用户名: 密码: 验证码:
土壤盐分离子迁移及其分异规律对环境因素的响应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化始终是世界性的土地资源与生态环境领域内亟待解决的重要问题之一,特别是在干旱和半干旱地区,仍然是制约人类生活的重要障碍性因素。以往土壤盐渍化过程是以土壤表层积盐为特征,盐渍化程度的划分也是以表层土壤盐分总量为依据,忽视了土壤内部积盐对于作物根系的危害性,尤其是在干旱半干旱地区、对类似于果树这样深根性植物而言,土壤耕作层以下的盐渍化过程及其危害未给予关注;以往对盐渍化危害性评价重视土壤盐分总量,而对于土壤盐分离子不平衡与分异所产生的危害研究较为欠缺;以往在水盐复合溶液体系中重视水分移动对盐分迁移的影响,而盐分对水分移动的制约关系研究较为贫乏;以往关于盐分累积对作物的危害性研究较多,而作物对盐分累积效应研究欠缺等等。
     基于上述问题,本研究以具有干旱、半干旱气候和环境特征的甘肃省秦安县果园次生盐渍化土壤为研究对象,采用了田间试验和室内模拟实验相结合,对土壤水盐运移参数、盐分离子之间的相关性、环境因子(果园近地面空气温度、相对湿度、潜在蒸发量、降雨量、土温、土壤水分)与土壤积盐的关系进行了研究,探讨了灌溉淋洗以及水分再分布过程和植被类型对土壤中盐分离子迁移及其分异规律,取得了如下主要结果:
     (1)针对盐渍化土壤的特征,以探索水盐关系为主要目标,研究得出在水盐复合溶液条件下,土壤水分动力学参数、水分特性曲线及其模型参数不仅取决于土壤基膜性状,也同样受溶液的盐分类型和矿化度的影响。以湿润峰迁移为特征的水分移动速度和以含水量为依据的水分扩散率受土壤盐分类型的影响是不同的。NaCl对水分移动速度有促进,但对于水分扩散率有抑制;而Na2SO4和Na2CO3对水分移动速度和水分扩散率均有抑制。实验证明由土壤水分特性曲线得到的土壤孔隙不应当是真正的土壤粒间孔隙和结构孔隙,而是用失水量获得的“概念孔隙”。NaCl对于土壤比水容量和毛管断裂的延迟效果要比NaSO4明显,且用比水容量的变化情况才能更为直观地看出各类盐分及其矿化度对于土壤持水性能的影响。在低吸力段,Na2SO4与温度的交互作用较NaCl与温度的交互作用对土壤持水性能的影响要明显。在不同水吸力条件下,不同矿化度的NaCl对土壤水分释放过程中HCO3-、SO42-、Ca2+、Mg2+含量有很大的影响,而不同矿化度的Na2SO4对土壤水分释放过程中Cl-、Ca2+、Mg2+含量有很大的影响。实验证实“盐随水来,盐随水去,盐水相随”存在着缺陷,在土壤体系内水盐互为协同、相互制约,“盐水相随程度”取决于盐分类型和盐分含量。
     (2)针对干旱地区土壤表面易形成干土层,不仅抑制蒸发也会抑制积盐特点,得出研究区土壤剖面盐分含量分布规律不同于一般盐渍化农田的“T”型分布,而是在一定土层内深层盐分含量相对较高,呈现“⊥”型分布。依据研究结果提出在气候干旱、土壤质地较轻的地区和一些作物根系分布较深的情况下,评价盐渍化土壤的危害性,仅看表层土壤积盐是不够的,更应当监测土壤内部积盐情况,才能做出科学的判断与准确的评价。
     (3)在干旱地区的农、林植被条件下,依据盐分在土体中累积的方式,提出“土表积盐”(T型)和“土内积盐”(⊥型)的概念。依据盐分迁移的驱动力,提出由于受近地层环境条件作用的土壤水分蒸发过程驱动的表层积盐,称之为“蒸发积盐”;受作物蒸腾耗水驱动的土内积盐,称之为“蒸腾积盐”。且指出一般蒸发积盐现象较为直观明显,易得到重视,防止水分蒸发过程就能达到抑制积盐效果;而蒸腾积盐在土壤表层没有外观表现,隐蔽性和欺骗性强,不易被人们所察觉,危害作物生育过程,尤其对于果树类作物的危害主要源于蒸腾积盐。
     (4)通过盐分离子剖面空间分布以及离子之间的相关性分析,在咸水灌溉盐渍化土壤上得出,HCO3-聚集于剖面上部土层,伴随着的K+与之形成碱性盐土特征,在SO42-聚集的下部各土层,伴随着的Ca2+与Mg2+、Na+之间形成中性盐土特征,氯化物盐分均匀分布在土壤剖面。同时,试验证实在自然情况下各类盐分离子的分化是客观存在的事实,盐分离子的分化常常成为盐渍化危害的主要原因之一。盐分的分化与沉积特征符合盐分类型的溶解度原理和受干旱地区水分剧烈变化双重影响。对于果树生长而言,其危害主要不是来源于表层碳酸盐区,而是来源于在较深层次的硫酸盐区,因为在较深层次有大量的Na离子聚集。
     (5)以钠离子和氯离子作为“指示剂”,研究不同土层对于环境因素与土壤性质响应机制,得出在0-25cm土层范围内,不同土层的Na+和Cl-对环境因子的响应不同。对土壤Na+迁移而言,提出0-5cm土层是地表环境因子与土体内部信息交流的“绝缘层”;且5-10cm土层是水溶性Na+对环境因子(蒸发量与降雨量)反应的“敏感层”;而果树在地上气候环境信息与土壤内部响应机制方面起到了“导体”的角色。对土壤剖面Cl-迁移累积与环境、土壤性质关系分析,得出在不同土壤层次具有不同的决定因子。表层0-5cm土层氯离子聚积主要依赖于自然环境的干湿度(水分亏值),在10-15cm土层氯离子聚积却主要依赖于土壤含水量;在15cm土层以下土壤氯离子变化与环境和土壤水分没有明显的响应性。
     (6)针对旱地土壤水分变化特征,研究了灌溉淋盐和水分再分布过程中盐分含量和离子变异的空间特征,得出灌溉淋洗全盐含量和水溶性Na+在淋洗前后有极显著的差异,Cl-和水溶性Ca2+在淋洗前后有显著的差异,K+、Mg2+、HCO3-、CO32-和SO42-在淋洗前后差异不显著。提出“盐渍化指数”的概念,对不同土层盐分离子淋洗的效果进行了综合评价。提出用“分形维数”作为土壤剖面盐分离子淋洗前后分异量化的指标,且通过分形维数进一步证实土壤剖面盐分离子在分异过程中始终要保持电荷平衡。果园灌溉量在2700-3600m3/ha之间时,灌溉有利于土壤剖面0-100cm土层盐分的淋洗,而灌溉量在1800 m3/ha以下时,灌溉则加速土壤表层盐分的累积。在水分再分布期间,受上层水分蒸发和下层水分深层移动双重的影响,在土壤剖面40-80cm土层出现了低含盐量区域,相当于土壤水分的“零通量面”位置,在水分再分配过程中,盐分“零通量面”位置逐渐向下移动,体现旱地土壤水分耗竭特征;在亚表层10-30cm是干旱地区积盐量最高区域。水分再分布过程对各类盐分离子的影响程度不同,导致土壤剖面盐分离子分化。
     (7)通过对裸露地、大麦、玉米、果树等不同植被土壤剖面盐分动态监测,研究不同植被与土壤剖面不同土层盐分离子迁移及其分异规律的关系。结果表明:裸露地块土壤盐分表聚比较明显。种植大麦可使土壤剖面0-100cm土层土壤盐分、Na+、Mg2+、Cl-和SO42-含量减小。种植玉米可以促使土壤盐分、Na+、Ca2+、Mg2+和HCO3-累积在60-100cm土层,而使0-40cm土层盐分减少。种植果树,在苹果生育期,土壤盐分累积有两个峰值,第一个峰值在5-6月份,土壤盐分主要累积在大约10-30cm土层;第二个峰值在8月中旬,土壤盐分主要累积在30-50cm土层。
Soil salinization is always one of important and urgently solved problems in the domain of worldwide soil resource and entironment, especially in arid and semi-arid regions, it is still important obstacle factor that restricted human subsistence.Anciently, the course of soil salinization was according to characteristic of salt accumulation in topsoil, the degree of soil salinization was according as the content of salt in topsoil, ignored the damage of soil salt accumulation in substrate to crop root, especially in arid and semi-arid regions, as far as concerned deeper root plant, such as fruit tree, the damage and the process of soil salinization under the cultivation layer ought not to be given more attention; and the damage and appraisement of soil salinization was given more attention to total salt content, but the study on the damage of salt ions imbalance and diveraity was deficiency; and the influence of soil water movement to salt transfer was given more attention in water and salt complex solution, but the study on the interrelational constraint of salt transfer to water movement was deficiency; and the study on the damage of salt accumulation to crop was abundant, but the study the influence of crop to salt accumulation was deficiency.
