用户名: 密码: 验证码:
厌氧接触式发酵制氢反应器的运行调控与产氢效能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用有机废水进行发酵制氢能起到污水治理和能源回收的双重功效,因而受到空前关注。厌氧发酵制氢技术以其底物利用范围广、反应条件温和、产氢速率高和稳定性好等优势,被认为是最具发展前景的生物制氢技术。针对目前厌氧发酵制氢反应器存在的污泥流失、反应器产氢效能不够理想等限制其工业化进程的关键技术问题,本论文在优化设计厌氧接触式发酵制氢反应器(ACR)的基础上,围绕“ACR发酵制氢反应器的运行调控和产氢效能”开展了深入研究,确立了ACR发酵制氢系统乙醇型发酵的定向启动条件、运行控制参数和提高系统产氢效能的调控策略,从微生物生态学角度揭示了发酵产氢微生物顶极群落形成的机制,并研究了系统中同型产乙酸耗氢作用的控制方法,进一步提高了ACR发酵制氢反应器的产氢效能。
     试制的ACR发酵制氢反应装置,由一个连续流搅拌槽式反应器(CSTR)与一个固-液-气三相分离器串联而成。污泥回流技术的采用,使反应系统具有了更高的生物持有能力,为提高反应器的比产氢速率(HPR)奠定了基础。以啤酒废水处理厂二沉池的污泥为种泥,在进水化学需氧量(COD)浓度5000mg/L、水力停留时间(HRT)6h、温度35oC等条件下,反应器可在55d内形成稳定的乙醇型发酵。在OLR28-44kgCOD/m~3·d内,随着进水COD的增加,ACR系统内Ethanoligenens harbinense YUAN-3为代表的发酵产氢菌得到逐步富集,产氢速率也随之增加,在OLR为44kgCOD/m~3·d时, HPR达到了3.51±0.45m~3/m~3·d。
     种泥的微生物群落结构特征,对发酵制氢系统的启动进程及顶极微生物群落的结构和代谢特征起着决定性作用。研究表明,以啤酒废水处理厂二沉池污泥、产酸发酵厌氧污泥和生活污水排放沟底泥为接种物启动的ACR系统,虽然在HRT8h、COD5000mg/L条件下均能形成产氢性能良好的乙醇型发酵,但在群落结构上的差异使系统的产氢性能呈现显著差别。分子生物学研究表明,以产酸发酵厌氧污泥启动的反应系统在达到稳定运行后,其生物多样性最好,而以生活污水排放沟底泥启动的系统最差;但在以生活污水排放沟底泥启动的系统中富集了更多的以E. harbinense YUAN-3为代表的发酵产氢菌,因而表现出更强的产氢效能,其产氢速率和污泥比产氢速率分别为14.0L/d和11.1mmolH2/g VSS·d。
     尽管污水处理剩余污泥启动ACR制氢系统的效果不如生活污水排放沟的底泥,但其来源广泛且易得。通过适当的预处理,提高其发酵产氢微生物的丰度和活性后,可成为一个比较理想的规模化发酵制氢系统启动的种泥来源。试验结果表明,对于剩余活性污泥,不同的预处理方法最终形成的微生物群落和发酵类型存在显著差异,其中,经酸预处理的的污泥系统最终形成的是丁酸型发酵体系,获得的最大氢气转化率(HY)为1.82mol H2/mol-glucose;对于厌氧颗粒污泥,各种预处理方法和未经预处理的污泥发酵体系,均呈丁酸型发酵;经氯仿预处理的污泥发酵体系显示出更高的产氢效能,HY可达1.96molH2/mol-glucose。以未经处理、经热预处理和经曝气预处理的剩余活性污泥启动ACR发酵制氢系统,在HRT8h、COD5000mg/L条件下均能形成稳定的发酵产氢微生物体系,但以曝气预处理污泥启动的反应系统中的发酵产氢菌种最为丰富,高效发酵产氢菌E. harbinense YUAN-3占据绝对优势,使系统表现出了较其他两套系统更好的产氢性能,产氢速率达到了16L/d。发酵生物制氢系统启动种泥的微生物群落结构,无论是在序批式或连续流培养过程中,均会发生群落演替。不同来源的种泥,以及不同预处理方法获取的接种物,构建了具有不同微生物组成的初始微生物群落,这一初始微生物群落的结构特征,直接决定了乙醇型发酵或丁酸型发酵顶极群落的最终形成。
     初始污泥负荷率F/M、pH和进水碳氮比(简记为COD/N,其中N以总氮计)等控制参数对ACR系统的产氢性能影响很大。在初始F/M为1.5kgCOD/kgVSS·d、进水COD5000mg/L、COD/N200、HRT8h和pH4.3-4.5等条件下,ACR发酵制氢氢系统可在14d内启动成功并达到稳定的乙醇型发酵。通过响应面法(RSM)优化获得的最佳OLR为63kgCOD/m~3·d,其中COD为11.3g/L,HRT为4.3h,在此条件下获得的HPR和HY分别达到了5.8m~3/m~3·d和1.78molH2/mol-glucose。与一体化的CSTR发酵制氢反应器相比,ACR制氢反应器拥有更高的生物持量,因而可在更高的有机负荷下运行,获得更大的比产氢速率,是一种高效的发酵制氢反应设备。
     在以混合微生物体系为基础的发酵制氢反应系统中,常会有同型产乙酸菌的滋生,其耗氢作用严重影响了反应器的产氢效能,而氯仿(CHCl3)的投加则可有效抑制耗氢的同型产乙酸作用,显著提高系统的产氢效能。研究表明,以啤酒废水处理厂二沉池污泥启动的ACR发酵制氢系统,存在大量的耗氢同型产乙酸菌,系统产氢效能低下,投加0.1%(V/V)剂量的CHCl3后,系统中以Eubacterium limosum和Eubacterium sp.SA11为代表的同型产乙酸菌迅速消失,而产氢能力较强的哈尔滨产氢产乙醇菌E.harbinense则大量富集,系统活性污泥的比产氢速率从11.7mlH2/gVSS·d迅速增加并稳定在113.8mlH2/gVSS·d,基质的氢气转化率也从0.14molH2/mol-glucose跃升到了1.07molH2/mol-glucose。
