用户名: 密码: 验证码:
复层铝合金管坯水平连铸技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双金属复层管是利用复合技术将两种具有不同性能的金属管材以层状方式在界面处实现牢固结合的新型结构和功能材料。其既能保持原管材的性能优势,又能通过“相补效应”弥补两种金属的缺点从而获得比单一管材更加优越的物理化学力学性能,被广泛应用于石油化工、航空航天、交通运输等领域。例如用作汽车散热器的3003/4045复层铝合金管,就有效结合了两种合金的性能优势,保证芯层具有良好耐蚀性的同时又提高了管材表面焊接性。
     目前制备双金属复层管的方法主要有:(1)塑性成形法,包括拉拔、胀接、旋压、滚压等冷成型法以及热轧、热挤压等热成型法;(2)焊接法,包括堆焊、卷焊、钎焊、爆炸焊接法等;(3)铸造法,包括离心铸造法和消失模铸造法等;(4)其它方法,如粉末冶金、激光熔覆、喷射成形等。但是传统制备技术存在工艺复杂,界面结合质量不稳定以及受到设备尺寸约束等缺点;采用连续铸造法生产双金属复层材料具有生产成本低、环境污染小、结合界面易实现冶金结合、可连续生产等优点,因此受到越来越多的重视。但是目前仅应用于复层板和复层棒的生产,还未见制备复层管材的报道。
     本文结合连续铸造的技术优势和复层管材的性能特点,以3003/4045复层铝合金管为实验对象,突破传统制备工艺,研究新型的铝合金复层管水平连续铸造技术。通过数值模拟计算电磁场对管坯凝固时温度场、速度场和液相率分布的影响,并结合具体实验确定最佳工艺参数,研究复层铝合金管坯组织、成分和性能特点,从传热学角度探讨结晶器内冷却区的传热行为,建立复层管坯的界面结合机理,同时探索复层铝合金管轧制过程中组织和性能的变化规律。本文主要研究内容包括:
     研究整体结晶器液—液电磁复合法制备复层管坯的新技术。采用ANSYS软件模拟旋转磁场对管坯凝固过程的影响。数值模拟结果表明,磁感应强度在石墨模具内的分布规律为边缘大中间小。电磁场均匀了内外层合金熔体的温度场,扩大了固液两相区,提高了内外层合金在环形石墨挡板出口处的温度和液相率,有利于在界面处形成良好的冶金结合。同时电磁场改变了石墨模具内合金熔体的运动方式,促使熔体沿复层管坯横截面产生强迫定向运动。
     在数值模拟的基础上优化设计旋转磁场发生器位置、石墨挡板长度及浇注温度等参数,并结合实验确定最佳工艺参数。当3003和4045合金的浇注温度分别为720℃和650℃,一次冷却水水量1m3/h,输入电流强度100A,铸造速度为120mm/min和140mm/min时,可制备出外径86mm,内外层壁厚分别为16mm和7mm的复层铝合金管坯。此时石墨模具内壁和中心处的磁感应强度分别为25.6mT和7.4mT。电磁场显著细化晶粒,消除复层管坯凝固组织的各向异性,促进了内外层合金之间形成冶金结合。由于实际铸造过程中复层管坯周向散热的不均匀性,管坯界面处同时存在机械附着,扩散结合和混熔三种结合形式。
     研究液—固复合法制备复层管坯的新技术,分别提出整体结晶器法和分体结晶器法。分析结晶器冷却区的传热行为,建立结晶器一维稳态传热模型,得出铸造速度v与管坯表面温度TX之间热力学关系,引入修正系数K,并通过实际测量计算出K的具体数值,从而就可以根据冷却水进出水口温差理论计算出不同拉速下管坯表面温度。对于整体结晶器法,当3003和4045合金的浇注温度分别为730℃和650℃,铸造速度100mm/min,冷却水量120L/h,可制备出直径60mm,内外层壁厚分别为9mm和3mm的复层铝合金管坯,在复层管结合界面附近存在一层以Al12(FeMn)3Si相为主的弥散颗粒层。对于分体结晶器法,采用ANSYS软件对中间包内的外层合金熔体的凝固行为进行模拟计算,探讨了内层管坯表面温度和外层合金浇注温度对其凝固过程的影响;当3003和4045合金的浇注温度分别为730℃和690℃,铸造速度160mm/min,内层冷却水量1.5m3/h,外层冷却水量0.12m3/h,保护气体0.2MPa时,成功制备出直径80mm,内外层壁厚分别为12mm和3mm的复层铝合金管坯。建立了复层管液—固复合的界面结合机理,分析认为在界面处4045合金熔体以3003合金表面作为基底发生非均匀形核,初生a-A1与基底之间形成共格或半共格界面,并以平面状、胞状和树枝状的生长顺序变化。凝固速率对晶体生长有明显影响,较快的凝固速率抑制了a-A1的生长;最终在界面形成良好的冶金结合。
     拉伸剪切实验中变形与断裂均发生在界面附近强度较低的3003合金侧,界面剪切强度大于3003合金的剪切强度极限,复层管顶部和底部界面剪切强度值相近且均匀。热轧试验结果表明,3003合金和4045合金在轧制过程中发生不均匀变形,样品从15.2mm轧制至1mm时包覆率从19.7%增加至33%;铸态组织中粗大针状共晶硅在轧制过程中发生破碎细化。轧制过程中4045合金侧显微硬度没有明显变化,而界面处和3003合金侧显微硬度值随样品变形量的增加而增加。
Bimetallic tubes which consist of layers of two different materials have been widely used in many industrial fields due to their excellent mechanical and functional properties relative to that obtained in monolithic alloy parts. For example,3003/4045clad aluminum tube which has been used in the heat exchanger system of automobile can combine the advantages of individual raw materials, and the inner interface of the clad tube has excellent corrosion resistance while the outer interface has good weldability.