     Base on above mentioned some questions, the object of study was orchards secondary salinization soil with the characteristics of arid and semi-arid climate and environment in Qin’an County of Gansu Province.We studied soil water and salt movement parameter, correlation of soil salt ions, relationship between soil salt ions accumulation in topsoil and environmental factors (air temperature, air relative humidity, latency evaporation, rainfall, soil temperature, soil moisture), and probled into the effect of soil salt transfer and diversity rule on under different condition (irrigation leaching, water redistribution and vegetation type) by field experiment and laboratory simulation. The results are as follows:
     (1)Aiming at the characteristics of soil salinization, the mostly object probed into the relationship of water and salt, the results showed that dynamics parameter of soil water and soil water characteristic curve were not only depended on soil basement membrane properties, but also was affected by salt type and content in water and salt complex solution. The influence of salt type on the velocity of soil water movement according to index of wet front transfer and the velocity of soil water diffusivity according to index of soil water content was different. NaCl accelerated the velocity of soil water movement, but it suppressed the velocity of soil water diffusivity; and both Na2SO4 and Na2CO3 were suppressed the velocity of soil water movement and soil water diffusivity. Experiment results proved that soil pore by soil water characteristic curve acquired was“concept pore”, it was not really soil intergrain pore and structure pore. The postponing effect of NaCl to specific soil water capability and capillary rupture were obvious than Na2SO4, and the effect of salt type and mineralization to soil water retention ability was observed according as specific soil water capability variety. The influence of Na2SO4 and temperature interaction on soil water retention ability was obvious than NaCl and temperature under low water suction condition. Under different water suction condition, NaCl influenced the content of HCO3-, SO42-, Ca2+, Mg2+ and Na2SO4 influenced the content of Cl-, Ca2+ and Mg2+ during the process of soil water release, respectively. The standpoint of“salt with water comes together, salt with water leaves together, salt stays along with water”was approved that there was in existence bug, and the relationship of salt and water was mutually promoted and restricted in soil system, and“salt stays along with water”depended on salt type and quantity.
     (2)Aiming at the characteristics of arid regions, the dry-soil depth is easy to form in topsoil and suppress evaporation and salt accumulation. The results showed that the regulation of salt accumulation was“⊥”type distributing in soil profile, and it was different from“T”type distributing of commonly farmland, and that the content of salt increased with soil depth increased. It was put forward that the damage of soil salinization was not only attached importance to salt accumulation in topsoil, but also should attached importance to salt accumulation in substrate under arid climate regions and crop deep root conditions, thus the scientific judgement and exact appraisement can be carried out.
     (3)Under conditions of agriculture and forest vegetation in arid regions, according to the way of salt accumulation in soil profile, the concept of“salt accumulating in topsoil”(T type) and“salt accumulating in substrate”(⊥type) were put forward. According to power of salt transfer, the concept of“salt evaporation accumulating”and“salt transpiration accumulating”was put forward. The course of“salt evaporation accumulating”was easy to directly perceive and obvious, and it was easy to be regarded, the process of prevent water from evaporation can be achieved success, but the course of“salt transpiration accumulating”with concealment and fraudulence was not easy to be perceived, the damage to crop was very serious, especially fruit trees.