Biological hydrogen production from organic wastewater has dual effect ofwastewater treatment and energy recovery. In current, this research subject hasreceived increasingly attention. Among different biological processes for hydrogenproduction, anaerobic fermentation is the most commercially feasible H2biologicalproduction method because of its potential of direct use of wastewater streams andorganic wastes and its high production rate Considering the key problems of thecurrent anaerobic fermentative hydrogen production process and the operationalcontrol methods, a new process entitled “anaerobic contact reactor (ACR)” wasdeveloped in this thesis. The present study attempted to investigate the performanceand control strategy of fermentative hydrogen production in ACR. The operationconditions and methods for establishing ethanol-type fermentation and acceleratingstart-up of ACR were highlighted in this study. Moreover, the mechanism of theformation of climax microbial community of the fermentative hydrogen productionwas revealed from the perspective of microbial ecology. At last, the significance ofhydrogen sink by homoacetogenesis was evaluated and the method of inhibition ofhomoacetogens was investigated, which was aimed to improve the hydrogenproduction capability of ACR.
     The novel invented hydrogen production process was comparised with acontinuous flow stirred tank reactor (CSTR) and a settler. The system had a bettercapability of holding higher biomass concentration since the sludge was recoveriedinto CSTR from the sedimentation tank, which promises that the ACR system couldoperate at high organic loading rate (OLR) and exhibit an excellent hydrogenproduction. In order to explore the feasibility of using this novel ACR system foranaerobic fermentative hydrogen production, the reactor was started-up with thechemical oxygen demand (COD) of5000mg/L and hydraulic retention time (HRT)of6h at35oC for the first time. The seed sludge used in this section was taken froma secondary sedimentation tank of a local beer wastewater treatment plant. Theresult showed that an ethanol-type fermentation type was established and the systemcould reach steady-state after55days of operation. After the reactor achievedsteady-state, the performance of ACR under OLR ranged from28to44kgCOD/m~3·d was evaluated. It showed that the Ethanoligenens harbinense YUAN-3turned to be more abundance as the influent COD increased, and the specifichydrogen production rate (SHPR) increased to3.51±0.45m~3/m~3·d when OLR wasincreased to44kgCOD/m~3·d.
