:7-11.
    169.宾松,符卓.求解带软时间窗的车辆路径问题的改进遗传算法[J].系统工程,2003,06:12-15.
    170.段凤华.带软时间窗约束的开放式车辆路径问题及其应用[D].中南大学,2010.
    171.邓爱民,毛超,周彦霆.带软时间窗的集配货一体化VRP改进模拟退火算法优化研究[J].系统工程理论与实践, 2009,29(5):186-192.
    172. Wang H., Wen Y.. Time-constrained Chinese postman problems [J]. Computers & Mathematics with Applications, 2002,44(34):375-387.
    173.张建勇,李军,郭耀煌.具有模糊预约时间的VRP混合遗传算法[J].管理科学学报,2005,8(3):64-71.
    174.张建勇,李军,郭耀煌.带模糊预约时间的动态VRP的插入启发式算法[J].西南交通大学学报,2008,43(1):108-114.
    175. Tang J., Pan Z., Fung R. Y. K., Lau H.. Vehicle routing problem with fuzzy time windows[J]. Fuzzy Sets and Systems, 2012,160(5):683-695.
    176.王旭坪,阮俊虎,张凯,马超.有模糊时间窗的车辆调度组合干扰管理研究[J].管理科学学报,2011,14(6):2-15.
    177. Garey M. R., Johnson D. S.. Computers and Intractability: A Guide to Theory of NP-Completeness [M]. San Francisco:W.H. Freeman and Company, 1979:17-38.
    178. Yu B., Yang Z., Yao B.. An improved ant colony optimization for vehicle routing problem[J]. European Journal of Operational Research,2009,196 (1):171-176.
    179. Bell J. E., McMullen P. R.. Ant colony optimization techniques for the vehicle routing problem[J]. Advanced Engineering Informatics, 2004,18(1):41-48.
    180. Zhang X., Tang L.. A new hybrid ant colony optimization algorithm for the vehicle routing problem[J].Pattern Recognition Letters,2009,30:848-855.
    181. Pellegrini P., Favaretto D., Moretti E.. Multiple Ant Colony Optimization for a Rich Vehicle Routing Problem: A Case Study [J]. Knowledge-Based Intelligent Information and Engineering Systems Lecture Notes in Computer Science Volume 4693,2007:627-634.
    182.刘志硕,申金升,柴跃廷.基于自适应蚁群算法的车辆路径问题研究[J].控制与决策,2005,05:562-566.
    183.刘志硕,申金升,关伟.车辆路径问题的混合蚁群算法设计与实现[J].管理科学学报,2007,03:15-22.
    184.丁秋雷,胡祥培,李永先.求解有时间窗的车辆路径问题的混合蚁群算法[J].系统工程理论与实践,2007,10:98-104.
    185.刘云忠,宣慧玉.动态蚁群算法在带时间窗车辆路径问题中的应用[J].中国工程科学,2005,12:35-40.
    186. Breedam A. V.. Improvement heuristics for the Vehicle Routing Problem based on simulated annealing[J]. European Journal of Operational Research, 1995,86(3):480-490.
    187. Tavakkoli-Moghaddam R., Safaei N., Gholipour Y.. A hybrid simulated annealing for capacitated vehicle routing problems with the independent route length[J]. Applied Mathematics and Computation,2006,176(2):445-454.
    188. Kuo Y.. Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem[J]. Computers & Industrial Engineering, 2010,59(1):157-165.
    189. Banos R., Ortega J., Gil C., Fernandez A., de Toro F.. A Simulated Annealing-based parallel multi-objective approach to vehicle routing problems with time windows[J]. Expert Systems with Applications, 2013,40(5):1696-1707.
    190. Alfa A. S., Heragu S. S., Chen M.. A 3-OPT based simulated annealing algorithm for vehicle routing problems[J]. Computers & Industrial Engineering, 1991,21(1-4):635-639.