     Up to now, several conventional preparation methods have been developed for bimetallic tubes. These methods include:(1) Plastic forming method, such as drawing, expansion joint, spin forming method, rolling method and hot extrusion.(2) Welding process, such as bead weld, braze and explosive welding.(3) Casting, such as expendable pattern casting and centrifugal casting.(4) Other methods, such as powder metallurgy, spray forming process, et al. However, the main disadvantage of these methods is that the metallurgical bonding without discontinuities along the interface can not be achieved. Recently, much attention has been directed to continuous casting. By this method, excellent metallurgical bonding between the two different alloys can be obtained. Meanwhile, it can offer the advantages of low energy consumption, low costs and a simple production procedure, compared with other methods.
     This paper combines the technological superiority of continuous casting and the outstanding characteristic of clad tube, and researches on the new methods to prepare clad hollow billet by horizontal continuous casting. The main contents are as follows:
     The method of preparing clad hollow billet by horizontal electromagnetic continuous casting with liquid-liquid state has been studied. ANSYS software is used to compute the influence of rotate magnetic filed on the solidification of clad hollow billet. The results show that the distribution of magnetic flux density near the inner interface of graphite mold is much higher than that in the center of graphite mold. The electromagnetic field fiercely promotes the temperature field uniform, enlarges the mushy zone, and increases the temperature and liquid fraction of both internal and external alloys in the end of graphite plate to improve the combination of the two alloys. The electromagnetic field obviously changes the flow pattern of the melt, and the melt circumrotates in cross section of clad hollow billet.
     According to the results of numerical simulation, some experimental parameters, such as the location of coil, the length of graphite plate and the casting temperature, were optimally designed. When the casting temperatures of3003alloy and4045alloy are720℃and650℃, respectively, the cooling water flow rate is1m3/h, the input current intensity is100A, the casting speed are120mm/min and140mm/min, the clad hollow billet with internal layer of3003and external layer of4045was prepared. The outer diameter of the billet is86mm, while the thicknesses of the external and internal layer are7mm and16mm, respectively. The electromagnetic filed obviously refine the grains, change the inhomogeneous columnar grains into homogeneous equiaxed grains, and improve the formation of excellent metallurgical bonding between the two alloys. Since the heat transfer is nonuniform around the billet during casting processes, the bonding interface of the clad hollow billet consists of mechanical attachment, diffusion bonding and mixture at the same time.
     The method of preparing clad hollow billet by horizontal continuous casting with liquid-solid state has been studied. Single crystallizer and divided crystallizer methods were systemic investigated. The heat transfer in crystallizer was analyzed. The relationship between the casting speed v and the surface temperature of inter layer Tx was founded. The correction factor K was presented, and the value of K for this experiment was ensured through measurement and calculated. Then, the surface temperature of internal layer with the certain casting speed can be calculated through measure the temperature of inflow and outflow cooling water. For single crystallizer method, when the casting temperatures of3003alloy and4045alloy are730℃and650℃, respectively, the cooling water flow rate is120L/h, the input current intensity is30A, the casting speed is100mm/min, the clad hollow billet was prepared. The outer diameter of the billet is60mm, while the thicknesses of the external and internal layer are3mm and9mm, respectively. A lot of tiny particles which are identified to be the intermetallic compound Al12(FeMn)3Si are observed near the interface. For divided crystallizer method, ANSYS software was used to compute the solidification of external layer in the tundish, and the influence of the surface temperature of internal layer and the casting temperature of external melt on the solidification was discussed. When the casting temperatures of3003alloy and4045alloy are730℃and690℃, respectively, the cooling water rate for internal and external layers are1.5m3/h and0.12m3/h, respectively, the casting speed is160mm/min, the clad hollow billet was prepared. The outer diameter of the billet is80mm, while the thicknesses of the external and internal layer are3mm and12mm, respectively. The bonding mechanism of the two alloys combined by solid-liquid state was discussed.4045alloy attached on the surface of the3003alloy to nucleate and to grow. As the emergence and enlargement of constitutional super cooling zone on solidification front, the morphologies of the crystals of4045alloy changed according to following order:planar, cellular and dendritic. The solidification rate has great influence on the crystal grows.