     The characteristics of the microbial commnnity of the seed play a decisive role in the start-up proceeding of the fermentative hydrogen productiong systems and themetabolic pathway of the climax microflora. The results showed that ethanol-typefermentation occurred in all the three reactors seeded with different inoculums. Theseed sludge were collected from secondary sedimentation tank of a local beerwastewater treatment plant (R1), anaerobic acidogenic reactor (R2) and sewagesludge (R3), respectively. The reactors were operated under indentical conditions(HRT8h,COD5000mg/L). The results of molecular biology analysis showed thatthe species of microorganisms of R2was the most, followed by R1and R3, but theEthanolgenesis harbinense Yuan-3was most predominant in R3reaction system.Thus, the R3system gave both the highest hydrogen production rate of14.0L/d andspecific hydrogen production of sludge of11.1mmol H2/g VSS·d.
     When used the untreated, heat-shock and the aeration treated excess activatedsludge as seed sludge for starting up the ACR system, all the reactors could reachsteady-state and estabilish stable fermentative hydrogen producing microorganismin the systems under HRT of8h and COD of5000mg/L. Experimental resultsshowed that the species of microorganisms and the quantity of Ethanoligenensharbinense were the largest in the microbial community in the reactor which wasinoculated the sludge treated by aeration. As result, the hydrogen production ratewas the largest (16L/d) than the other two systems which inoculated the untreatedand heat-shock treated sludge. The results of the above experiments indicated thatthe microbial community would both change in the batch and continuous-flowfermentation hydrogen production system. The seed inocula collected from differentsources and the inoculated sludge treated by various pretreatment methods haddifferent original microbial community and the results indicated that the topmicrobial community of ethanol-type fermentation and butyrate-type fermentationwas directly dependent on the initial microbial community structure of theinoculums.
     The initial start-up sludge loading rate, pH and influent COD/N has indenpentsignificant influence on the performance of fermentative hydrogen production ofACR. The results found that the ACR could reach steady-state with ethanol-typefermentation only after14days of operation when the initial F/M ratio, COD, pH,influent COD/N and HRT was controlled at1.5gCOD/gVSS·d,5000mg/L,4.3-4.5,200and8h, respectively. On this basis, the influent COD and HRT of ACR systemwere further optimized for hydrogen production by response surface methodology.The result showed that the highest HPR of5.8m~3/m~3·d of the hydrogen productionreactor system was achieved when the OLR was63kgCOD/m~3·d, i.e. COD andHRT was controlled at11.3g/L and4.3h, respectively. As compared to the CSTR(with inner separator), the ACR had a better capability of holding bioamass and it isa promising bioprocess for fermentative hydrogen production.
     The hydrogen production could be influenced by the homoacetogenesis in thehydrogen production system by anaerobic mixed microflora. While, the activity ofhomoacetogenes could be inhibited by chloroform. The hydrogen production couldbe improved when adding chloroform into the the hydrogen production system.Experimental results showed that the role of hydrogen consumption byhomoacetogenesis significantly affect the hydrogen production, when used theinoculum that was collected from a local beer wastewater treatment plant. It foundthat the Eubacterium limosum and Eubacterium sp. SA11which were classified tohomoacetogens were disappeared in the profile of microbial community, while theEthanoligenens harbinense YUAN-3were enriched after additing0.1%(v/v)chloroform into the fermentative hydrogen system. The result showed that thespecific hydrogen production of the sludge was increased from11.7ml H2/gVSS·dto113.8ml H2/gVSS·d as the homoacetogenesis was inhibited by chloroform. Thehydrogen yield was increased from0.14molH2/mol-glucose to1.07molH2/mol-glucose simultaneously.