     (4)Analysis spatial distributing characteristic of salt ions in soil profile and the correlation of salt ions.HCO3- was accompanied by K+ to congregate round topsoil, it formed alkalescence characteristic, SO42- were accompanied by Ca2+, Mg2+ and Na+ to congregate round substrate, it formed neutrality characteristic, chloride was equality distributing in soil profile, with salt-water irrigation. Meanwhile, salt ions in existence diversity in field by experiment approved, the diversity effect of salt ions was usually one of mostly reasons of salinization damage. During the course of soil salinization with salt-water irrigation, salt of the carbonate type distributed in topsoil, salt of the sulphate type distributed in substrate, the chloride was uniformity in soil profile. The characteristic of diversity and sediment of salt in soil profile was accorded with the double effect of the principle of solubility and water acute variety. As far as concerned fruit tree growth, the damage was not from carbonate zone in topsoil, and was sulphate zone in sbustrate, because a great deal of Na+ congregated round in substrate.
     (5)Taking Na+ and Cl- as“indicator”, the response mechanism was studied on the different soil layers to environment factor and soil basic properties, the results showed that the response of Na+ and Cl- in different soil layers to environment factors was different in range of the 0-25cm soil layer. As far as Na+ transfer, the 0-5cm soil layer was“insulated layer”of information communion between environment factors and soil profile. And the concept of“sensitive layer”presented in this paper was a good index to express the influencing intensity of environmental factors (evaporation and rainfall ) to soil water-solubility Na+ in the 5-10 cm soil layer, and fruit trees was play an role of“conductor”. Analysis the relationship of Cl- transfer accumulation, environment and soil basic properties, the results showed that there were different decision factors in the different soil layers. Cl- accumulation in the 0-5cm soil layer depended on the deficit value of water, but Cl- accumulation in the 10-15cm soil layer depended on soil water; the response of Cl- to environment factors and soil water under 15cm soil layer was not obvious.
     (6)Aiming at the characteristics of soil water variety in arid land, characteristic of spatial variety of salt and ions was studied during the courese of irrigation leaching salt and water redistributing. The results showed that there was a very marked difference between leaching before and after on soil total salt (P=0.001<0.01) and water-solubility Na+(P=0.000<0.01), and there was a marked difference on Cl- (P=0.040<0.05) and water -solubility Ca2+. But there was little difference on water-solubility K+, Mg2+, HCO3-, CO32- and SO42- between leaching before and after. The concept of“salinization index”was put forward, and the effect of leaching salt in different soil layers were integrated appraisement by“salinization index”. It was put forward that“fractal dimension”was considered index of salt diversity leaching before and after, and further the charge maintenance balance was approved by fractal dimension during the course of salt ions diversity. With an irrigation quantity ranging from 2700 to 3600m3/ha, irrigating was propitious to leaching salt in the 0-100cm soil layers. But irrigating could accelerate salt