用户名: 密码: 验证码:
植物性能量源、添加剂及投喂频率对胭脂鱼幼鱼生长性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以胭脂鱼(Myxocyprinus asiaticus)幼鱼为实验对象,研究了植物性能量源(植物蛋白和脂肪源)、饲料添加剂及投喂频率对胭脂鱼生长性能影响,主要研究结果如下:
     1.本实验以初始体重为1.82±0.03g(平均值士标准差)的胭脂鱼幼鱼为实验对象,以鱼粉(FM)为主要蛋白配制胭脂鱼饲料(对照组),以发酵豆粕(FSBM),玉米粕(CGM),豆粕(SBM)和棉粕(CSM)替代对照组饲料中3096的鱼粉配制5种实验饲料,进行56天的饲养实验,探讨不同植物蛋白源替代鱼粉对胭脂鱼幼鱼生长,体成分及消化酶活性的影响。结果表明,对照组鱼增重最大为9.61g/尾,而当棉粕替代30%鱼粉时(CSM组),鱼体增重最小仅为5.04g/尾。对照组、FSBM组、CGM组和SBM组的鱼体增重均在9.3g/尾以上,并且彼此之间没有显著差异(P>0.05)。与其他四组相比,CSM组鱼体增重显著低于其他组(p<0.05)。对照组(FSBM组、CGM组和SBM组之间的特定生长率无明显差异,均显著高于CSM组。CMS组的饲料系数为1.52,显著高于其他四组(均低于1.5)。CSM组的蛋白质效率为1.55,是各实验组中最低的,对照组和FSBM组的蛋白质效率都是1.6,为最高。当棉粕替代30%鱼粉时,鱼体粗蛋白和粗脂肪显著降低,分别为15.78%和4.92%。与粗蛋白和粗脂肪不同,鱼体的水分含量,没有受到不同植物蛋白源的影响,各实验组之间均无明显差异。与其他实验组相比,当棉粕替代鱼粉时,鱼体肠道和肝脏中的消化酶活性也显著改变(p<0.05)。CSM组鱼体肠道与肝脏中的蛋白酶、脂肪酶及淀粉酶活性明显低于其他实验组。因此,发酵豆粕、玉米粕以及豆粕可以替代胭脂鱼幼鱼饲料中30%的鱼粉,并不会影响其生长。但当棉粕替代30%鱼粉对胭脂鱼幼鱼生长有抑制作用。
     2.本实验设计了5组实验饲料,以实验1中的鱼粉组(FM)为对照组,以实验1中的棉粕(CSM)组为基础,本别添加铁(Fe)、赖氨酸(L)以及同时添加铁和赖氨酸(分别命名为FM组,CSM组,CSM+Fe组,CSM+L组,CSM+F&L组)。选择相同规格(体重3.40士0.08g,平均值士标准差)的胭脂鱼幼鱼为实验对象,喂养56天,探讨棉粕配以铁或赖氨酸替代鱼粉对胭脂鱼生长,体成分及消化酶活性的影响。实验结果显示,与CSM组相比,当棉粕配以铁替代饲料中30%的鱼粉时(CSM+Fe组),鱼体生长并没有显著增加,显著低于FM组(p<0.05)。当饲料中添加了赖氨酸以后(CSM+L和CSM+Fe&L组),胭脂鱼生长显著增加,与FM组无明显差异。鱼体增重最大的是对照FM组(12.01g/尾),略微高于CSM+L和CSM+Fe&L组,但没有明显差异。FM、CSM+L和CSM+Fe&L组的实验鱼特定生长率分别为2.68、2.63和2.66,显著高于CSM(2.25)和CSM+Fe组(2.25)。FM、CSM+L和CSM+Fe&L组蛋白质效率之间同样无明显差异,显著高于CSM和CSM+Fe组(P<0.05)。饲料系数则相反,CSM和CSM+Fe组明显高于其他三组,其他三组之问没有显著差异。与CSM和CSM+Fe相比,CSM+L和CSM+Fe&L组实验鱼的鱼体粗蛋白、粗脂肪显著增加(P<0.05),与FM组无明显差异。并且CSM+L和CSM+Fe&L组鱼体赖氨酸含量也显著高于CSM和CSM+Fe组,与FM组相似。与在含有棉粕的饲料中添加铁(CSM和CSM+Fe组)相比,在含有棉粕的饲料中添加赖氨酸(CSM+L和CSM+Fe&L组),鱼体消化酶活性也显著增强。因此,棉粕配以赖氨酸可以成功替代胭脂鱼幼鱼饲料中30%的鱼粉。
     3.在一种实用饲料配方的基础上,用豆粕(SBM)分别替代鱼粉(FM)质量的0%、20%、40%、60%、80%和100%配制成6种实验饲料。以体重为1.81左右的胭脂鱼幼鱼为实验对象,饲养56天。探讨不同水平的豆粕替代饲料中的鱼粉,对胭脂鱼生长,体成分和肠道及肝脏中的消化酶活性的影响。结果显示,不同水平的豆粕替代鱼粉对胭脂鱼幼鱼生长性能以及对饲料利用率有显著影响(P<0.05),随着替代水平的增加,胭脂鱼幼鱼的增重显著降低(P<0.05),替代40%鱼粉组的鱼体生长性能均显著高于替代60%、80%和100%组(P<0.05),而与对照组差异不显著,豆粕替代100%鱼粉组的饲料系数显著高于其他各实验组(P<0.05),100%替代鱼粉对胭脂鱼幼鱼的生长以及对饲料的利用率均会造成不良影响(P<0.05),随豆粕替代鱼粉水平的增加,鱼体脂肪含量显著降低(P<0.05),鱼体蛋白含量随豆粕替代鱼粉水平的增加则无显著差异。随着豆粕替代鱼粉水平的增加,肠和肝脏的蛋白酶,脂肪酶及淀粉酶活力均显著降低(P<0.05)。因此,在无任何辅助添加剂的情况下,豆粕替代40%鱼粉对胭脂鱼幼鱼生长不会造成影响,而当替代水平达到60%及以上时对胭脂鱼幼鱼的生长不利。
     4.本实验设计了7组实验饲料,饲料FM以鱼粉(FM)为主要蛋白源配制而成,是本实验的对照组。用豆粕(SBM)替代饲料FM中60%的鱼粉制成饲料SBM,并在饲料SBM的基础上,添加蛋氨酸(M,0.3%)和不同水平(500、1000、1500和2000Ukgq)的植酸酶(P)制成饲料S+M&P500、S+M&P1000、S+M&P1500和S+M&P2000。以胭脂鱼幼鱼(13±0.04g,平均数±标准差)为实验对象喂养56天,探讨豆粕配以蛋氨酸和不同梯度植酸酶替代饲料中60%的鱼粉对胭脂鱼生长性能及对营养物质表观消化率的影响。实验结果表明,当用单一豆粕替代60%的鱼粉时,对鱼体生长有显著影响(P<0.05)。与SBM组相比,S+M组鱼体生长性能有所增加,但仍然显著低于对照组衅0.05)。与SBM组和S+M组相比,当豆粕配以蛋氨酸及不同水平植酸酶替代60%鱼粉时,鱼体生长和对饲料中磷的表观消化率有显著增加(p<0.05)。S+M&P1500组表现出最适的生长性能,并与对照组无显著差异。用豆粕配以0.3%的蛋氨酸和1500U kgq植酸酶替代饲料中60%的鱼粉,对胭脂鱼生长和体成分无显著影响。并且,与对照组相比,胭脂鱼对S+M&P1500组饲料中磷的利用率更高。
     5.在一种实用饲料配方的基础上,用豆油(SO)分别替代鱼油(FO)质量的0%、40%、60%、80%和100%配制成5种实验饲料,分别命名为FO、SO40、SO60、SO80和SO100,其中FO组饲料为对照组,以体重为13.7g左右的胭脂鱼幼鱼为实验对象,饲养56天。探讨不同水平的豆油替代饲料中的鱼油,对胭脂鱼生长,体成分、血清生化指标和肝脏生化组成的影响。实验结果表明,SO40、SO60和SO80组胭脂鱼生长与对照组没有显著差异。但当豆油完全替代鱼油时,胭脂鱼增重显著降低(p<0.05)。尽管随着豆油的增加,鱼体肝脏脂肪含量升高,但是豆油替代鱼油并没有显著改变胭脂鱼的肝体比指数(HSI),饲料系数(FCR)和肝脏的中的生化组成。随着豆油含量的增加,鱼体肝脏中维生素E含量增加,反之硫代巴比妥酸反应物(TBARS)和血清胆固醇含量却降低。随着豆油含量的增加,鱼体肝脏中亚油酸和亚麻酸的含量显著升高(P<0.05),反之,二十碳五烯酸,二十二碳六烯酸以及n-3/n-6比值却显著降低(P<0.05)。尽管豆油替代鱼油可以增加鱼体维生素E含量,降低脂质过氧化反应,但当豆油完全替代鱼油时,鱼体生长受到抑制。因此,在胭脂鱼幼鱼饲料中,豆油替代40-80%的鱼油是值得推荐的。
     6.本实验以体重为11.85g左右的胭脂鱼幼鱼为研究对象,探讨不同投喂频率对胭脂鱼幼鱼生长、饲料利用及鱼体成分的影响。实验周期为56天,投喂频率为1次/天,2次/天,3次/天和4次/天,每个实验组有三个重复。实验结果表明,投喂3次/天实验组胭脂鱼增重和日摄食率最高,显著高于投喂1次/天和2次/天实验组(P<0.05),但与投喂4次/天组无明显差异。投喂4次/天组蛋白质效率最高,同时饲料系数最低,与投喂3次/天实验组无明显差异。投喂1次/天实验组胭脂鱼鱼体水分含量最高,蛋白含量最低,与投喂3次/天和4次/天组有明显差异(P<0.05)。鱼体脂肪含量随着投喂频率的增加有明显升高的趋势(P<0.05)。根据结果分析,一天投喂三次可以满足胭脂鱼幼鱼最大生长要求。
This study was conducted to evaluate the effects of plant energy resource, additive and feeding frequency on growth performance of juvenile Chinese sucker. The results were as followed.
     1. A feeding experiment was conducted to evaluate the potential of replacing fish meal (FM, Diet1)with fermented soybean meal (FSBM, Diet2), corn gluten meal(CGM, Diet3), soybean meal (SBM, Diet4) and cottonseed meal(CSM, Diet5) in practical diets of juvenile Chinese sucker. Diet containing FM as the main protein source was used as a control (Diet1). Diets2-5had30%of the FM protein replaced with FSBM, CGM, SBM or CSM protein. Fish (average weight,1.82±0.03g, mean±SD) were hand-fed for8weeks. At the end of the feeding trial, fish fed Diets1-4showed no significant difference in weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR) and protein efficiency ratio (PER), while fish fed