    191.杨宇栋,朗茂祥,胡思继.有时间窗车辆路径问题的模型及其改进模拟退火算法研究[J].管理工程学报,2006,03:104-107.
    192.郎茂祥.装卸混合车辆路径问题的模拟退火算法研究[J].系统工程学报,2005,05:41-47.
    193. Cordeau J., Maischberger M.. A parallel iterated tabu search heuristic for vehicle routing problems [J]. Computers & Operations Research, 2012,39(9):2033-2050.
    194.郎茂祥,胡思继.车辆路径问题的禁忌搜索算法研究[J].管理工程学报,2004,01:81-84.
    195.符卓.带装载能力约束的开放式车辆路径问题及其禁忌搜索算法研究[J].系统工程理论与实践,2004,03:123-128.
    196.刘兴,贺国光.车辆路径问题的禁忌搜索算法研究[J].计算机工程与应用,2007,24:179-181+199.
    197. Ai T. J., Kachitvichyanukul V.. A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery [J]. Computers & Operations Research, 2009, 36(5):1693-1702.
    198. Goksal F. P., Karaoglan I., Altiparmak F.. A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery[J]. Computers & Industrial Engineering,2013,65(1):39-53.
    199. Marinakis Y, Marinaki M., DouniasG.. A hybrid particle swarm optimization algorithm for the vehicle routing problem[J]. Engineering Applications of Artificial Intelligence, 2010, 23(4): 463-472.
    200. Marinakis Y, Iordanidou G., Marinaki M.. Particle Swarm Optimization for the Vehicle Routing Problem with Stochastic Demands[J].Applied Soft Computing, 2013, 13(4):1693-1704.
    201. MirHassani S.A., Abolghasemi N.. A particle swarm optimization algorithm for open vehicle routing problem[J]. Expert Systems with Applications, 2011,38(9):11547-11551.
    202.李宁,邹彤,孙德宝.带时间窗车辆路径问题的粒子群算法[J].系统工程理论与实践,2004,04:130-135.
    203.李宁,邹彤,孙德宝.车辆路径问题的粒子群算法研究[J].系统工程学报,2004,06:596-600.
    204.张丽艳,庞小红,夏蔚军,吴智铭,梁硕.带时间窗车辆路径问题的混合粒子群算法[J].上海交通大学学报,2006,11:1890-1894+1900.
    205.徐杰,黄德先.基于混合粒子群算法的多目标车辆路径研究[J].计算机集成制造系 统,2007,03:573-579+584.
    206. Ghoseiri K., Ghannadpour S. F.. Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm[J]. Applied Soft Computing, 2010,10(4):1096-1107.
    207. Ursani Z., Essam D., Cornforth D., Stocker R.. Localized genetic algorithm for vehicle routing problem with time windows[J]. Applied Soft Computing,2011,11(8):5375-5390.
    208. Nazif H., Lee L. S.. Optimised crossover genetic algorithm for capacitated vehicle routing problem[J]. Applied Mathematical Modelling,2012,36(5):2110-2117.
    209. Hwang H.. An improved model for vehicle routing problem with time constraint based on genetic algorithm[J]. Computers & Industrial Engineering,2002,42(2-4):361-369.
    210. Baker B. M., Ayechew M. A.. A genetic algorithm for the vehicle routing problem[J]. Computers & Operations Research,2003,30(5):787-800.
    211.潘震东,唐加福,韩毅.带货物权重的车辆路径问题及遗传算法[J].管理科学学报,2007,03:23-29.
    212.姜昌华,戴树贵,胡幼华.求解车辆路径问题的混合遗传算法[J].计算机集成制造系统,2007,10:2047-2052.
    213.邹彤,李宁,孙德宝.不确定车辆数的有时间窗车辆路径问题的遗传算法[J].系统工程理论与实践,2004,06:134-138.
    214.姜大立,杨西龙,杜文,周贤伟.车辆路径问题的遗传算法研究[J].系统工程理论与实践,1999,06:41-46.