accumulating in topsoil when the irrigation quantity was under 1800m3/ha. During water redistributing, the 40-80cm soil layers was the lower salt zone under the double effects of water evaporation in superstratum and water movement down in substrate, the lower salt zone was equal to“zero flux surface”of soil water, the position of lower salt zone downwards movement during this course of water redistributing that opened out water exhaust characteristic. Salt accumulation quantity was the highest in the 10-30cm soil layer. The effcet of water redistributing to several ions was different, water redistributing induced salt ions diversity in soil profile.
     (7)The relationship of between vegetation and salt ions was studied by measured the dynamic variety of salt in different vegetation soil profile (nudity, barly, maize, apple fruit tree) in farmland. The results showed that soil salt congregated obviously in nudity farmland. Barly could suppressed salt accumulation in soil profile during the growth of barly, the content of Na+, Mg2+, Cl- and SO42- decreased in the 0-100cm soil layer. Maize could decreased salt in the 0-40cm soil layer, and drived salt, Na+, Ca2, Mg2+ and HCO3- gathering in the 60-100cm soil layer. There were two peak value of salt gathering during the growth of apple fruit tree. The first peak value, from May to June, soil salt mainly assembled in the 10-30cm soil layer; the second peak value, in the middle August, soil salt mainly congregated in the 30- 50cm soil layer.
引文
波杰科夫-梅伯A,盖尔J主编. 1980.盐渍环境中的植物.赵可夫译.北京:科学出版社
    [苏]鲍罗夫斯基B M. 1980.盐渍土改良的数量研究法.尤文瑞,孙传璐,刘文政译.北京:科学出版社
    崔骁勇,陈佐忠,杜占池.2001.半干旱草原主要植物光能和水分利用特征的研究.草业学报, 10(2):14~21
    曹红霞,康绍忠,武海霞. 2002.同一质地(重壤土)土壤水分特征曲线的研究.西北农林科技大学学报(自然科学版), 30(1):9~12
    单光宗.1985.干早及半干旱地带灌区土壤次生盐渍化及其防治.土壤学进展, (1):l~8
    陈冰,蒋平安. 2005.不同灌水量对碱化土的影响.干旱区地理, 28(1):103~106
    陈诚,姜艳.2009.开封引黄灌区灌溉条件下稻田土壤盐分阈值研究.华北水利水电学院学报,30(5):26~29
    陈骏,王鹤年. 2004.地球化学.北京:科学出版社, 15
    陈植华,徐恒力.1996.确定干旱-半干旱地区降水入渗补给量的新方法氯离子示踪法.地质科技情报,5(3):87~92
    陈志雄,汪仁真. 1979.中国几种主要土壤的持水性质.土壤学报, 16(3):277~281
    范爱武,刘伟,许国良.2004.土壤盐分运移温度效应的数值研究.中国工程热物理学会2004年学术会议,传热传质学,395~399
    范爱武,刘伟,李光正.2005.地下水水位及矿化度对土壤盐分运移的影响.中国工程热物理学会第十一届学术会议.传热传质学,557~561
    高永生,王锁民,张承烈. 2003.植物盐适应性调节机制的研究进展.草业学报, 12(2):1~6
    郭全恩,郭天文,南丽丽,王益权.2006.甘肃省秦安县苹果叶缘焦枯死亡原因的初步研究.西北农业学报,15(1):68~70
    郭全恩,王益权,郭天文,刘军,南丽丽.2008.甘肃省秦安县苹果叶缘焦枯死亡原因调查.北方园艺,(8):27~29
    郭太龙,迟道才,王全九,马东豪,杨武成.2005.入渗水矿化度对土壤水盐运移影响的试验研究.农业工程学报, 2(21):84~87(增刊)
    贺强,崔保山,赵欣胜,付华龄,廖晓琳.2009.黄河河口盐沼植被分布、多样性与土壤化学因子的相关关系,生态学报,29(2):676~686
    Hillel Deniel.1982.土壤和水.华孟,叶和才译.北京:农业出版社
    韩霁昌,解建仓,王涛,张宏凯.2009.蓄水条件下蓄水沟水体与相邻土壤的盐分运移规律研究,水利学报, 40(5):6
    胡安焱,高瑾,贺屹于,于延凤. 2002.干旱内陆灌区土壤水盐模型.水科学进展, 13(6),726-729
    胡守忠,乔冬梅,史海滨.2006.盐渍化地区土壤水分运动参数的测定及标定.灌溉排水学报, 25(2):30~33
    黄强,李生秀,宋郁东. 2003.咸水灌溉沙地后的水盐运移规律.土壤学报, 40(4):547~553
    贾宏伟,康绍忠,张富仓. 2006.土壤水力参数的单一参数模型.水利学报, 37(3):272~276
    焦艳平,康跃虎,万书勤,孙泽强,刘伟,董锋.2008.干旱区盐碱地滴灌土壤基质势对土壤盐分分布的影响.农业工程学报, 24(6):53~58
    江东,陈竹生,李嘉庆. 2001.一些枳杂种耐盐性的遗传评价.中国南方果树, 30(1): 3~4
    姜卫兵,马凯,王业遴. 1991.无花果耐盐性生理指标的探讨.江苏农业学报, 7(3):29~33
    柯夫大V A ,沙波尔斯I著.1986.土壤盐化和碱化过程的模拟.北京:科学出版社
    康绍忠,梁银丽,蔡焕杰. 1998.旱区水—土—作物关系及其最优调控原理.北京:中国农业出社,19
    鲁如坤,主编. 2000.土壤农业化学分析法.北京:中国农业科技出版社,80~89
    罗焕炎.1965.层状土中毛管水上升的实验研究.土壤学报,13(3):312~324
    罗金明,许林书,邓伟,张晓平,杨帆,李秀军.2008.盐渍土的热力构型对水盐运移的影响研究.干旱区资源与环境, 22(9):118~123
    罗朋,张富仓,李晓军,李继成. 2008.入渗水头对盐碱土水盐运移影响的试验研究.节水灌溉, 4~6
    罗廷彬,任崴,李彦,苏风春,王宝军.2005.北疆盐碱地采用生物措施后的土壤盐分变化.土壤通报,36(3):304~ 308