Diet5showed significant inferior weight gain (WG,5.04g/fish), specific growth rate (SGR), feed conversion ratio (FCR,1.52) and protein efficiency ratio (PER,1.55). Body crude protein (15.78%) and crude lipid (4.92%) of the fish fed Diet5were significantly lower than those of the fish fed the other diets. Essential amino acids (EAAs) contents (%dry matter) of the fish showed significant differences among the different treatments. Digestive enzyme activities in the intestine and hepatopancreas of the fish fed Diet5were significantly lower than those of the fish fed Diets1-4. Results of the present study indicated that about30%of FM protein can be replaced by FSBM, CGM or SBM protein in Chinese sucker diets without adversely affecting growth.
     2. In experiment2, juvenile Chinese sucker (3.403.40±0.08g) was fed one of five experimental diets twice daily for8weeks. Dietl in experiment I were used as a control and Diet4(CSM) in experiment1, with ferrous sulfate, with lysine or with both ferrous sulfate and lysine were used as the experimental diets (designated as FM, CSM, CSM+Fe, CSM+L and CSM+Fe&L, respectively). Results from feeding trial indicated that about30%of FM protein can be replaced by CSM with lysine supplement in Chinese sucker diets without adversely affecting growth. The highest weight gain was found in group FM (12.01g/fish), littlely higher than groups CSM+L and CSM+Fe&L, but no significant difference. The SGR in groups FM, CSM+L and CSM+Fe&L were2.68,2.63and2.66, were significantly higher than groups CSM and CSM+Fe (both were2.25). The PER in in groups FM, CSM+L and CSM+Fe&L were significantly higher than groups CSM and CSM+Fe. The protein, lipid as well as lysine contents of fish body in groups CSM+L and CSM+Fe&L were significantly higher than groups CSM and CSM+Fe. The results indicated that cottonseed meal with lysine supplyment could replace30%fish meal in the diets for juvenile Chinese sucker without affecting growth performance.
     3. Six isonitrogenous diets with six levels of soybean meal in substitution offish meal (0,20,40,60,80and100%) were evaluated in Chinese sucker of1.81±0.01g (mean±SD) initial weight for8weeks. There existed a significant difference (P<0.05) in growth performance of fish when the replacement level for fish meal protein was increased from40%to60%, indicating that up to40%of fish meal protein could be replaced with soybean meal protein without causing reduction in growth and protein utilization. Lipid contents in the Chinese sucker body decreased significantly (P<0.05) as dietary soybean meal increased. Digestive enzyme activities in the intestine and hepatopancreas of the fish were significantly different (P<0.001) as the soybean meal protein replacement level was increased. Results of the present study appear to indicate that40%FM can be replaced by SBM in practical feeds of Chinese sucker.
     4. This study was designed to evaluate the effects of using soybean meal supplemented with or without methionine (M) and graded levels of phytase (P) to replace high level (60%) fish meal in the diets of juvenile Chinese sucker. Seven experimental diets (about430g kg-1crude protein on dry matter basis) were formulated from practical ingredients. The control feed (diet1) was formulated to contain400g kg-1white fish meal (FM), whereas in the other six feeds (diets2-7), soybean meal (SBM) was used to replace60%fish meal with or without methionine(3g kg-1) and0,500,1000,1500and2000U kg-1phytase (designated as SBM, S+M, S+M&P500, S+M&P1000, S+M&P1500and S+M&P2000, respectively). Results from the feeding trial indicated that SBM without any methionine or phytase supplement replacing about60%FM significantly affected the growth of fish. Growth of fish which fed diet S+M was improved compared with the group which fed diet SBM, but still much lower than fish fed the control diet. SBM with methionine and graded levels of phytase supplement significantly improved growth of fish and apparent digestibility coefficient of phosphorus compared with the groups which fed diet SBM and diet S+M. Fish fed S+M&P1500showed optimal growth performance and no significant difference compared with control group. This suggested that soybean meal with3g kg-1methionine and1500U kg-1phytase supplement could successfully replace60%fish meal in the diet for juvenile Chinese sucker without affecting growth of fish, and enhanced the apparent digestibility coefficient of phosphorus.