     The failure and fracture always occurred in the3003side of the samples in the tensile-sheer test, indicating that the strength of the interface is higher than that of the3003alloy. The tensile-shear strengths in the different regions of the clad hollow billet are nearly uniform. Incompatible deformation between3003and4045layers took place during the rolling processes. The needle-like Si phase transformed into the dispersive particles when the thickness of the clad sample reduced from15mm to1mm, whereas no defects appeared in the interface. With the increase of the deformation, the values of microhardness increased in the3003side and interfacial region, while that stayed nearly constant in the4045side. The gradient distribution of hardness in the interfacial region was retained after the rolling deformation.
引文
[1]阎志明.铜及铜合金管坯水平电磁连续铸造技术研究[D].大连:大连理工大学,2009.
    [2]晋军辉.内覆不锈钢/碳钢双金属管内压扩散复合的研究[D].大连:大连交通大学,2004.
    [3]ASHBY M F, BRECHET Y J M. Designing hybrid materials[J]. Acta Materialia,2003,51: 5801-5821.
    [4]ALAM T, KHAN M K, PATHAKA M, et al.A review on the clad failure studies[J]. Nuclear Engineering and Design,2011,241:3658-3677.
    [5]SPRINGER H, KOSTKA A, PAYTON E J, et al.On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys[J]. Acta Materialia,2011,59:1586-1600.
    [6]LLOYD D J. Recent developments in controlling the architecture for property optimization in Al-based materials[J]. Scripta Materialia,2013,68:13-16.
    [7]TURRIFF D M, CORBIN S F, KOZDRAS M. Diffusional solidification phenomena in clad aluminum automotive braze sheet[J]. Acta Materialia,2010,58:1332-1341.
    [8]PAPIS K J M, HALLSTEDT B, LOFFLER J F, et al. Interface formation in aluminium-aluminium compound casting[J]. Acta Materialia,2008,56:3036-3043.
    [9]MILLER W S, ZHUANG L, BOTTEMA J, et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science and Engineering A,2000,280:37-49.
    [10]ZHAO Y X, IRVING P E, CINI A. Hardness environments around fatigued scratches in clad and unclad 2024 T351 aluminium alloy[J]. Materials Science and Engineering A,2009,500: 16-24.
    [11]WANG D Q, SHI Z Y, B Q R. Cladding of stainless steel on aluminum and carbon steel by interlayer diffusion bonding[J]. Scripta Materialia,2007,56:369-372.
    [12]BAE J H, RAO A K P, KIM K H, et al. Cladding of Mg alloy with Al by twin-roll casting[J]. Scripta Materialia,2011,64:836-839.
    [13]ZHAN Z, HE Y, WANG D, et al. Cladding inner surface of steel tubes with Al foils by ball attrition and heat treatment[J]. Surface and Coatings Technology,2006,201: 2684-2689.
    [14]VAIBHAW K, RAO S V R, JHA S K, et al. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors[J]. Journal of Nuclear Materials,2008,383:71-77.
    [15]赵卫民.金属复合管生产技术综述[J].焊管,2003,26(3):10-14.
    [16]张宝庆.双金属复合管的制造技术浅析[J].机电工程技术,2009,38(3):106-108.
    [17]陈海云,曹志锡.双金属复合管塑性成形技术的应用及发展[J].化工设备与管道,2006,43(5):16-18.
    [18]顾建忠.国外双层金属复合钢管的用途及生产方法[J].上海金属,2000,22(4):16-24.
    [19]李玉亭.双金属复层材料的电磁连续铸造技术研究[D].大连:大连理工大学,2003.
    [20]MARUKOVICH E I, BRANOVITSKY A M, NA Y, et al. Study on the possibility of continuous-casting of bimetallic components in condition of direct connection of metals in a liquid state[J]. Materials and Design,2006,27:1016-1026.
    [21]陈海云.双金属复合管塑性成型力学分析及其装置的研究[D].浙江:浙江工业大学,2006.
    [22]张红安.钢/铝、铜/铝复合材料的制备及性能研究[D].镇江:江苏大学,2007.