    罗廷彬,任崴,李彦,王宝军.2006.咸水灌溉条件下干旱区盐渍土壤盐分变化研究.土壤, 38 (2):166~170
    李彬,王志春,梁正伟,迟春明.2007.苏打碱化土壤盐分离子与相关性分析.土壤通报,38(4):653~656
    李宝富,熊黑钢,张建兵,龙桃.2010.两种植被覆盖度下土壤水分和盐分的空间变异性研究.新疆农业科学,47(1):168~173
    李加宏,俞仁培.1997a.矿化灌溉水-土壤系统中离子反应和交换.土壤学报,34(4):434~443
    李加宏,俞仁培.1997b.矿化灌溉水-土壤-作物系统中盐分迁移和循环的分室模型.土壤通报, 28(5):197~201
    李菊艳,赵成义,闫映宇,李君,孙栋元.2010.盐分对胡杨幼苗生长及光合特性的影响.中国沙漠,30(1):80~86
    李开元,李玉山.1991.土壤水分特征曲线的意义及其应用.陕西农业科学,(4):47~48
    李亮,史海滨,贾锦凤,王长生,刘宏云.2010.内蒙古河套灌区荒地水盐运移规律模拟.农业工程学报,26(1):31~35
    李品芳,侯振安,龚元石.2001.NaCl胁迫对首蓓和羊草苗期生长及养分吸收的影响.植物营养与肥料学报,7(2):211~217
    李瑞平,史海滨,赤江刚夫,张艺强.2009.基于水热耦合模型的干旱寒冷地区冻融土壤水热盐运移规律研究.水利学报, 40(4):403~412
    李小刚. 2001.含盐量对土壤的水汽吸附及土壤水能量状态的影响.土壤通报, 32(6):245~249
    李绪谦. 2001.环境水化学.长春:吉林科学技术出版
    李韵珠,李保国.1998.土壤溶质运移.北京:科学出版社
    李昂,吕正文,蔺海明,邱黛玉,赵有翼.2008.秦王川灌区不同绿色覆盖方式预防土壤次生盐渍化效应研究.草业科学,25(10):20~24
    黎立群.编著. 1986.盐渍土基础知识.北京:科学出版社
    吕殿青,王全九,王文焰,邵明安.2000.一维土壤水盐运移特征研究.水土保持学报, 14(4):91~94
    吕殿青,邵明安.2008.变容重土壤水分运动参数与方程研究.自然科学进展, 18(7):795~800
    吕殿青,王全九,王文焰,邵明安.2001.膜下滴灌土壤盐分特性及影响因素的初步研究.灌溉排水学报, 20(1):28~31
    雷志栋,杨诗秀,谢森传.1988.土壤水动力学.北京:清华大学出版社: 231~234
    刘福汉,王遵亲.1993.潜水蒸发条件下不同质地剖面的土壤水盐运动.土壤学报, 30(2):173~181
    刘继龙,马孝义,张振华.2010.土壤水盐空间异质性及尺度效应的多重分形.农业工程学报, 26(1):81~86
    刘广明,杨劲松,李冬顺. 2002.地下水蒸发规律及其与土壤盐分的关系.土壤学报,39(3):384~389
    刘广明,杨劲松,姚荣江.2005.影响土壤浸提液电导率的盐分化学性质要素及其强度研究.土壤学报,42(2):247~252
    刘广明,杨劲松,姚荣江.2010.基于磁感式探测的分层土壤盐分精确解译模型.农业工程学报, 26(1):61~66
    刘新平,张铜会,何玉惠,赵哈林,赵学勇,赵玮,栾天新,单丽.2008.不同粒径沙土水分扩散率.干旱区地理,31(2):249~253
    刘小虎,赵雅贤,杨鹏.2003.利用网格插值算法计算流域面平均降雨.海河水利,3:45~46
    柳云龙,吕军,王人潮.2002.低丘红壤作物易旱与土壤持水供水特性的关系.浙江大学学报(农业与生命科学版), 28(1):42~46
    蔺海明,郭晔红,贾恢先,李伟民.2005.黄芪不同种植密度的耐盐抑盐效应研究.草业学报,10:48~53
    蔺海明,贾恢先,张有福,郭晔红.2003.毛苕子对次生盐碱地抑盐效应的研究.草业学报,12(4):58~62
    马翠兰,刘星辉,陈素英.2004.NaCl胁迫对坪山柚、福橘实生苗矿质营养吸收特性的影响.植物资源与环境学报, 13(4):11~14
    马东豪,王全九,苏莹,史晓楠.2006.微咸水入渗土壤水盐运移特征分析.灌溉排水学报, 25(1):62~66
    [澳]马歇尔T J,霍姆斯J W著. 1986.土壤物理学.科学出版社:275~291
    毛知耘. 1996.植物氯营养与含氯化肥科学施用.土壤农化通报,11(3):17~28
    闵安成,张一平,朱铭莪,张君常.1995.田间土壤水势温度效应.土壤学报,32(2):237~240
    宁运旺,张永春,吴金桂,李庆康.2001.土壤—植物系统中的氯及施用含氯肥料的几个问题.土壤通报,32(5): 222~224
    Postel Sandra. 2000.一项浮士德的交易.张蔚榛译.中国农村水利水电, (6):8~13
    彭望录. 1997.土壤盐渍化量化的遥感与GIS实验.遥感学报,1(3):237~240
    [荷]彭宁德F W T,弗里斯等著. 1988.植物生长与作物生产的模拟.北京:科学出版社
    逄焕成,杨劲松,严惠峻.2004.微咸水灌溉对土壤盐分和作物产量影响研究.植物营养与肥料学报,10(6):599~603
    逄焕成,杨劲松,谢晓红.2005.氯化钠胁迫下施氮对冬小麦生长发育及体内氯、钠离子积累的影响.植物营养与肥料学报,11(5): 654~658
    秦耀东.2003.土壤物理学.北京:高等教育出版社:56
    日本土壤物理性测定委员会. 1979.土壤物理性测定法.翁德衡,译.重庆:科学技术文献出版社:14-32
    任加国,郑西来,许模,李甲亮.2005.新疆叶尔羌河流域土壤盐渍化特征研究.土壤, 37(6):635~639
    孙慧敏,刘军,王静,王益权.2003.土壤培肥过程中氯离子累积与分布规律研究.水土保持学报,17(4): 55~57
    孙慧敏,王益权,刘军,鲁晓玲.2006.氯离子在土壤水分与作物生长关系研究中的指示作用.西北植物学报, 26(11):2302~2306
    宋亚新,张发旺,荆恩春.2008.种植条件下降雨灌溉入渗试验研究.地球学报, 29(4):510~516
    宋晓艳,赵雨森,迟桂荣.2005.爆破整地对栗钙土理化性质的影响.德州学院学报,21(4):19~22
    石元春,辛德惠.1983.黄淮海平原的水盐运动和旱涝减的综合治理.石家庄:河北人民出版社:115
    史文娟,汪志荣,沈冰,王文焰.2007.蒸发条件下夹砂层土壤盐离子的迁移特性.西北农林科技大学学报(自然科学版), 35(1):133~137
    史文娟,沈冰,汪志荣.2005.层状土壤水盐动态研究与分析.干旱地区农业研究,23(5):250~254
    谈健康,安树青,王铮锋,朱学雷,张久海,陈兴龙,李国旗.1998.NaCl、Na2SO4和Na2CO3胁迫对小麦叶片自由基含量及质膜透性的比较研究.植物学通报, 15:82~86
    谭军利,康跃虎,焦艳平,刘伟,董锋.2009.滴灌条件下种植年限对大田土壤盐分及pH值的影响.农业工程学报,25(9):43~50
    唐奇志,刘兆普.2004.半干旱区海水灌溉农田土壤盐分运移规律的研究.水土保持学报,18(1): 47~50
    魏由庆.1995.从黄淮海平原水盐均衡谈土壤盐渍化的现状和将来.土壤学进展, 23(2):18~24
    翁永玲,宫鹏.2006.黄河三角洲盐渍土盐分特征研究.南京大学学报(自然科学),42(6):602~610
    王葆芳,杨晓晖,江泽平.2004.引黄灌区水资源利用与土壤盐渍化防治.干旱区研究, 21(2):139~143
    王秉忱,刘贯群,邱汉学,穆来旺,张国平.2003.引黄灌溉对孪井包气带盐分的淋洗.工程勘察, (3):19~23