     5. A8weeks feeding experiment was carried out on juvenile Chinese sucker to evaluate the effects of dietary replacement of fish oil by soybean oil on fish growth,body composition and liver biochemical composition. Fish (average weight,13.7g) in triplicate were fed five diets, in which0%(FO as control),40%(SO40),60%(SO60),80%(SO80) and100%(SO100) offish oil was replaced by soybean oil. The weight gain offish fed SO40, SO60or SO80diet was similar to that of fish fed the control diet, but a total replacement of fish oil by soybean oil significantly reduced fish growth(P<0.05). Although the level of soybean oil resulted in an increase in the crude lipid content of the liver, the level of fish oil replacement did not significantly alter the hepatosomatic index and feed conversion ratio. The inclusion of soybean oil in Chinese sucker diets increased hepatic vitamin E concentrations, but reduced thiobarbituric acid-reactive substances (TBARS) and plasma cholesterol. Linoleic acid and linolenic acid significantly increased in fish liver fed soybean oil diets, but docosahexaenoic acid and the ratio n-3/n-6were significantly reduced by the inclusion of dietary soybean oil (P<0.05). Our results indicated that the inclusion of soybean oil increased the hepatic vitamin E content and reduced lipid peroxidation in fish. However, complete substitution of fish oil with soybean oil reduced growth efficiency. Thus,40-80%replacement of fish oil by soybean oil is recommended in diet formulation for juvenile Chinese sucker.
     6. A feeding trial was conducted to investigate the effects of feeding frequency on the growth performance, feed utilization and body proximate composition of juvenile Chinese sucker. Triplicate groups of fish (average weight,11.85g) were fed each feed type to visual satiation at four meals per day, three meals per day, two meals per day and one meal per day for8weeks. At the end of the feeding trial, Weight gain was affected by the feeding frequency. The highest weight gain was observed in the group which fish were fed three meals per day, significantly higher than fish fed one or two meals per day. There existed a significant difference in daily feed intake (DFI), feed conversion ratio (FCR) and protein efficiency ratio (PER) when the feedingn frequeny was increased from one or two to three or four meals per day (P<0.05), but no different with the fish fed four meals per day. The body proximate composition of fish was altered by feeding frequency. The crude lipid content increased with the increase of feeding frequency. The present findings suggest that three feedings per day may be sufficient for the maximal growth performance of juvenile Chinese sucker.
引文
1.艾庆辉,谢小军.南方贴的营养学研究:饲料中大豆蛋白水平对摄食率和消化率的影响.水生生物学报,2002,26(3):215-220
    2.白东清,乔秀亭,魏东.植酸酶对鲤肠肝胰脏蛋白酶活性的影响.中国饲料,2004,(2):34-35
    3.陈建,向袅,段彪等.胭脂鱼幼鱼对粗蛋白质的需要量.中国畜牧杂志,2008,44(9):32-34
    4.陈金生,刘家寿.不同饲料养殖一龄胭脂鱼种生长实验.水利渔业,1992,4:9-11,14
    5.陈兆.胭脂鱼的生物学特性及饲养技术.渔业致富指南,2005,22:40-43
    6.程宗佳.植酸酶在大豆产品型虹鳟鱼饲料中的添加量对干物质和营养成分表观消化率的影响.饲料广角,2004,(14):25-26
    7.迟淑艳.低鱼粉饲料中添加微胶囊蛋氨酸或晶体蛋氨酸对军草鱼和凡纳滨对虾生长性能的影响.[博士学位论文].山东:中国海洋大学图书馆,2009
    8.邓中群,余志堂,赵燕.三峡水利枢纽对长江白鲟和胭脂鱼影响的评价及资源保护的研究.见:长江三峡工程对生志与环境影响及其对策研究论文集.北京:科学出版社,1987,42-52
    9.龚宏伟,蔡春芳,阙林林.长江胭脂鱼开口饵料的研究.水产科学,2005,24(11):7-9
    10.湖南省水产科学研究所.湖南鱼类志.长沙:湖南科学技术出版社,1980,24-25.
    11.蒋文华,于道平.铜陵江段胭脂鱼资源现状与恢复的研究.特产研究,2003,25(3):31-33,46
    12.李骏珉.胭脂鱼的人工繁殖实验报告.淡水渔业,1991,4:16-18
    13.李年文.胭脂鱼的生物学特性及人工饲养技术(上).科学养鱼,1999a,7:12-13
    14.李年文.胭脂鱼的生物学特性及人工饲养技术(下).科学养鱼,1999b,8:11-12
    15.李树深,王蕊芳,刘光佐,王应祥,李崇云.中国胭脂鱼的核型研究.动物学研究,1983,4(2):182-183
    16.李思忠,陈星玉,陈小平等译.世界鱼类,台湾:水产出版社,1994,129-132
    17.林鼎.鱼类营养研究进展.动物营养研究进展.北京:科学出版社,1993,171-193
    18.刘家寿,余志堂.一龄胭脂鱼摄食与日粮的初步研究.水利渔业,1990,3:24-26
    19.刘穗华,曹俊明,黄燕华等.植物油替代鱼油对凡纳滨对虾生长性能和肝体比的影响.华南农业大学学报,2010,31(4):95-99
    20.刘玮,徐萍,任本根等.不同脂肪源饲料对草鱼稚鱼生长的影响.水产学报,1995,19(4):362-365
    21.楼宝,毛国民,骆季安,辛俭,陈雪昌,史海东.饲喂频率对黑鲷生长及体生化成分的影响.海洋水产研究.2006,27(6):19-24
    22.饶发祥.胭脂鱼的外部形态与生物学特性及其资源保护.江西水产科技,1993,2:31-34
    23.尚卫敏,王朝明,张桂众.水产饲料添加剂研究概况.江西饲料,2011,3:16-20
    24.宋金彩,单安山.植酸酶对蛋白质和氨基酸利用率的影响.中国饲料,2000,10:14-15
    25.万松良,裴家田.胭脂鱼人工繁殖和鱼苗培育的初步研究.水利渔业,2002,22(2):1-2,22
    26.万松良.胭脂鱼的生物学特性及养殖技术.农村养殖技术,2004,1:20-22
    27.王道尊,潘兆龙,梅志平.不同脂肪源饲料对青鱼生长的影响.水产学报,1989,13(4):370-374
    28.薛治泉.胭脂鱼人工繁殖若干问题探讨.重庆水产,1998,3:40-42
    29.阎军,杨子龙,刘春海,韩建林.缓释赖氨酸在鲤鱼词料中的应用.饲料研究,2004,(7):36-37
    30.余丰年,王道尊.植酸酶对异育银卿生长及饲料中磷利用率的影响.中国水产科学,2000,7(2):106-109
    31.张春光,赵亚辉,康景贵.我国胭脂鱼资源现状及其资源恢复途径的探讨.自然资源学报,2000,15(2):166-159
    32.张满隆,冯丽芝.鲤鱼饲料中添加蛋氨酸的应用实验.河北渔业,2002,12:32-33
    33. Allan GL, Parkinson S, Booth MA, Stone DAJ, Rowland SJ, Franees J, Warner-Smith R. Replacement of fish meal in diets for Australian silver pereh, Bidyanus bidyanus:1. Digestibility of alternative ingredients. Aquaculture,2000,186: 293-310
    34. AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of Official Analytical Chemists International,16th ed. Association of Official Analytical Chemists, Arlington, VA.1995
    35. Arndt RE, Hardy RW, Sugiura SH. Effeets of heat treatment and substitution level on palatability and nutritional value of soy defatted flour in feeds for Coho Salmon, Oncorhynchus kisutch. Aquaculture,1999,180:129-145
    36. Arzel J, Martinez-Lopez FX, Metallier R, Stephan G, Viau M, Gandemer G, Guillaume J. Effect of dietary lipid on growth performance and body composition of brown trout (Salmo trutta) raised in sea water. Aquaculture,1994,123:361-375.