    [23]ZHOU X, QU G, ZHOU J, et al. Fabrication of composite alloy cladding material by brazing process[J]. Journal of Materials Processing Technology,2005,168:280-285.
    [24]YILMAZ 0, CELIK H. Electrical and thermal properties of the interface at diffusion-bonded and soldered 304 stainless steel and copper bimetal[J]. Journal of Materials Processing Technology,2003,141:67-76.
    [25]YOON J S, LEE S H, KIM M S. Fabrication and brazeability of a three-layer 4343/3003/4343 aluminum clad sheet by rolling[J]. Journal of Materials Processing Technology,2001,111: 85-89.
    [26]刘江.金属复合材料生产技术的现状与发展趋势[J].金属功能材料,2008,15(1):44-47.
    [27]于九明,孝云祯,王群骄,等.金属层状复合技术及其新进展[J].材料研究学报,2000,14(1):12-16.
    [28]刘晓涛,张廷安,崔建忠.层状金属复合材料生产工艺及其新进展[J].材料导报,2002,16(7):41-43.
    [29]张军.双金属复合铸造工艺的研究[D].郑州:郑州大学,2006.
    [30]JIANG Y, PENG D, LU D, et al. Analysis of clad sheet bonding by cold rolling[J]. Journal of Materials Processing Technology,2000,105:32-37.
    [31]PARAMSOTHY M, SRIKANTH N, GUPTA M. Solidification processed Mg/Al bimetal macrocomposite:Microstructure and mechanical properties[J]. Journal of Alloys and Compounds,2008,461:200-208.
    [32]徐卓辉,唐国翌.铝/镍层状复合金属的工艺制备技术研究[J].稀有金属材料与工程,2007,36(2):296-300.
    [33]MATSUMOTO H, WATANABE S, HANADA S.Fabrication of pure Al/Mg-Li alloy clad plate and its mechanical properties [J]. Journal of Materials Processing Technology,2005,169:9-15.
    [34]KIM S, KIM H, EUH K, et al. Effect of wire brushing on warm roll bonding of 6XXX/5XXX/6XXX aluminum alloy clad sheets[J]. Materials and Design,2012,35:290-295.
    [35]SONG X Y, SUN J B, ZHONG D S, et al. Study on Al/Mg compound materials by solid-liquid bonding method[J]. Materials Research Innovations,2012,16:51-55.
    [36]张胜华,郭祖军.铜-铝复合材料的研究[J].中国有色金属学报,1995,5(4):128-132.
    [37]CHEN J, HUA P, CHEN P, et al. Characteristics of multi-element alloy cladding produced by TIG process[J]. Materials Letters,2008,62:2490-2492.
    [38]孙德勤,吴春京,谢建新.金属复合线材成形工艺的研究开发概况[J].材料导报,2003,17(5):65-68.
    [39]SASAKI T T, BARKEY M, THOMPSON G B, et al. Microstructural evolution of copper clad steel bimetallic wire[J]. Materials Science and Engineering A,2011,528:2974-2981.
    [40]MANESH H D, TAHERI A K. Bond strength and formability of an aluminum-clad steel sheet[J]. Journal of Alloys and Compounds,2003,361:138-143.
    [41]许光明,崔建忠,常守威.复合导线生产工艺综述[J].轻合金加工技术,1997,25(8):5-8.
    [42]谷霞,张安义,秦建平.双金属复合管塑性复合成形工艺及应用[J].精密成形工程,2011,3(3):46-50.
    [43]MOHEBBI M S, AKBARZADEH A. A novel spin-bonding process for manufacturing multilayered clad tubes[J]. Journal of Materials Processing Technology,2012,210:510-517.
    [44]MORI S, MANABE K, NISHIMURA H, et al. Experimental analysis of the flattening of the cross-section, the springback and the bending moment of clad tubes in uniform bending[J]. Journal of Materials Processing Technology,1997,66:270-276.
    [45]王亮.消失模高铬铸铁—高锰钢复合耐磨弯管铸造工艺研究[D].武汉:华中科技大学,2009.
    [46]王晓峰.H62黄铜/碳钢双金属管内压扩散复合的研究[D].大连:大连交通大学,2005.
    [47]LAPOVOK R, NG H P, TOMUS D, et al. Bimetallic copper-aluminium tube by severe plastic deformation[J]. Scripta Materialia,2012,66:1081-1084.
    [48]WANG X, LI P, WANG R. Study on hydro-forming technology of manufacturing bimetallic CRA-lined pipe[J]. International Journal of Machine Tools and Manufacture,2005,45: 373-378.
    [49]秦建平,尹钢,李国祯.双金属管拉拔过程的理论分析[J].太原重型机械学院学报,1993,14(1):45-52.