    215.张丽萍,柴跃廷.车辆路径问题的改进遗传算法[J].系统工程理论与实践,2002,08:79-84.
    216.禹晓蕾.基于约束满足的改进蚁群算法在车间调度中的应用研究[D].武汉理工大学,2010.
    217.冯欣.约束满足技术的研究及在生产调度中的应用[D].东北大学,2008.
    218.许秀林,胡克瑾.基于约束满足和遗传算法的排课算法[J].计算机工程,2010,14:281-284.
    219.陈立.结合约束满足遗传算法的炼钢一连铸调度问题研究[D].武汉科技大学,2012.
    220.朱鹏颐.基于现代物流理念创建农资配送新体系[J].海峡科学,2008,15(3):7-8,16.
    221. Dantzig G. B., Ramser J. H.. The truck dispatching problem[J]. Management Science,1959,6(1): 80-91
    222. Garey M. R., Johnson D. S.. Computers and Intractability: A Guide to Theory of NP-Completeness [M]. San Francisco: W.H. Freeman and Company, 1979:17-38
    223. Refael Hassin, Shlomi Rubinstein. On the complexity of the k-customer vehicle routing problem [J]. Operations Research Letters,2005,33(1):71-76
    224. David Mester, Olli Braysy, Wout Dullaert. A multi-parametric evolution strategies algorithm for vehicle routing problems [J]. Expert Systems with Applications, 2011,32(02):508-517
    225. Gabriel Gutierrez-Jarpa, Guy Desaulniers, Gilbert Laporte, Vladimir Marianov. A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows [J]. European Journal of Operational Research,2012,206(2):341-349
    226.李军.有时间窗的车辆调度问题的网络启发式算法[J].系统工程,1999,17(2):66-71
    227.胡祥培,黄敏芳,Zeng Amy Z.环状区域的车辆路径方案生成系统及优化模型[J].管理科学学报,2008,11(6):103-111
    228.张钦,李辉.带有时间窗约束的车辆路径问题的一种改进遗传算法[J].系统管理学报,2010,19(5):589-592
    229. Y. A.Koskosidis, W. B. Powell and M. M. Solomon. An optimization-based heuristic for vehicle routing and scheduling with soft time window constraints[J]. Transportation Science, 1992, 26(2): 69-85
    230. George Ioannou, Manolis Kritikos, Gregory Prastacos. A problem generator-solver heuristic for vehicle routing with soft time windows [J]. Omega,2013,31(1):41-53
    231.Herminia I. Calvete, Carmen Gale, Maria-Jose Oliveros, Belen Sanchez-Valverde. A goal programming approach to vehicle routing problems with soft time windows[J]. European Journal of Operational Research,2012,177(3):1720-1733
    232. A. G. Qureshi, E. Taniguchi, T. Yamada. An exact solution approach for vehicle routing and scheduling problems with soft time windows [J]. Transportation Research Part E: Logistics and Transportation Review,2009,45(6):960-977
    233.邓爱民,毛超,周彦霆.带软时间窗的集配货一体化VRP改进模拟退火算法优化研究[J].系统工程理论与实践,2009,29(5):186-192
    234. Hsiao-Fan Wang, Yu-Pin Wen. Time-constrained Chinese postman problems [J]. Computers &
    Mathematics with Applications,2002,44(34):375-387
    235.张建勇,李军,郭耀煌.具有模糊预约时间的VRP混合遗传算法[J].管理科学学报,2005,8(3):64-71
    236.张建勇,李军,郭耀煌.带模糊预约时间的动态VRP的插入启发式算法[J].西南交通大学学报,2008,43(1):108-114
    237. Jia-fu Tang, Zhen-dong Pan, Richard Y K Fung, Henry Lau. Vehicle routing problem with fuzzy time windows[J]. Fuzzy Sets and Systems,2012,160(5):683-695
    238.王旭坪,阮俊虎,张凯,马超.有模糊时间窗的车辆调度组合干扰管理研究[J].管理科学学报,2011,14(6):2-15.