    王静,刘湘南,黄方,唐吉龙,赵冷冰.2009.基于ANN技术和高光谱遥感的盐渍土盐分预测.农业工程学报,25(12):161~166
    王福利,肖振华.1993.土壤水盐运动数学模型及水盐动态预报方法.土壤盐化与碱化的防治.北京:科学出版社:25~29
    王海英,孙建设,王旭静,李艳华,刘冬云.2000.果树耐盐性研究进展.河北农业大学学报, 23 (2):54~61
    王宏,叶常明,尹澄清.1994.人工粘土层在枯水期对小清河氧化塘底质水盐运动的抑制模拟研究.环境科学,15(3):18~21
    王建勋.1992.干旱区节水农业技术咸水灌溉的研究与应用.新疆环境保护,21(1):43~46
    王金平. 1989.蒸发条件下层状土壤水分运动的数值模拟.水利学报, (5):49~54
    王明治. 2000.咸水灌溉芹菜试验研究.东北水利水电, 18(8):25~26
    王全九,徐益敏,王金栋,王永平,蒋庆华.2002.咸水与微咸水在农业灌溉中的应用.灌溉排水, 21(4):73~77
    王维真,吴月茹,晋锐,王建,车涛.2009.冻融期土壤水盐变化特征分析—以黑河上游祁连县阿柔草场为例,冰川冻土,31(2):268~274
    王文杰,贺海升,祖元刚,赵修华,杨磊,关宇,许慧男,于兴洋.2009.施加改良剂对重度盐碱地盐碱动态及杨树生长的影响.生态学报,29(5):2272~2278
    王月玲,蒋齐,蔡进军,张源润,季波,董立国,李生宝.2008.半干旱黄土丘陵区土壤水分入渗速率的空间变异性.水土保持通报, 28(4): 52~55
    汪丙国,靳孟贵,王文峰,杨磊.2006.氯离子示踪法在河北平原地下水垂向入渗补给量评价中的应用.节水灌溉, (3):16~20
    汪良驹,马凯,姜卫兵,凌志奋,王业遴.1995.石榴和桃在NaCl胁迫下钠钾离子含量及耐盐性研究.园艺学报, 22 (4): 336~340
    汪良驹,马凯,姜卫兵,王业遴,顾平.1996.五种落叶果树的氯离子分布与耐盐性研究.中国南方果树,25(4): 34~38
    汪珊,张宏达,汪林. 2005.宁夏青铜峡灌区水土盐量的衰减和积聚进程分析.水利学报,36(3):1~8
    [美]希勒尔D著. 1988.土壤物理学概论.陕西人民教育出版社,67~68
    徐恒刚,主编. 2004.中国盐生植被及盐渍化生态.北京:中国农业科学技术出版社
    徐力刚,杨劲松,张奇.2005.冬小麦种植条件下土壤水盐运移特征的数值模拟与预报.土壤学报, 42(6):923~929
    夏国海,陈英照,孙守如,宋尚伟.1998.黄河故地道区果园土壤和叶片营养特点研究.果树科学,15(3): 207~211
    夏卫兵. 1987.土壤水分特征曲线测定试验.江西水专学报, 1:89~91
    夏卫生,雷廷武,刘贤赵,刘纪根,潘英华. 2003.土壤水分特征曲线的推算.土壤学报,40(2):311~315
    肖家欣,彭抒昂,何华平. 2004.柑橘果实总钙、可溶性Ca2+含量及Ca2+-ATPase活性的季节性变化.果树学报, 21(6): 530~534
    肖振华, B. Prender?ast. 1994.灌溉水质对土壤水盐动态的影响.土壤学报,31(1):8~17
    解建仓,韩霁昌,王涛,王伟.2010.蓄水和蒸发条件下土壤过渡层中水盐运移规律研究.水利学报, 41(2): 239~244
    熊顺贵. 2001.基础土壤学.北京:中国农业大学出版社:185~187
    熊毅. 1960.灌区土壤盐渍化原因和防治.科学通报,(3):85~87
    叶雅杰,罗金明,许林书.2005.松嫩平原盐碱地土壤颗粒分形维数研究及其应用.长春师范学院学报(自然科学版),24(3):103~106
    于天仁,主编. 1987.土壤化学原理.北京:科学出版社:27
    俞仁培,主编. 1985.土壤水盐动态和盐碱化防治.北京:科学出版社,36
    姚德良,朱进生,谢正桐. 2001.土壤水盐运动模式研究及其在干旱区农田的应用.中国沙漠,21(3): 286~290
    姚贤良. 1986.土壤物理学.北京:农业出版社:453~457
    姚其华,邓银霞. 1992.土壤水分特征曲线模型及其预测方法的研究进展.土壤通报, 23(3), l42~144
    阎顺国,朱兴运,郭树林,付华.1990.碱茅草对土壤盐分动态及盐量平衡的影响.水土保持学报, 4(1):44~48
    闫俊华,周国逸,韦琴.2000.鼎湖山季风常绿阔叶林小气候特征分析.武汉植物学研究,18(5): 397~404
    殷波,柳延涛.2009.膜下长期滴灌土壤盐分的空间分布特征与累积效应,干旱地区农业研究,27(6):228~231
    杨艳,王全九.2005.层状土溶质运移特性及其参数分析.灌溉排水学报,24(6):19~21
    杨金忠,蔡树英,黄冠华. 2000.多孔介质中水分及溶质运移的随机理论.北京:科学出版社
    杨劲松,陈小兵,胡顺军,刘春卿,李晖,刘广明.2007.绿洲灌区土壤盐分平衡分析及其调控.农业环境科学学报, 26(4):1438~1443
    朱会义,贾绍凤. 2004.降雨信息空间插值的不确定性分析.地理科学进展, 23(2):34~42
    朱庭芸.1992.灌区土壤盐渍化防治.北京:农业出版社出版
    朱祖祥.1982.土壤学.北京:农业出版社:54~61
    曾路生,石元亮,王晶.2000.碱性矿化水淋洗对土壤盐碱化及小麦生长的影响.土壤与环境, 9(2): 120~124
    赵可夫.1984.盐分过多对植物的伤害作用和伤害机理.曲阜师范学院学报,抗盐生理专刊,63~68
    赵可夫,李法曾. 1999.中国盐生植物.北京:科学出版社,48~62
    周采景,刘军,王益权,赵加瑞,祁迎春.2008.有机物质类型与含量对土壤持水性能的影响.西北农林科技大学学报(自然科学版), 36(12):115~128
    周国逸. 1997.水热在生态系统中的理论与应用.北京:气象出版社: 216
    周广胜,张新时. 1996.气候与植被的关系初步研究.植物生态学报,20(2):114~119
    张福锁. 1993.环境胁迫与植物育种.北京:中国农业出版社,330~348
    张飞,塔西甫拉提·特依拜,丁建丽,江红南,哈学萍,田源.2009.基于对应分析的土壤盐渍化现状特征及其与光谱关系研究.土壤学报,46(3):513~519
    张慧文,马剑英,张自文,孙涛,吕光辉.2009.地统计学在土壤科学中的应用.兰州大学学报(自然科学版),45(6):14~20,27
    张建锋.2002.中国盐碱地造林绿化的理论与实践.刘小京,刘孟雨.盐生植物利用与区域农业可持续发展.北京:气象出版社:221~225
    张金珠,虎胆·吐马尔白,王一民,吴争光.2010.不同灌溉定额对膜下滴灌棉花土壤盐分分布的影响研究.灌溉排水学报,29(1):44~46
    张力平,陈新明,蔡焕杰. 2008.棉田滴灌水盐模型及动态变化规律.灌溉排水学报, 27(2):47~50
    张妙仙,杨劲松. 2002.灌溉入渗条件下农田土壤水盐动态简化模型及应用.土壤学报, 39(1): 81~88
    张妙仙,杨劲松,李冬顺.2004.特大暴雨作用下土壤盐分运移特征研究.中国生态农业报,12(2): 47~49
    张同娟,杨劲松,刘广明.2009.基于EM38长江河口地区土壤盐渍化特征研究.水土保持学报, 23(6):210~214
    张蔚臻.1992.土壤水盐运移数值模拟的初步研究.农田排灌及地下水土壤水盐运动理论和应用论文集:244~263
    张效朴,詹其厚,杜国华.1999.淮北平原样区主要土系的性状及其改良利用.土壤通报,30(专辑):20~23