    [50]陆晓峰,郑新.基于有限元模拟的20/316L双金属复合管拉拔参数的优化[J].中国有色金属学报,2011,21(1):205-213.
    [51]王智祥,杨斌,杨贵平.铜铝双金属管连续衬拉复合成形的研究[J].稀有金属,2002,26(3):206-209.
    [52]杨贵平,王智祥.双金属管衬拉复合拉拔力的计算[J].中国有色金属学报,1998,8(3):447-452.
    [53]刘世程,陈汝淑,刘德义.白铜/钢双金属管的瞬间液相扩散连接[J].焊接学报,2007,28(1):21-24.
    [54]李明亮.多层复合管液压胀接原理与工艺研究[D].哈尔滨:哈尔滨工业大学,2010.
    [55]孙显俊,陶杰,郭训忠,等.Fe/Al复合管液压胀形数值模拟及试验研究[J].锻压技术,2010,35(3):66-70.
    [56]王学生,李培宁.液压胀合有缝不锈钢管衬里复合管的制造技术[J].压力容器,2001,18(4):50-52.
    [57]王学生,王如竹,李培宁.复合管液压成形装置及残余接触压力预测[J].中国机械工程,2004,15(8):662-666.
    [58]刘富君,郑津洋,郭小联,等.双层管液压胀合过程的试验研究[J].压力容器,2006,23(2):23-27.
    [59]马静云.中小口径双金属薄壁管材挤压工艺研究[D].天津:天津理工大学,2012.
    [60]PARK H J, NA K H, CHO N S, et al. A study of the hydrostatic extrusion of copper-clad Al tube[J]. Journal of Materials Processing Technology,1997,67:24-28.
    [61]SPONSELLER D L, TIMMONS G A, BAKKER W T. Development of Clad Boiler Tubes Extruded from Bimetallic Centrifugal Castings [J]. Journal of Materials Engineering and Performance,1998, 7:227-238.
    [62]CHEN Z, IKEDA K, MURAKAMI T, et al. Fabrication of composite pipes by multi-billet extrusion technique[J]. Journal of Materials Processing Technology,2003,137:10-16.
    [63]LEE J S, SON H T, OH I H, et al. Fabrication and characterization of Ti-Cu clad materials by indirect extrusion[J]. Journal of Materials Processing Technology,2007,187-188: 653-656.
    [64]谢建新,池田圭介,村上糺.铝-铝合金双金属管的多坯料挤压成形[J].轻合金加工技术,1996,24(7):25-28.
    [65]KAI-KUN W, JIAN-LIN S, HAI-FENG M, et al. Numerical simulation on thixo-co-extrusion of double-layer tube with A356/AZ91D[J]. Transactions of Nonferrous Metals Society of China,2012,20:s921-s925.
    [66]骆瑞雪.双金属复合管的挤压成形工艺研究[J].热加工工艺,2010,39(13):87-89.
    [67]杜艳梅,王开坤,张鹏,等.半固态挤压铝/镁合金双金属复合管的有限元模拟[J].中国有色金属学报,2009,19(2):208-216.
    [68]DURGUTLU A, GULENC B, FINDIK F. Examination of copper/stainless steel joints formed by explosive welding[J]. Materials and Design,2005,26:497-507.
    [69]孙显俊,陶杰,郭训忠,等.爆炸法制备铁/铝双金属复合管的界面组织与结合强度[J].机械工程材料,2011,35(2):35-42.
    [70]ACARER M, DEMIR B. An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel[J]. Materials Letters,2008,62:4158-4160.
    [71]郭训忠,陶杰,袁正,等.爆炸焊接TA1/A1复合管的界面及性能研究[J].稀有金属材料与工程,2012,41(1):139-142.
    [72]王宝云,马东康,李争显.爆炸焊接铝/不锈钢薄壁复合管界面的微观分析[J].稀有金属快报,2006,25(2):26-30.
    [73]SUN X, TAO J, GUO X. Bonding properties of interface in Fe/Al clad tube prepared by explosive welding[J]. Transactions of Nonferrous Metals Society of China,2011,21: 2175-2180.
    [74]刘荣,汪洋,李平仓,等.爆炸焊接小直径铝/不锈钢复合管的研究[J].稀有金属材料与工程,2008,37(增刊4):645-648.
    [75]武宏.双金属管离心复合设备及其自动化[D].西安:西安建筑科技大学,2008.
    [76]WATANABE Y, INAGUMA Y, SATO H. Cold model for process of a Ni-aluminide/steel clad pipe by a reactive centrifugal casting method[J]. Materials Letters,2011,65:467-470.
    [77]刘建彬,韩静涛,解国良,等.离心浇铸挤压复合钢管界面组织与性能[J].北京科技大学学报, 2008,30(11):1255-1259.