    37. Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin Chim Acta,2006,368:1-19
    38. Barlow S. Fishmeal and oil:sustainable feed ingredients for aquafeeds. Glob Aquac, 2000, Advocate 4,85-88
    39. Barros MM, Lim C, Klesius PH. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of channel catfish(Ictalurus punctatus) to Edwardsiella ictaluri challenge. Aquaculture, 2002,207:263-279
    40. Becker K, Makkar HPS. Effects of dietary tannic acid and quebracho tannin on growth performance and metabolic rates of common carp(Cyprinus carpio L.). Aquaculture,1999,175:327-335.
    41. Bell JG, McGhee F, Campbell PJ, Sargent JR. Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon(Salmo salar):changes in flesh fatty acid composition and effectiveness of subsequent fish oil "wash out". Aquaculture,2003,218:515-528
    42. Bell JG, Tocher DR, MacDonald FM, Sargent JR. Effects of dietary borage oil [enriched in γ-linoleic acid,18:3(n-6)] or marine fish oil [enriched in eicosapentaenoic acid,20:5(n-3)] on growth, mortalities, liver histopatology and lipid composition of juvenile turbot (Scophthalmus maximus). Fish Physiol Biochem, 1995,14:373-383
    43. Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Kaushik S, Perez-Sanchez J. Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead sea bream(Sparus aurata L.):networking of systemic and local components of GH/IGF axis. Aquaculture,2007,267:199-212
    44. Bimbo AP. Production of fish oil. Ch6 in fish oils nutrition. In:Stansby, M.E. (Ed.), Van Nostrand Reinhold, New York,1990, pp.141-180
    45. Biswas AK., Kaku H, Ji SC, Seoka M, Takii K. Use of soybean meal and phytase for partial replacement of fish meal in the diet of red sea bream, Pagrus major. Aquaculture,2007,267:284-291
    46. Boonyaratpalin M, Suraneiranat P, Tunpibal, T. Replacement of fish meal with various types of soybean products in diets for the Asian seabass, Lates calcarifer. Aquaculture,1998,161:67-78.
    47. Booth MA, Allen GL, Utilization of digestible nitrogen and energy from four agricultural ingredients by juvenile silver Pereh Bidyanus bidyanus. Aquacult Nutr, 2003,9:317-326
    48. Borgeson TL, Race VR, Wilkie DC, White LJ, Drew MD. Effect of replacing fish meal and oil with simple or complx mixtures of vegetable ingredients in diets fed to Nile tilapia(Oreochromis niloticus). Aquacult Nutr,2006,12:141-149.
    49. Borlongan LG, Eusebio PS, Welsh T. Potential of feed pea (Pisum sativum) meal as a protein source in practical diets for milkfish(Chanos chanos Forsskal). Aquaculture, 2003,225:89-98
    50. Brett JR, Groves TDD. Physiological energetic. In. Fish Physiology, Vol. ⅤⅢ. New York:Academic Press,1979,279-352
    51. Brown PB, Twibell RT, Jonker Y, Wilson KA. Evaluation of three soybean products in diets fed to juvenile hybrid striped bass, Morone saxatilis x M. chrysops. J World Aquacult So.,1997,28,215-233
    52. Bureau DP, Harris AM, Cho CY. The effects of purified alcohol extracts from soy products on feed intake and growth of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout(Oncorhynchus mykiss). Aquaculture,1998,161:27-43.
    53. Buttle LG, Burrells AC, Good, JE, Williams PD, Southgate PJ, Burrells C. The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic salmon, Salmo salar and Rainbow trout, Oncorhynchus mykiss, fed high levels of soybean meal. VET IMMUNOL IMMUNOP,2001,80:237-244
    54. Caddy JF. Fisheries management in the twenty-first century:will new paradigms apply? Rev Fish Biol Fish,1999,9:1-43
    55. Cao L, Yang Y, Wang WM, Yakupitiyage A, Yuan DR, Diana JS. Effects of pretreatment with microbial phytase on phosphorous utilization and growth performance of Nile tilapia (Oreochromis niloticus). Aquacult Nutr,2008,14:99-109
    56. Carter CG, Hauler RC. Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L. Aquaculture,2000,185:299-311
    57. Charles PM, Sebastian SM, Raj MCV, Marian MP. Effect of feeding frequency on growth and food conversion of Cyprinus carpio fry. Aquaculture,1984,40(4): 293-300
    58. Cheng ZJ, Hardy RW, Usry JL. Effects of lysine supplementation in plant protein-based diets on the performance of rainbow trout (Oncorhynchus mykiss) and apparent digestibility coefficients of nutrients. Aquaculture,2003a,215:255-265
    59. Cheng ZJ, Hardy RW, Usry JL. Plant protein ingredients with lysine supplementation reduce dietary protein level in rainbow trout(Oncorhynchus mykiss) diets, and reduce ammonia nitrogen and soluble phosphorus excretion. Aquaculture,2003b,218: 553-565
    60. Cheng ZJ, Hardy RW. Apparent digestibility coeffieients and nutritional value of cottonseed meal for rainbow trout(Oncorhynchus mykiss). Aquaculture,2002,212: 61-372
    61. Cheng ZJ, Hardy RW. Effects of extrusion and supplementation in apparent digestibility coeffieients expelling proeessing, and microbial phytase of nutrients in ful-fat soybean for rainbow trout(Oncorhynchus mykiss). Aquaculture,2003,218: 501-514
    62. Cho SH, Lim YS, Lee JH, Lee JK, Park S, Lee SM. Effects of feeding rate and feeding frequency on survival, growth, and body composition of Ayu post-larvae Plecoglossus altivelis. J. World Aquac. Soc,2003,34:85-91
    63. Chou RL, Her BY, Su MS, Hwang G, Wu YH, Chen HY. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture,2004, 229:325-333.