    239.苑静蕾.农资连锁经营配送车辆实时调度优化模型与算法研究[J].北京交通大学硕士学位论文集,2010.
    240.杨云超.村镇农资连锁经营物流配载与配送组合优化理论及应用研究[J].北京交通大学硕士学位论文集,2010.
    241. Wang Xuping, Fu Kejun, Hu Xiangpei. Modeling on Emergency Logistics Scheduling System Based on Object-oriented. International Symposium on Management Engineering 2006, March 10-12,2006, Fukuoka, Japan
    242. Wang Xuping, Fu Kejun, Hu Xiangpei. Research on Emergency Logistics System and Its Emergent Response Mechanism [C], Proceedings of 2005 IEEE International Conference on Service Operations and Logistic, and Informatics, August 10-12, 2005, Beijing, P.R.China. 203-206
    243.王旭坪,傅克俊,胡祥培.应急物流系统及其快速反应机制研究,中国软科学,2005(6):127-131
    244. Clausen Jens Clausen, Jesper Hansen, Jesper Larsen and Allan Larsen. Disruption Management, OR/MS Today, 2001,28(5), 40-43.
    245. Yu G., M. Arguello, M. Song, S. McCowan and A. White. A new Era for Crew Recovery at Continental Airlines, Interfaces, in Press.
    246. Thengvall, B., J.F. Bard, and G. Yu. Balancing User Preferences for Aircraft Recovery during Airline Irregular Operations, ⅡE Transactions on Operations Engineering, 2000(32):181-193.
    247. Clausen J, Hansen J, Larsen J, et al. Disruption Management [J]. ORMS Today,2011(28):40-43.
    248. Xiao T., XiaY., Heng Z., Yu G. Coordination of a Supply Chain with One-Manufacturer and Two-Retailers under Demand Promotion and Disruption Management Decisions [J]. Annals of Operations Research, in Press.
    249. Xu M., Qi X., Yu G., Zhang H., and Gao C.. The Demand Disruption Management Problem for a Supply Chain System with Nonlinear Demand Functions [J]. Journal of System Science and System Engineering, 2013,12 (1):82-97.
    250. Yang Jian, and Yu Gang. On the Robust Single Machine Scheduling Problem [J]. Journal of Combinatorial Optimization, 2001.
    251. Van de Vonder, Stijn; Demeulemeester, Erik; Herroelen, Willy; Leus, Roel. The use of buffers in project management: The trade-off between stability and makespan [J]. Int. J. Production Economics, 2005(97):227-240
    252. Xia Yu-sen, Qi Xiang-tong, Yu Gang. Real-time Production and Inventory Disruption Management under the Continuous Rate EPQ Model [J]. Naval Research Logistics, 2002.
    253.刘春林,何建敏,盛昭瀚.应急系统调度问题的模糊规划方法[J].系统工程学报,1999,14(4):351-355
    254.王岑,高成修.投资决策中的0-1背包问题的扰动修复[J].武汉大学学报(理学版),2004,50(5):542-546
    255.杨静,陈建明,赵红.应急管理中的突发事件分类分级研究[J].管理评论,2011,17(4):37-41
    256.于辉,陈剑,于刚.协调供应链如何应对突发事件[J].系统工程理论与实践,2009(7):9-16
    257. Portougal, Victor; Trietsch, Dan. Setting due dates in a stochastic single machine environment[J]. Computers & Operations Research, 2012 (33):1681-1694
    258. Walker, Cameron G.; Snowdon, Jody N; Ryan, David M. Simultaneous disruption recovery of a train timetable and crew roster in real time [J]. Computers & Operations Research, 2011(32): 2077-2094
    259. Wu, Cheng-Lung. Inherent delays and operational reliability of airline schedules [J]. Journal of Air Transport Management, 2005(11):273-282
    260. Gang Yu, Xiangtong Qi. Disruption Management[M], World Scientific, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700