    [78]郭明海,蔡玉丽,孙红波,等.离心铸造碳钢-高铬铸铁双金属复合管工艺初探[J].钢管,2008,37(1):38-41.
    [79]刘靖,韩静涛,周芬燕.离心铸造Q235钢/高铬铸铁复合管的热处理工艺[J].金属热处理,2012,37(7):22-25.
    [80]武宏,原思聪,许云华.长流槽离心浇注双金属复合管[J].铸造,2008,57(8):847-848.
    [81]XIONG B, CAI C, WAN H, et al. Fabrication of high chromium cast iron and medium carbon steel bimetal by liquid-solid casting in electromagnetic induction field[J]. Materials and Design,2011,32:2978-2982.
    [82]蒋会学,秦克,张海涛,等.复合锭直接水冷半连续铸造过程的研究[J].东北大学学报,2010,31(9):1274-2177.
    [83]LIU N, JIE J, SONG X, et al.Preparation of bilayer hollow billets by horizontal electromagnetic continuous casting[J]. Materials Research Innovations,2013,17:207-211.
    [84]FU Y, JIE J, WU L, et al.Microstructure and mechanical properties of Al-1Mn and Al-10Si alloy circular clad ingot prepared by direct chill casting[J]. Materials Science and Engineering A,2013,561:239-244.
    [85]苏亚军,刘新华,吴永福,等.水平连铸直接复合成形铜包铝复合材料的组织与性能[J].特种铸造及有色合金,2011,31(9):785-790.
    [86]LIU H W, GUO C, CHENG Y, et al. Interfacial strength and structure of stainless steel-semi-solid aluminum alloy clad metal[J]. Materials Letters,2006,60:180-184.
    [87]JIANG H, ZHANG H, QIN K, et al. Direct-chill semi-continuous casting process of three-layer composite ingot of 4045/3004/4045 aluminum alloys[J]. Transactions of Nonferrous Metals Society of China,2011,21:1692-1697.
    [88]费劲,李元元,张卫文,等.双流浇注连续铸造铝合金梯度材料的工艺参数[J].特种铸造及有色合金,2003,3(1-3.
    [89]ZHANG W, GAO J, ROHATGI P K, et al. Effect of the depth of the submerged entry nozzle in the mold on heat, flow and solution transport in double-stream-pouring continuous casting[J]. Journal of Materials Processing Technology,2009,209:5536-5544.
    [90]YUANYUAN L, JIN F, WEIPING C, et al. Preparation of 2024/3003 gradient materials by semi-continuous casting using double-stream-pouring technique [J]. Journal of Central South University of Technology,2002,9:229-234.
    [91]ZHANG W, LUO Z, XIA W, et al. Effect of plastic deformation on microstructure and hardness of AlSi/Al gradient composites[J]. Transactions of Nonferrous Metals Society of China,2007,17:1186-1193.
    [92]ZHANG W W, CHEN W P, FEI J, et al.Microstructure and mechanical property of 2024/3003 gradient aluminum alloy[J]. Journal of Central South University of Technology,2004,11: 128-133.
    [93]郑小平,张卫文,黄强,等.半连续铸造制备7075/6009铝合金梯度复合材料[J].特种铸造及有 色合金,2008,28(4):257-260.
    [94]ZHANG W W, ROHATGI P K, SHAO M, et al. Effect of plastic deformation on microstructure and hardness of 2024/3003 gradient composite ingot prepared by continuous casting[J]. Materials Science and Engineering A,2009,505:120-130.
    [95]LI Y Y, ZHANG W W, FEI J, et al. Heat treatment of 2024/3003 gradient composite and diffusion behavior of the alloying elements[J]. Materials Science and Engineering A,2005, 391:124-130.
    [96]黎红英,李莎,梁贺,等.气压顶出充芯连铸制备双金属复合材料试验研究[J].特种铸造及有色合金,2009,29(11):1047-1049.
    [97]吴春京,于治民,谢建新,等.充芯连铸法制备铜包铝双金属复合材料的研究[J].铸造,2004,53(5):432-434.
    [98]LIANG H, XUE Z, WU C, et al. Research on continuous core-filling casting forming process of copper-clad aluminum bimetal composite material [J]. Acta Metallurgica Sinica,2010,23: 206-214.
    [99]梁贺,赵永龙,臧勃林,等.铅包锡双金属气压充芯连铸复合界面研究[J].材料热处理学报,2011,32(3):19-24.
    [100]薛志勇,吴春京,张智.充芯连铸铜包铝复合材料制备技术的试验研究[J].特种铸造及有色合金,2008,28(5):383-384.