    64. Colin-Negrete J, Kiesling HE, Ross TT, Smith JF. Effect of whole cottonseed on serum constituents, fragility of erythrocyte cells, and reproduction of growing Holstein heifers. J Dairy Sci,1996,79:2016-2023
    65. Coloso RM, Murillo-Gurrea DP, Borlongan IG, Catacutan MR. Sulphur amino acid requirement of juvenile Asian sea bass Lates calcarifer. J Appl Ichthyol,1999,15: 54-58.
    66. Cowey CB, Cho CY, Sivak JQ Weerheim JA, Stuart DD. Methionine intake in rainbow trout (Oncorhynchus mykiss), relationship to cataract formation and the metabolism of methionine. J Nutr,1992,122:1154-1163
    67. Cowey CB, Sargent JR, Nutrition. In:Hoar W S, Randall D J, Brett J R. (Eds.), Fish Physiology, Vol. VIII. Bioenergetics and Growth. Academic Press, New York,1979, 1-69
    68. Dabrowski K, Kozak B. The use of fishmeal and soybean meal as a protein in the diet of grass carp. Aquaculture,1979,18:107-114
    69. Davis AT, Stickney RR. Growth responses of Tilapia aurea to dietary protein quality and quantity. Trans. Am. Fish. Soc.,1978,107:479-483
    70. Dias J, Alvarez MJ, Aizel J,Corraze G, Diez A, Bautista JM, Kaushik SJ. Dietary protein source affects lipid metabolism in the European seabass.Comp Bioehem Physiol,2005,142 A:19-3
    71. Drew MD, Ogunkoya AE, Janz DM, Van Kessel AG. Dietary influence of replacing fish meal and oil with canola protein concentrate and vegetable oils on growth performance, fatty acid composition and organo-chlorine residues in rainbow trout (Oncorhynchus mykiss). Aquaculture 2007,267:260-268
    72. Dwyer KS, Brown JA, Parrish C, Lall SP. Feeding frequency affects food consumption, feeding pattern and growth of juvenile yellowtail flounder (Limanda ferrugined). Aquaculture,2002,213:279-292
    73. El-Sayed AM. Long-term evaluation of cotton seed meal as a protein source for Nile tilapia, Oreochromis niloticus (Linn.). Aquaculture,1990,84:315-320
    74. Escaffre AM, Zambonino Infante JL, Mambrini M, Bergot O, Kaushik SJ. Nutritional value of soy protein concentrate for larvae of common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Aquaculture,1997,153: 63-80
    75. FAO. State of world Fisheries and Aquae. FAO, Rome, Italy,2004
    76. Floreto EAT, Bayer RC, Brown P. The effects of soybean-based diets supplementation, with and without amino acid, on growth and biochemical composition of juvenile Ameriean lobster, Homarus americanus. Aquaculture,2000, 189:211-235
    77. Forster I, Higgs DA, Dosanjh BS, Rowshandeli M, Parr J. Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout(Oncorhynchus mykiss) held in 11℃ fresh water. Aquaculture,1999,179:109-125
    78. Fowler LG. Substitution of soybean and cottonseed products for fish meal in diets fed to chinook and coho salmon. Prog Fish-Cult,1980,42:87-91
    79. Furuya WM, Goncalves GS, Rossetto V, Furuya B, Hayashi C. Phytase as feeding for Nile tilapia(Oreochromis niloticus):performance and digestibility. Rev Brazil Zootech,2001,30:924-929
    80. GatlinⅢ ML, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl A, Nelsonm R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E. Expanding the utilization of sustainable plant products in aquafeeds:a review. Aquacul Res,2007,38:551-579.
    81. Gill N, Higgs DA, Skura BJ, Rowshandeli M, Dosanjh BS, Mann J, Gannam AL Nutritive value of partially dehulled and extruded sunflower meal for postsmolt Atlantic salmon (Samlo salar L.) in seawater. Aquacult Res,2006,37:1348-1359
    82. Gleneross BD, Carter CG Duijster N, Evans DR, Dods K, MeCafferty P, Hawkins WE, Maas R, Sipsas SA.Comparison of the digestibility of arrange of lupin and soybean protein products when fed to either Atlantic salmon (Salmo salary) or rainbow trout(Oncorhynchus mykiss). Aquaculture,2004,237:333-346
    83. Goff JB, Gatlin III DM. Evaluation of different sulfur amino acid compounds in the diet of red drum, Sciaenops ocellatus, and sparing value of cystine for methionine. Aquaculture,2004,241:465-477
    84. Gomes EF, RemaP, Kaushik SJ. Replacement of fish meal by plant proteins in the diets of rainbow trout(Oncorhynchus mykiss):digestibility and growth performance. Aquaculture,1995,130:177-186
    85. Gouveia A, Davies SJ. Inclusion of an extruded dehulled peaseed meal in diets for juvenile European seabass Dicentrarchus labrax. Aquaculture,2000,182:183-193
    86. Grayton BD, Beamish FWH. Effects of feeding frequency on food intake, growth and body composition of rainbow trout(Salmo gairdneri). Aquaculture,1977,11: 159-172.
    87. Grisdale-Helland B, Ruyter B, Rosenlund G Influence of high con -tents of dietary soybean oil on growth,feed utilization, tissue fatty acid composition, heart histology and standard oxygen consumption of Atlantic salmon (Salmo salar) raised at two temperatures. Aquaculture,2002,207:311-329
    88. Guillou A, Soucy P, Khalil M, Abambounou L. Effects of dietary vegetable and marine lipid on growth, muscle fatty acid composition and organoleptic quality of flesh of brook charr (Salvelinus fontinalis). Aquaculture,1995,136:351-362
    89. Han BZ, Romboutz FM, Nout MJR. A Chinese fermented soybean food. International Journal of Food Microbiology,2001,65:1-10
    90. Han JR. Solid-state fermentation of cornmeal with the basidiomycete Herieium erinaceum for degrading starch and upgrading nutritional value. International Journal of Food Microbiology,2003,80:61-66
    91. Hansen AC, Roseulund G, Karlsen 0, Koppe W, Hemre GI. Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I-Effects on growth and protein retention. Aquaculture,2007,272:599-611
    92. Hardy RW. Alternate protein source for salmon and trout diets. Anim Feed Sci Tech, 1996,59:71-80.
    93. Hemre GI, Sandnes K. Effect of dietary lipid level on muscle composition in Atlantic salmon Salmo salar. Aquacult Nutr,1999,5:9-16
    94. Hendricks JD, Sinnhuber RO, Loveland PM, Pawlowski NE, Nixon JE. Hepatocarcinogenicity of glandless cottonseed and cottonseed oil to rainbow trout. Science,1980,208:309-310
    95. Hendricks JD. Adventitious toxins. In:Halver, J.E., Hardy, R.W. (Eds.), Fish Nutrition,3rd ed. Academic Press, San Diego, CA, USA,2002, pp.601-649.
    96. Herman RL. E□ects of gossypol on rainbow trout Salmo guirdneri Richardson. J. Fish Biol.,1970,2:293-303.
    97. Jackson AJ, Capper BS, Matty AJ. Evaluation of some plant proteins in complete diets for the tilapia Sarotherodon mossambicus. Aquaculture,1982,27:97-109
    98. Jackson L, Li MH, Robinson EH.Use of microbial phytase in channel catfish Ictalurus Punctatus diets to improve utilization of phytate phosphorus. J World Aquacult Soc,1996,27:309-313
    99. Jobling M, Miglavs I. The size of lipid depots-a factor contributing to the control of food intake in Arctic charr, Salvelinus alpinusl J Fish Biol,1993,43:487-489
    100.Kaushik SJ, Cravedi JP, Lalles JP, Sumpter J, Fauconneau B, Laroche M. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture,1995,133:257-274.