    张一平,白锦鳞,张君常,刘思春. 1990.温度对土壤水势影响的研究.土壤学报, 27(4):454~458
    张豫,王立洪,陈秀龙,王则玉,胡顺军.2009.土壤含盐量对棉花发芽率及幼苗生长的影响,中国棉花,12:13~16
    张有福,蔺海明,贾恢先.2004.紫花苜蓿和饲用玉米对引黄灌区土壤盐分的抑制效应.甘肃农业大学学报,39(2):168~172
    张志,董福安,伍友利. 2005.二维灰度图像的分形维数计算,计算机应用,25(12):2853~2854,2867
    张振华,严少华,张学志. 1996.覆草量对水盐运动影响的实验研究.水土保持研究,3(3):93~107
    中国土壤学会盐渍土专业委员会编.1989.中国盐渍土分类分级文集.江苏科学技术出版社, 29: 3~35
    钟兆站,赵聚宝,薛军红,梅旭荣.1996.晋中东山地区褐土土壤水分特征的测定与应用.中国农业气象, 17(3):1~6
    庄季平,王伟.1986.土壤早期干旱与土壤水分特征曲线低吸力段的关系研究.土壤学报, 23(4):306~312
    庄文化,冯浩,吴普特,宁荣昌,史竹叶.2008. 2种高分子保水材料对土壤持水能力的影响.中国水土保持科学, 6(3):81~87
    Arbona·Rosa M, Pérez- Clemente·Aurelio Gómez-Cadenas.2009. A novel in vitro tissue culture approach to study salt stress responses in citrus. Plant Growth Regul. 59: 179~187
    Anna J. Keutgen, Elke Pawelzik. 2009. Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of straberry. Environmental and Experimental Botany. 65:170~176
    Annandale J G, Jovanovic N Z,Campbell G S, Du Sautoy N, Benade N. 2003. A two-dimensional water lance model for micro-irrigated hedgerow tree crops.Irrig Sci.22(3–4):157~170
    Ardahanlioglu O, Oztas T, Evren S, Yilmaz H, Yildirim ZN. 2003. Spatial variability of exchangeable sodium, electrical conductivity, soil pH and boron content in salt and sodium affected areas of the IgdirPlain (Turkey).Jouranal of Arid Environment.54(3):495~503.
    Arnold J G, Srinivasan R, Muttiah R S, Williams J R.1998. Large area hydrologic modeling and assessment.Part I: Model development. Journal of the American Water Resources Association. 34(1):73~89
    Bresler E. 1973. Simultaneous transport of solutes and water under transient unsaturated flow condition. Water Resour Res.9:975~986
    Cardon G E, Letey J. 1992. Plant water uptake terms evaluated for soil water and solute movement models.Soil Sci.Soc.Am.J. 32:1876~1880
    Ceuppens J, Wopereis M C S. 1999. Impact of non-drained irrigated rice cropping on soil salinization in the Senegal River Delta.Geoderma.92:125~140
    Clothier B E, Kirkham M B, Mclean J E. 1992. In situ measurements or the effective transport volume for solute moving through soil. Soil Sci. Soc. Am. J. 56: 733~736
    Clothier. 1983. Diffusivity and one-dimensional absorption experiment. Soil Sci. Soc. Am. Proc. 47: 641~644
    Chen X B, Qiu G Q, Wang Y Q, Sheng W Q.1989. Salt redistribution and heave of saline soil during cooling. Journal of Glaciology and Geocryology.11:231~238
    Dar S, Franklinmj, Jonsson BT. 1996. Semantic date caching and replacement. Proceedings of VLDB. 330~341
    Dehaan R L, Taylor G R. 2002. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Serzsireo of Environment.80(3):406~417
    Fitzhugh T W, Mackayb D S. 2000. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model. Journal of Hydrology. 236: 35~53
    Flowers T J. 1999. Salinization and horticultural production Scientia Horticulturae.78: 1~4
    Fortmeier R, Schubert S. 1995. Salt tolerance of maize: the role of sodium exclusion.Plant,Cell and Environment.18:1041~1047
    Feng G L, Meiri A, Letey J.2003. Evaluation of a model for irrigation management under saline conditions.II.Salt distribution and rooting pattern effects.Soil Sci Soc Am J. 67:77~80
    Gale S J, Pisanu P C. 2001. The late-Holocene decline of Casuarinaceae in southeast Australia. Holocene.11(4):485~490
    Gardner W R. 1959.Solution of the flow equation for the drying of soils and the porous media. Soil Sci. Soc Am Proc.23:183~187.