    [101]秦延庆,薛志勇,吴春京.连铸铜包铝复合棒坯过渡层的研究[J].特种铸造及有色合金,2005,25(5):304-306.
    [102]梁贺,刘柱,臧勃林,等.铜包铝气压充芯连铸设备的研发[J].铸造技术,2011,32(1):72-75.
    [103]赵红亮,楼琅洪,胡壮麒,等.反向凝固高温轧制带坯及冷轧带的界面结合与力学性能[J].金属学报,2001,37(11):1189-1192.
    [104]于九明,王群骄,孝云祯,等.铜/钢反向凝固复合实验研究[J].中国有色金属学报,1999,9(3):474-476.
    [105]LI N, GUO S, LU D, et al. Technique of Aluminum Alloy Composite by Inversion Casting[j]. Journal of Materials Science and Technology,2002,18:187-188.
    [106]BAOMIAN L, GUANGMING X, JIANZHONG C. Inversion Solidification Cladding of H90-Steel [J]. Journal of Iron and Steel Research International,2008,15:51-56.
    [107]冯妍卉,张欣欣,王新华,等.反向凝固条件下二元合金一维相变传热的研究[J].金属学报,2000,36(4):383-386.
    [1081HARADA H, TAKEUCHI E, ZEZE M, et al.MHD analysis in hydromagnetic casting process of clad steel slabs[J]. Applied Mathematical Modelling,1998,22:873-882.
    [109]TAKEUCHI, ZENE M. Novel continuous casting progress for clad steel slabs with level DC magnetic field[J]. Iron making and steel making,1997,24:257-263.
    [110]ZEZE M, HARADA H, TAKEUCHI E. Rayleigh-Taylor instability in the process of clad steel slab casting with level DC magnetic field[J]. ISIJ International,1999,39:563-569.
    [111]HARADA H, TOH T, ISHII T, et al. Effect of magnetic field conditions on the electromagnetic braking efficiency[J]. ISIJ International,2001,41:1236-1244.
    [112]赵勇慧.连铸过程中金属液流动的电磁控制[D].大连:大连理工大学,2002.
    [113]吴彩虹.直流电磁场下铝硅-铝镁复层材料的制备[D].大连:大连理工大学,2005.
    [114]李玉亭,李廷举,赵勇慧,等.电磁场下复层材料连续铸造研究[J].稀有金属材料与工程,2003,32(5):357-360.
    [115]李军.直流磁场下铝合金复层铸坯制备与模拟研究[D].大连:大连理工大学,2010.
    [116]SUN J B, WANG T M, YU Y S, et al. Numerical simulation and fabrication for bimetal clad slab under direct current magnetic field[J]. International Journal of Cast Metals Research, 2011,24:190-196.
    [117]SUN J, SONG X, WANG T, et al.The microstrueture and property of Al-Si alloy and Al-Mn alloy bimetal prepared by continuous casting[J]. Materials Letters,2012,67:21-23.
    [118]TAKEUCHI E, ZEZE M, TANAKA H, et al. Novel continuous casting processes for clad steel slabs with level dc magnetic field[J]. Ironmaking and Steelmaking,1997,24:257-263.
    [119]WAGSTAFF R B, LLOYD D J, BISCHOFF T F. Direct chill casting of clad ingot [J]. Materials Science Forum,2006,519-521:1809-1814.
    [120]GUPTA A, LEE S T, WAGSTAFF R B. Direct chill casting of aluminium-manganese against aluminium-silicon layer via Novelis Fusion process[J]. Materials Technology,2007,22: 71-75.
    [121]LLOYD D J, GALLERNEAULT M, WAGSTAFF R B. The deformation of clad aluminum sheet produced by direct chill casting[J]. Mtetallurgical and Materials Transactions A,2010,41A: 2093-2103.
    [122]王祝堂.诺威力复合锭铸造法的原理和工艺及应用[J].轻合金加工技术,2007,35(1):1-6.
    [123]许春伟,李炎,魏世忠,等.液-固双金属复合界面研究新进展[J].热加工工艺,2006,35(20):70-73.
    [124]LiK A. Interface microstructure of diffusion bonded Ni3Al intermetallic alloy and austenitic stainless steel[J]. Materials Letters,2009,63:2462-2465.
    [125]刘连涛.钢-铝复合界面组织结构研究[D].昆明:昆明理工大学,2008.
    [126]HAN Y, BAN C, BA Q, et al. Effect of an alternating magnetic field on the interfacial microstructure between molten aluminium and solid iron[J]. Materials Letters,2006,60: 1884-1887.
    [127]贾光霖,庞维成.电磁冶金原理与工艺[M].沈阳:东北大学出版社,2003:
    [128]BIRAT J P, CHONE J. Electromagnetic stirring on billet, bloom and slab continuous casters:state of the art in 1982[J]. Ironmaking and Steelmaking,1982,10:67-73.