    101.Kikuchi K. Use of soybean meal as a substitute for fish meal in diets of Japanese flounder(Paralichthys olivaceus). Aquaculture,1999,179:3-11
    102.Kolkovski S, Tandler A, Izquierdo MS. Effects of live food and dietary digestive enzymes on the efficiency of micro diets for seabass(Dicentrarchus labraz) larvae. Aquaculture,1997,148:313-322
    103.Krogdahl A, Lea TB, Olli JJ. Soybean proteinase inhibitors affect intestinal trypsin activities and amino acid digestibilities in rainbow trout(Oncorhynchus mykiss) Comp. Biochem. Physiol.,1994,107A(1):215-219
    104.Kurten G, Hall L, Thompson N. Evaluation of cottonseed meal supplementation of inorganically fertilized Florida largemouth bass spawning ponds. North Am J Aquac, 1999,61:115-125.
    105.Lanari D, Agaro ED, Turri C. Use of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout(Oncorhynchus mykiss). Aquaculture,1998,161:345-356
    106.Lee SM, Pham MA. Effects of feeding frequency and feed type on the growth, feed utilization and body composition of juvenile olive flounder, Paralichthys olivaceus. Aquacult Res.2010,41:166-171
    107.Leng XJ, Wang WL, Li XQ. Experiment on feeding Penaeus Vannamei Boones with fermented soybean meal as partial substitute for fish meal. Cereal and Feed Industry,2007,3:40-41
    108.Li J, Zhang L, Mai KS, Ai QH, Zhang CX, Li HT, Duan QY, Ma HM. Potential of Several Protein Sources as Fish Meal Substitutes in Diets for Large Yellow Croaker, Pseudosciaena crocea R. J World Aquacult Soc,2010,41:278-283
    109.Li MH, Robinson EH. Effects of supplemental lysine and methionine in low protein diets on weight gain and body composition of young channel catfish Ictalurus Punctatus. Aquaculture,1998,163:297-307
    110.Li MHH, Robinson EH. Use of cottonseed meal in aquatic animal diets:a review. North Am J Aquacul,200668:14-22
    111.Li P, Mai KS, Trushenski Jesse, Wu GY. New developments in fish amino acidnutrition:towards functional and environmentally oriented aquafeeds. Amino Acids,2009,37:43-53
    112.Liebert F, Portz L. Nutrient utilization of Nile tilapia Oreochromis niloticus fed plant based low phosphorus diets supplemented with graded levels of different sources of microbial phytase. Aquaculture,2005,248:111-119
    113.Liener IE. Implications of antinutritional components in soybean foods. Crit Rev Food Sci Nutr,1994,34:31-67
    114.Lim S R, Choi SM, Wang XJ, Kim KW, Shin, IS, Min T S, Bai SC. Effects of dehulled soybean meal as a fish meal replacer in diets for fingerling and growing Korean rockfish Sebastes schlegeli. Aquaculture,2004,231:457-468
    115.Lin YC, Gong Y, Yuan YC, Gong SY, Yu DH, Li Q, Luo Z. Dietary L-lysine requirement of juvenile Chinese sucker, Myxocyprinus asiaticus. Aquacult Res,2013, 44:1539-1549
    116.Lin YH, Shiau SY. Effects of dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper, Epinephelus malabaricus. Aquacult Nutr, 2007,13:137-144
    117.Lovell RT. Nutrition and Feeding of Fish. Van Nostrand Reinhold, New York, NY, USA.1989,268 pp.
    118.Lozano NBS, Vidal AT, Llirens SM, Merida SN, Blaneo JE, Lopez AM, Torres MP, Cerda MJ. Growth and economic profit of gilt head seabream (Sparus aurata L.) fed sunflower meal. Aquaculture,2007,272:528-534
    119. Luo Z, Liu YJ, Mai KS, Tian LX, Liu DH, Tan XY. Partial replacement of fish meal by soybean protein in diets for grouper Epinephelus coioides juveniles. J. Fish. China, 2004,28:175-181
    120.Luo Z, Liu YJ, Mai KS, Tian LX, Tan XY, Yang HJ, Liang GY, Liu DH. Quantitative L-lysine requirement of juvenile grouper Epinephelus coioides. Aquacult. Nutr.,2006, 12:165-172
    121.Luo Z, Liu YJ, Mai KS, Tian LX, Yang HJ, Tan XY, Liu DH. Dietary L-methionine requirement of juvenile grouper Epinephelus coioides at a constant dietary cystine level. Aquaculture,2005,249409-418
    122.Mai KS, Zhang L, Ai QH, Duan QY, Zhang CX, Li HT, Wan JL, Liufu ZG. Dietary lysine requirement of juvenile Japanese seabass Lateolabrax japonicus. Aquaculture, 2006,258:535-542
    123.Masumoto T, Tamura B, Shimeno S. Effects of phytase on bioavailability of phosphorus in soybean meal-based diets for Japanese flounder Paralichthys olivaceus. Fish Sci,2001,67:1075-1080
    124.McClain CJ, Mokshagundam SP, Barve SS, Song Z, Hill DB, Chen T, Deaciuc I. Mechanisms of non-alcoholic steatohepatitis. Alcohol,2004,34:67-79
    125.McGoogan BB, GatlinⅢ DM. Effects of replacing fish meal with soybean meal in diets for red drum Sciaenops ocelltus and potential for palatability enhancement. J World Aquacult Soc,1997,28:374-385.
    126.Millamena OM, Bautista-Teruel MN, Reyes OS.Replacements of juvenile marine shrimp, Penaeus monodon (Fabricius) for lysine and arginine. Aquaculture,1998,164: 95-104
    127.Mourente G, Dick JR, Bell JG, Tocher DR. Effect of partial substitution of dietary fish oil by vegetable oils on desaturation and β-oxidation of [1-14C] 18:3n-3 (LNA) and [1-14C] 20:5n-3 (EPA) inhepatocytes and enterocytes of European sea bass (Dicentrarchus labrax L.). Aquaculture,2005a,248:173-186
    128.Mourente G, Good JE, Bell JG. Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass(Dicentrarcuus labrax L.):effects on flesh fatty acid composition, plasma prostaglandins E2 and F2a, immune function and effectiveness of a fish oil finishing diet. Aquacult Nutr,2005b 11:25-40
    129.Mundheim H, Aksnes A, Hope B.Growth feed efficiency and digestibility in salmon (Salmo salar L.) fed different dietary proportions of vegetable protein sources incombination with two fish meal qualities. Aquaculture,2004,237:315-331
    130.Nelson E M. Some notes on the Chinese sucker.Copeia,1976,3:594-595
    131.Nordrum S, Bakke-McKellep AM, Krogdahl A, Buddington RK. E□ects of soybean meal and salinity on intestinal transport of nutrients in Atlantic salmon(Salmo salar L.) and rainbow trout(Oncorhynchus mykiss). Comp. Biochem. Phys. B,2000,125: 317-335
    132.Omar EA, Gunther KD. Studies on feeding of mirror carp in intensive aquaculture. J Anim Physiol Anim Nutri,1987,57:80-17
    133.Ostaszewska T, Dabrowski K, Palacios ME, Olejniczak M, Wieczorek M. Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture,2005,245,273-286.