引文
[1] Das D, Veziroglu T N. Advances in biological hydrogen productionprocesses. Int J Hydrogen Energ.2008,33(21):6046-6057
    [2] Benemann J. Hydrogen biotechnology: Progress and prospects. NatureBiotechnology.1996,14(9):1101-1103
    [3] Hirsch R, Bezdek R, Wendling R. Mitigating a long-term shortfall of worldoil production. World Oil.2005,226(5):47-52
    [4]丛威,周凤起,康磊.我国能源发展现状及对“十二五”能源发展的思考.应用能源技术.2010,153(9):1-6
    [5] Momirlan M, Veziroglu T N. The properties of hydrogen as fuel tomorrowin sustainable energy system for a cleaner planet. Int J Hydrogen Energ.2005,30(7):795-802
    [6] Jones L W. Liquid Hydrogen as a Fuel for the Future. Science.1971,174(4007):367-370
    [7]迟姚玲,丁福臣,易玉峰等.生物质能的开发利用.北京石油化工学院学报.2008,16(2):12-15
    [8] Winter C J. Into the hydrogen energy economy-milestones. Int J HydrogenEnerg.2005,30(7):681-685
    [9] Armor J N. The multiple roles for catalysis in the production of H2. ApplCatal a-Gen.1999,176(2):159-176
    [10] Das D, Veziroglu T N. Hydrogen production by biological processes: asurvey of literature. Int J Hydrogen Energ.2001,26(1):13-28
    [11] Das D. Advances in biohydrogen production processes: An approachtowards commercialization. Int J Hydrogen Energ.2009,34(17):7349-7357
    [12] Hallenbeck P C, Ghosh D. Advances in fermentative biohydrogenproduction: the way forward?. Trends Biotechnol.2009,27(5):287-297
    [13] Guwy A J, Hawkes F R, Hawkes D L, et al. Hydrogen production in a highrate fluidised bed anaerobic digester. Water Res.1997,31(6):1291-1298
    [14] Lin C Y, Cheng C H. Fermentative hydrogen production from xylose usinganaerobic mixed microflora. Int J Hydrogen Energ.2006,31(7):832-840
    [15] Lee H S, Krajmalnik-Brown R, Zhang H S, et al. An Electron-Flow ModelCan Predict Complex Redox Reactions in Mixed-Culture FermentativeBioH(2): Microbial Ecology Evidence. Biotechnol Bioeng.2009,104(4):687-697
    [16] Lee H S, M. Salerno B,Rittmann B E. Thermodynamic evaluation on H2production in glucose fermentation. Environ Sci Technol.2008,42(7):2401-2407
    [17]任南琪,王爱杰,马放.产酸发酵微生物生理生态学.北京:科学出版社.pp.137-154.