    [129]周汉香,于学斌.电磁搅拌技术的发展及其在武钢的应用[J].武钢技术,2004,42(4):45-49.
    [130]潘秀兰,王艳红,梁慧智.国内外电磁搅拌技术的发展与展望[J].鞍钢技术,2005,334(9-15.
    [131]徐国兴,张琪渔.电磁搅拌技术在连铸机上的应用及其对铸坯质量的改善[J].上海金属,1997,19(3):28-33.
    [132]FUJISAKI K. In-mold electromagnetic stirring in continuous casting[J]. IEEE Transactions on Industry Applications,2001,37:1098-1104.
    [133]OH K S, CHANG Y W. Macro-segregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring[J]. ISIJ International,1995,35:866-875.
    [134]纪振双,姚留枋,唐仲和,等.连铸过程采用电磁搅拌时的负偏析带的形成机理[J].钢铁研究学报,1993,5(2):9-16.
    [135]赵航,李铮.连铸钢坯上白亮带的形成机制[J].钢铁研究学报,2000,12(1):71-72.
    [136]朱兴元.连铸电磁搅拌工艺在取向硅钢生产中的应用研究[J].钢铁,1994,29(4):19-23.
    [137]杨卯生,赵爱民,毛卫民.钢的半固态电磁搅拌力场与组织转变[J].钢铁研究学报,2003,15(4):18-23.
    [138]胡汉起,郑日琪.电磁搅拌对低硫钢枝晶组织及机械性能的影响[J].金属学报,1990,26(4):A313-A315.
    [139]YAN Z M, LIU H, LI T J, et al. Effects of alternating magnetic field and casting parameters on solidification structure and mechanical properties of copper hollow billets[J]. Materials and Design,2009,30:1245-1250.
    [140]金俊泽,曹志强,郑贤淑.电磁搅拌作用下形成分离共晶的研究[J].金属学报,1995,31(8):B374-B378.
    [141]李新涛,赵祥伟,魏笔,等.旋转电磁场对BFe10-1-1合金管坯组织及力学性能的影响[J].中国有色金属学报,2007,17(6):922-926.
    [142]LI X T, GUO Z X, ZHAO X W, et al. Continuous casting of copper tube billets under rotating electromagnetic field[J]. Materials Science and Engineering A,2007,460-461:648-651.
    [143]YAN Z, LI X, CAO Z, et al. Grain refinement of horizontal continuous casting of the CuNilOFelMn alloy hollow billets by rotating magnetic field (RMF)[J].Materials Letters, 2008,62:4389-4392.
    [144]金文中.K417高温合金真空熔铸凝固过程的电磁控制[D].大连:大连理工大学,2008.
    [145]TOH T, TAKEUCHI E, HOJO M, et al. Electromagnetic control of initial solidification in continuous casting of steel by low frequency alternating magnetic field[J]. ISIJ International,1997,37:1112-1119.
    [146]SPITZER K H, REITER G, SCHWERDTFEGER K. International symposium on electro-magnetic processing of materials[C]. Nagoya:ISIJ,1994.
    [147]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社,1998:763-766.
    [148]王晓东.电磁力对金属熔体驱动与运动形态控制的研究[D].大连:大连理工大学,2002.
    [149]冯慈璋.电磁场[M].北京:高等教育出版社,1983:278.
    [150]肖亚庆,谢水生,刘静安,等.铝加工技术实用手册[M].北京:冶金工业出版社,2005:141-148.
    [151]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,2005:25-35.
    [152]蔡开科.连铸结晶器[M].北京:冶金工业出版社,2008:138-145.
    [153]向凌霄.水平连铸与同水平铸造[M].北京:冶金工业出版社,2010:48-53.
    [154]赵镇南.传热学[M].北京:高等教育出版社,2008:54-72.
    [155]LUSZ, HELLAWELL A. Growth mechanisms of silicon in Al-Si alloys [J]. Journal of Crystal Growth,1985,73:316-328.
    [156]LU S Z, HELLAWELL A. The mechanism of silicon modification in Aluminum-Silicon alloys: impurity induced twinning[J]. Metallurgical Transactions A,1987,18A:1721-1733.
    [157]许并社.材料界面的物理与化学[M].北京:化学工业出版社,2006:1-4.
    [158]闻立时.固体材料界面研究的物理基础[M].北京:科学出版社,2011:1-8.
    [159]胡汉起.金属凝固原理[M].北京:机械工业出版社,2012:120-128.
    [161]吕立华.金属塑性变形与轧制原理[M].北京:化学工业出版社,2007:173-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700