    134.Peng SM, Chen LQ, Qin JQ Hou JL, Yu N, Long ZQ, Ye JY, Sun XJ. Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black seabream, Acanthopagrus schlegeli. Aquaculture,2008,276:154-161
    135.Pereira TG, Oliva-Teles A. Evaluation of corn gluten meal as a protein sourcein diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquacult. Res.2003,34: 1111-1117
    136.Peres H, Lim C, Klesius PH. Nutritional value of heat-treated soybean meal for channel catfish (Ictalurus punctatus). Aquaculture,2003 225,67-82
    137.Piedecausa MA, Mazon MJ, Garcia BG, Hernandez, MD. Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzd). Aquaculture,2007,263:211-219
    138.Pirhonen J, Forsman L. Effect of prolonged feed restriction on size variation, feed consumption, body composition, growth and smolting of brown trout, Salmo trutta. Aquaculture,1998,162:203-217
    139.Poston HA. Response of rainbow trout to source and level of supplemental dietary methionine. Comp Biochem Physiol,83:1986,739-744
    140.Pratoomyot J, Bendiksen EA, Bell JG, Tocher DR. Effects of increasing replacement of dietary fish meal with plant protein sources on growth performance and body lipid composition of Atlantic salmon(Salmo salar L.). Aquaculture,2010,305:124-132
    141.Quartararo N, Allan GL, Bell JD. Replacement of fish meal in diets for Australian snapper, Pagrus auratus. Aquaculture,1998,166:249-295.
    142.Refstie S, Helland SJ, Trond S. Adaptation to soybean meal in diets for rainbow trout, Oncorhynchus mykiss. Aquaculture,1997,153:263-272
    143.Refstie S, Trond S, Roem AJ. Feed consumption and conversion in Atlantic salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigens. Aquaculture,1998,162:301-312.
    144.Refstie S,Sahlstrom S,Brathen E,Baeverfjord G, Krogedal P. Lactic acid fermentation eliminates in digestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salary). Aquaculture,2005,246:331-345
    145.Regost C, Arzel J, Robin J, Rosenlund G, Kaushik SJ. Total replacement offish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima):1. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture,2003,217: 465-482
    146.Reigh RC, Ellis SC. Effects of dietary soybean and fish-protein ratios on growth and body composition of red drum (Sciaenops ocellatus) fed isonitrogenous diets. Aquaculture,1992,104:279-292
    147.Ricardo C. Martino, Jose Eurico P. Performance and fatty acid composition of surubim(Pseudoplatystoma coruscans) fed diets with animal and plant lipids. Aquaculture,2002,209:233-246
    148.Richardson NL, Higgs DA, Beams RM, McBride JR. Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile chinook salmon(Oncorhynchus tshawytscha). J Nutr,1985, 115:553-567
    149.Riche M, Brown PB. Availability of phosphorous from feedstuffs fed to rainbow trout, Oncorhynchus mykiss. Aquaculture,1996,142:269-282
    150.Riche M, Trottier NL, Ku PK, Garling DL. Apparent digestibility of crude protein and apparent availability of individual amino acids in tilapia (Oreochromis niloticus) fed phytase pretreated soybean meal diets. Fish Physiol Biochem,2001,25:181-194
    151.Rinchard J, Ciereszko A, Dabrowski K, Ottobre J. Effects of gossypol on sperm viability and plasma sex steroid hormones in male sea lamprey, Petromyzon marinus. Toxicol Lett,2000,111:189-198
    152.Robinson EH, Tiersch TR. E□ects of long-term feeding of cottonseed meal on growth, testis development, and sperm motility of male channel catfish Ictalurus punctatus. J World Aquae Soc,1995 26:426-431.
    153.Robinson EH. Improvement of cottonseed meal protein with supplemental lysine in feeds for channel catfish. JAppl Aquac,1991,1:1-14.
    154.Rodehutscord M, Pfeffer E. Effects of supplemental microbial phytase on phosphorus digestibility and utilization in rainbow trout(Oncorhynchus mykiss). Water Sci Technol,1995,31,143-147
    155.Romarheim OH, Skrede A, Gao Y, Krogdahl A, Denstadli V, Lilleeng E, Storebakken T. Comparison of white flakes and toasted soybean meal partly replacing fish meal as protein source in extruded feed for rainbow trout (Oncorhynchus mykiss). Aquaculture,2006,256:354-364
    156.Ronnestad I, Conceicao LEC, Aragao C, Dinis MT. Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval Senegal sole (Solea senegalensis). J Nutr,2000,130:2809-2812
    157.Rosmini M.R, Perlo F, Perez-Alvarez JA, Pagan-Moreno MJ, Gago-Gago A, Lopez-Santovena F, Aranda-Catala V. TBA test by an extractive method applied to 'Pate'. Meat Sci 1996,42:103-110
    158.Ruchimat T, Masumoto T, Hosokawa H, Shimeno S. Quantitative methionine requirement of yellowtail (Seriola quinqueradiata). Aquaculture,1997,150:113-122
    159.Rumsey GL, Page JW, Scott ML. Methionine and cystine requirements of rainbow trout. Prog Fish-Cult,1983,45:139-143
    160.Rumsey GL, Siwicki AK, Anderson DP, Bowser PR. E□ect of soybean protein on serological response, non-specific defense mechanisms, growth, and protein utilization in rainbow trout. Vet Immunol Immunopathol,1994,41,323-339
    161.Ruohonen K, Vielma J, Grove DJ. Effects of feeding frequency on growth and food utilization of rainbow trout(Oncorhynchus mykiss) fed low-fat herring or dry pellets. Aquaculture,1998,165:111-121
    162.Sajjadi M, Carter CG Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmo salar, L.). Aquacult Nutr, 2004,10:135-142
    163.Sargent JR, Tacon AGJ. Development of farmed fish:a nutritionally necessary alternative to meat. Proc Nutr Soc,1999,58,377-383
    164.Satoh S, Poe WE, Wilson RP. Effect of supplemental phytate and/or tricalcium phosphate on weight gain, feed efficiency and zinc content in vertebrae of channel catfish. Aquaculture,1989,80:155-161
    165.Schafer A, Koppe WM, Meyer-Burgdorff KH, Gunther KD. Effect of a microbial phytase on utilization of native phosphorus by carp in a diet based on soybean meal. Water Seienee and Technology,1995,31:149-55
    166. Sealey WM, Lim C, Klesius PH. Influence of the dietary level of iron from iron methionine and iron sulfate on immune response and resistance of channel catfish to Edwardsiella ictaluri. J World Aquae Soc,1997,28:142-149.