    Gao J P, Wu J H, Deng Y S. 1996. A multi-factor study of salt expansion of sulphate salty soil. Journal of Glaciology and Geocryology.18:170~177
    Guo Zh R, Liu H T. 2002. Secondary salinification of soil and dynamic control of groundwater in irrigation area of inland basin,northwestern China.Agro-environment Protection.21(1):45~48
    Harper J J, Gilkes R J. 2004. Aeolian influences on the soils and landforms of the southern Yilgam Craton of semi-arid, southwestern Australia. Geomorphology. 59(1-4):215~235
    Hassam F A. 1977. Evaporation and salt movement in soil in the present of water table. Soil Sci Soc Ameri J. 41(3):470~478
    Hopmans J W. Dane J H. 1986. Temperature dependence of soil water retention curves. Soil Sci Soc Am J. 50:562~567
    Hubbert M K. 1956. Darcy' s Law and the field equations of the flow of underground fluids. Amer. Inst.Mining Met Petrol Eng Trans. 207:222~239
    Hou X Y. 1982. Vegetation Geography of China and Chemical Composition of Their Dominant Plants. Beijing: Science Press
    Jin M G, Simmers Ian, Zhang R Q.1998. Preliminary Estimation of Groundwater Recharge at Wangtong, Hebei, P.R. China. Brahana, Gambling with Groundwater: Physical, chemical and biological aspects of aquifer-stream relations. Las Vegas, Nevada, USA,: 407~412
    Khan S, Abbas A, Blackwell J, Gabriel H F, Ahmad A.2007.Hydrogeological assessment of serial biological concentration of salts to manage saline drainage. Agricultural water management. 92,64~72
    Letey J, Feng G L. 2007. Dynamic versus steady-state approaches to evaluate irrigation management of saline waters. Agricultural water management.91,1~10
    Mandelbrot B B. 1982. The fractal geometry of nature. San Francisco:Freeman Mansour MMF, Lee Stadelmann OY, Stadelmann E J. 1986. Changes in growth, osmotic potential and cell permeability of wheat cultivators under salt stress.Plant physiol.80:651~654
    Maguy Dulormne, Olivia Musseau, Félix Muller, Armel Toribio, Amadou Ba. 2010. Effects of NaCl on growth,water status, N2 fixation, and ion distribution in Pterocarpus officinalis seedlings.Plant Soil. 327: 23 ~34
    Mahmood K, Morris J, Collopy J, Slavich P. 2001. Groundwater uptake and sustainability of farm plantations on saline sites in Punjab province,Pakistan.Agricultural Water Manag. 48: 1~20
    Marcelle R D. 1995. Mineral Nutrition and Fruit Quality.Acta Hortic. 383: 219~226
    Mehta S, Brady RM, Morin RH, Fryar AE. 2000. Modeling regional salinization of the Ogallala aquifer, Southern High Plains, TX,USA. Journal of Hydrology.238:44~64
    Motosugi H, Sugiura A, Tomana T. 1987. Salt tolerance of various apple root stock cultivar. Jap. Soc. Hort. Sci. 56: 135~141.
    Munns R. 1993. Physiological processes limiting plant growth in saline soil: Some dogmas and hypothesis.Plant Cell Enviroment.16:15~18
    Oster J, Rhoades J. 1975. Calculated drainage water compositions and salt burdens resulting from irrigation with river waters in the Western United States. J Environ Qual. 4:73~79
    Partrick, Boursier, Andre Luchli. 1990. Crop Physiology and Melaboliam. Crop Science. 30: 1226 ~ 1233
    Qadir M, Ghafoor A, Murtaza G. 2001. Use of saline-sodic waters through phytoremediation of calcareous saline-sodic soils. Agricultural water management.50(3):197~210
    Qiao Y H, Yu Zh R. 2003. Simulation study on the effects of irrigation on soil salt and saline water exploration.Acta Ecologica Sinica.10:2050~2056
    Ralph W. 1986. Salt sensitivity in wheat.Plant Physiol.(80):651~654
    Reilly TE, Plummer LN, Phillips PJ, Busenberg E.1994. The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resources Research. 30:421~433
    Salama R B, Otto C J, Fitzpatrick R W. 1999. Contributions of groundwater conditions to soil and water salinization. Hydrogeology journal.7(1):46~64
    Schofield R, Thomas DSG, Kirkby M J. 2001. Causal process of soil salinization in Tunisia, Spain and Hungary.Land Degradation & Development.12(2):163~181Semer R, Reddy K R. 1996. Evaluation of soil washing process to remove mixed contaminants from a sandy loam.J. Hazard. Mater.45:45~57
    Storey R, Walker R R. 1999. Citrus and salinity. Scientia Horticulturae.78: 39~81
    Starr J L, Deroo H C, Frink C R. 1978. Leaching characteristics of a layered field soil. Soil Sci Soc Am J. 42(5):376~391
    Startsev A D, Mcnabb D H. 2001. Skidder traffic effects on water retention, pore-size distribution, and van Genuchten parameters of Boreal forest soils.Soil Sci Soc Am. J. 65: 224~231
    Shirokva Y, Forkutsa I, Sharafutdinovan N. 2000. Use of eleetrical conductivity instead of soluble salts for soil salinity monitoring in central Asia. Irrigation and Drainage Systems.14(3): 199~205
    Shouse P J, Letey J, Jobes J, Fargerlund J, Burch SL, Oster JD, Rhoades JD, O' Halloran T. 1997. Salt Transport in cracking soils:bromide tracer study.J Irrig Drain Eng. 123(5):329~335
    Shi Z, Cheng J L, Huang M X, Zhou LQ. 2006. Assessing reclamation levels of coastal saline lands with integrated stepwise discriminant analysis and laboratory hyperspectral data. Pedosphere. 16(2): 154~160
    Ting Cheh-Shyh, Kerh Tienfuan, Liao Chiu-Jung. 1998. Estimation of groundwater recharge using the chloride mass-balance method,Pingtung Plain,Taiwan. Hydrogeology Journal. 6: 282~292
    Wallender WW, Tanji KK, Clark B. 2007. Drip irrigation water and salt flow model for table grapes in Coachella Valley. California. Irrig Drainage Sys. 21:79~95
    Wallender WW, Tanji KK, Gilley JG. 2006. Water flow and salt transport in cracking clay soils of the Imperial Valley,California.Irrig Drain Syst. 20:361~387
    Williams W D. 2001. Unplumbed salt in a parched landscape.Water science and technology. 43(4): 85~91
    Wood E F, Sivapalan M, Beven K.1988. Effects of spatial variability and scale with implications to hydrologic modeling. Journal of Hydrology. 102:29~47
    Willis W O. 1960. Evaporation from layered soil in the presence of a water table. Soil Sci Soc Proc. 24:239~242
    Wang X F, You W R, Wang Z Q. 1991. Salt water dynamics in highly salinized topsoil of salt-affected soil during water infiltration. Pedosphere. 1:315~323
    Wang H Q, Hsieh YP, Mark A, Huang WR.2007. Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions. Ecological modeling. 201: 429~439
    Zhao C Y, Wang Y C, Song Y D. 2004. Biological drainage characteristics of alakalized desert soils in north-western China.Journal of Arid Environment. 56(1):1~9
    Zhou Q, Yu B J. 2009. Accumulation of Inorganic and Organic Osmolytes and Their Role in Osmotic Adjustment in NaCl-Stressed Vetiver Grass Seedlings.Russian Journal of Plant Physiology.56 (5):678~685
    Zhang D F, Wang Sh J. 2001. Mechanism of freezethaw action in the process of soil salinization in northeast China.Environmental Geology. 41:96~100
    A.М.Глуьос.1987.Почвенно-гидрофмзическоеоьеспечениеагроэкологическихматематическмхмоделейЛениградГидрометеоиздат.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700