    167.Shiau S, Kwok C, Kwang J, Chen C, Lee S. Replacement of fishmeal with soybean meal in male tilapia (Oreochromis niloticus×O. aureus) fingerling diets at a suboptimal protein level. J. World Aquacult Soc,1998,20:230-235
    168.Shiau S, Lin S, Yu S, Lin A, Kwok C. Defatted and full-fat soybean meal as partial replacements for fishmeal in tilapi(Oreochromis niloticus×O. aureus) diets at low protein level. Aquaculture,1990,86:401-407
    169.Shimeno S, Masumoto T, Hujita T. Alternative protein sources for fish meal in diets of young yellow tail. Bull Jap Soc Sci Fish,1993,59(1):137-143
    170.Shipton TA, Britz PJ, Walker RB. An assessment of the efficacy of two lysine microencapsulation techniques to determine the quantitative lysine requirement of the South African abalone, Haliotis midae L. Aquacult Nutr,2002,8:221-22
    171.Simons PC., Versteegh HA., Jongbloed AW, Kemme PA, Slump P. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br J Nutr,1990,64: 525-540
    172.Singh M, Krikorian AD. Inhibition of trypsin activity in vitro by phytate. J Agric Food Chem,1998,30:799-800
    173.Spinelli J, Houle CR, Wekell JC. The effects of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquaculture,1983,30:71-83
    174.Stephan G, Guillaume J, Lamour F. Lipid peroxidation in turbot (Scophthalmus maximus) tissue:effect of dietary vitamin E and dietary n-6 or n-3 polyunsaturated fatty acids. Aquaculture,1995,130:251-268
    175.Storebakken T, Refstie S, Ruyter B. Soy products as fat and protein sources in fish feeds for intensive aquaculture. In:Drackley, J.K. (Ed.), Soy in Animal Nutrition. Fed Anim Sci Soc, Savoy, IL,2000 pp.127-170
    176.Storebakken T, Shearer KD, Roem AJ. Availability of protein, phosphorus and other elements in fishmeal, soy-protein concentrate and phytase-treated soy-protein concentrate-based diets to Atlantic salmon, Salmo salar. Aquaculture,1983,161: 365-379
    177.Susmel P, Spanghero M, Marchetti S, Moscardini S. Trypsin inhibitory activity of raw soybean after incubation with rumen fluid. J Sci Food Agricult,1995,67: 441-445
    178.Tacon AGJ. Use of fish meal and fish oil in aquaculture:a global perspective. Aquat Resour Cult Dev,2004,1:3-14
    179.Takagi S, Shimeno S, Hosokawa H,Ukawa M. Effect of lysine and methionine supplementation to a soy protein concentrate diet for red seabream Pagrus major. Fish Sci,2001,67:1088-1096
    180.Takeuchi L, Takeda H, Watanabe T. Availability of dietary phosphorous in carp and rainbow trout. Bull Jpn Soc Sci Fish,1979,45:1527-1532
    181.Toko Ⅱ, Fiogbe ED, Kestemont P. Mineral status of African catfish (Clarias gariepinus) fed diets containing graded levels of soybean or cottonseed meals. Aquaculture,2008,275:298-305
    182.Twibell RG, Wilson RP. Preliminary evidence that cholesterol improves growth and feed intake of soybean meal-based diets in aquaria studies with juvenile channel catfish, Ictalurus punctatus. Aquaculture,2004,236:539-546
    183.Valdimarsson G, James D. World fisheries-utilisation of catches. Ocean Coast Manag, 2001,44,619-633
    184.Vielma J, Makinen T, Ekholm P, Koskela J. Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout(Oncorhynchus mykiss) and algal availability of phosphorus load. Aquaculture,2000,183:349-362
    185.Vielma J, Ruohonen K, Gabaudan J, Vogel K. Top-spraying soybean meal-based diets with phytase improves protein and mineral digestibilities but not lysine utilization in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquacult. Res,2004,35:955-964
    186.Vielma J, Ruohonen K, Peisker M. Dephytinization of two soy proteins increases phosphorus and protein utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture,2002 204:145-156
    187. Wang N, Hayward RS, Noltie DB. Effect of feeding frequency on food consumption, growth, size variation and feeding pattern of age-0 hybrid sunfish. Aquaculture,1998, 165:261-267
    188. Wang Y, Kong LJ, Li C, Bureau DP. Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum (Nibea miichthioides). Aquaculture,2006,261:1307-1313
    189.Watanabe T, Pongmaneerat J, Sato S. Replacement of fish meal by alternative protein sources in rainbow trout diets. Bull Jap Soc Sci Fish,1993,59:1573-1579
    190.Watanabe T. Strategies for further development of aquatic feeds. Fish Sci,2002,68: 242-252
    191.Webster CD, Tidwell JH, Goodgame LS, Yancey DH, Mackey L. Use of soybean meal and distillers grains with solubles as partial or total replacement of fish meal in diets for channel catfish, lctalurus punctatus. Aquaculture,1992,106:301-309
    192. Webster CD, Tiu LG, Tidwell JH. Growth and body composition of channel cat fish (letaluros Punctatus) fed diets containing various percentages of canola meal. Aquaculture,1997,150:103-112
    193. Wilson RP, Halver JE. Protein and amino acid requirements of fishes. Annu rev Nutn, 1986,6:225-244
    194.Windell JT, Foltz JW, Sarokon JA. Effect of flsh size, temperature and adigestibility of a pelleted diets by rainbow trout Salmo gairdneri. Trans Am Fish Soc,1978,107: 613-616
    195.Yamamoto T, Shima T, Fruita H, Suzuki N. Influence of feeding diets with and without fish meal by hand and by self-feeders on feed intake, growth and nutrient utilization of juvenile rainbow troot(Oncorhynchus mykiss). Aquaculture,2002,214: 289-305
    196.Yoo, G.Y., Wang, X.J., Choi, S.M., Han, K.M., Kang, J.C.& Bai, S.C. (2005) Dietary microbial phytase increased the phosphorus digestibility in juvenile Korean rockfish Sebastes schlegeli fed diets containing soybean meal. Aquaculture,243,315-322.
    197. Yuan YC, Gong SY, Luo Z, Yang HJ, Zhang GB, Chu ZJ. Effects of dietary protein to energy ratios on growth and body composition of juvenile Chinese sucker, Myxocyprinus asiaticus. Aquacult Nutr,2010a,16:205-212
    198.Yuan YC, Yang HJ, Gong S.Y, Luo Z, Yu DH, Yan JL, Yang XF. Dietary phosphorus requirement of juvenile Chinese sucker, Myxocyprinus asiaticus. Aquacult Nutr,2011, 17:159-169
    199. Yuan YC, Yang HJ, Gong SY, Luo Z, Yuan HW, Chen XK. Effects of feeding levels on growth performance, feed utilization, body composition and apparent digestibility coefficients of nutrients for juvenile Chinese sucker, Myxocyprinus asiaticus. Aquaculte Res,2010b,41:1030-1042
    200.Zhang CX, Ai QH, Mai KS, Tan BP, Li HT, Zhang L. Dietary lysine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture,2008,283:123-127
    201.Zhang GB, Gong SY, Yuan YC, Chu ZJ, Yuan HW. Dietary protein requirement for juvenile Chinese sucker (Myxocyprinus asiaticus). J Appl Ichthyol,2009,25: 715-718
    202.Zhou QC, Wu ZH, Chi SY, Yang QH. Dietary lysine requirement of juvenile cobia (Rachycentron canadum). Aquaculture,2007,273:634-640

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700