    [18] Ren N Q, Xing D F, Rittmann B E, et al. Microbial community structure ofethanol type fermentation in bio-hydrogen production. Environ Microbiol.2007,9(5):1112-1125
    [19] Li J Z, Zheng G C, He J G, et al. Hydrogen-producing capability ofanaerobic activated sludge in three types of fermentations in a continuousstirred-tank reactor. Biotechnol Adv.2009,27(5):573-577
    [20] Gray C T, Gest H. Biological Formation of Molecular Hydrogen.Science.1965,148:186-192
    [21] Hawkes F R, Dinsdale R, Hawkes D L, et al. Sustainable fermentativehydrogen production: challenges for process optimisation. Int J HydrogenEnerg.2002,27(11-12):1339-1347
    [22] Chen W M, Tseng Z J, Lee K S, et al. Fermentative hydrogen productionwith Clostridium butyricum CGS5isolated from anaerobic sewage sludge.Int J Hydrogen Energ.2005,30(10):1063-1070
    [23] Evvyernie D, Morimoto K, Karita S, et al. Conversion of chitinous wastes tohydrogen gas by Clostridium paraputrificum M-21. J Biosci Bioeng.2001,91(4):339-343
    [24] Jo J H, Lee D S, Park D, et al. Biological hydrogen production byimmobilized cells of Clostridium tyrobutyricum JM1isolated from a foodwaste treatment process. Bioresource Technol.2008,99(14):6666-6672
    [25] Guo W Q, Ren N Q, Wang X J, et al.Optimization of culture conditions forhydrogen production by Ethanoligenens harbinense B49using responsesurface methodology. Bioresource Technol.2009,100(3):1192-1196
    [26] Mandal B, Nath K, Das D. Improvement of biohydrogen production underdecreased partial pressure of H2by Enterobacter cloacae. Biotechnol Lett.2006,28(11):831-835
    [27] Nakashimada Y, Rachman M A, Kakizono T, et al. Hydrogen production ofEnterobacter aerogenes altered by extracellular and intracellular redoxstates. Int J Hydrogen Energ.2002,27(11-12):1399-1405
    [28] Kumar N, Das D. Enhancement of hydrogen production by Enterobactercloacae IIT-BT08. Process Biochem.2000,35(6):589-593
    [29] Nath K, Kumar A, Das D. Effect of some environmental parameters onfermentative hydrogen production by Enterobacter cloacae DM11. Can JMicrobiol.2006,52(6):525-532
    [30] Bisaillon A, Turcot J, Hallenbeck P C. The effect of nutrient limitation onhydrogen production by batch cultures of Escherichia coli. Int J HydrogenEnerg.2006,31(11):1504-1508
    [31] Oh Y K, Seol E H, Kim J R, et al. Fermentative biohydrogen production by anew chemoheterotrophic bacterium Citrobacter sp Y19. Int J HydrogenEnerg.2003,28(12):1353-1359
    [32] Minnan L, Jinli H, Xiaobin W, et al. Isolation and characterization of a highH2-producing strain Klebsiella oxytoca HP1from a hot spring. ResMicrobiol.2005,156(1):76-81
    [33] Kotay S M, Das D. Microbial hydrogen production with Bacillus coagulansIIT-BT S1isolated from anaerobic sewage sludge. Bioresource Technol.2007,98(6):1183-1190
    [34] Levin D B, Islam R, Cicek N,et al.Hydrogen production by Clostridiumthermocellum27405from cellulosic biomass substrates. Int J HydrogenEnerg.2006,31(11):1496-1503
    [35] Chin H L, Chen Z S, Chou C P. Fedbatch operation using Clostridiumacetobutylicum suspension culture as biocatalyst for enhancing hydrogenproduction. Biotechnol Progr.2003,19(2):383-388
    [36] Collet C, Adler N, Schwitzguebel J P, et al. Hydrogen production byClostridium thermolacticum during continuous fermentation of lactose. IntJ Hydrogen Energ.2004,29(14):1479-1485
    [37] Ueno Y, Haruta S, Ishii M, et al. Characterization of a microorganismisolated from the effluent of hydrogen fermentation by microflora. J BiosciBioeng.2001,92(4):397-400
    [38] Ollivier B M, Mah R A, Ferguson T J, et al. Emendation of the GenusThermobacteroides-Thermobacteroides-Proteolyticus Sp-Nov, a ProteolyticAcetogen from a Methanogenic Enrichment. Int J Syst Bacteriol.1985,35(4):425-428
    [39] Sridhar J, Eiteman M A, Wiegel J W. Elucidation of enzymes infermentation pathways used by Clostridium thermosuccinogenes growingon inulin. Appl Environ Microb.2000,66(1):246-251
    [40] van Niel E W J, M. Budde A W, de Haas G G, et al. Distinctive properties ofhigh hydrogen producing extreme thermophiles, Caldicellulosiruptorsaccharolyticus and Thermotoga elfii. Int J Hydrogen Energ.2002,27(11-12):1391-1398
    [41] Eriksen N T, T. Nielsen M, Iversen N. Hydrogen production in anaerobicand microaerobic Thermotoga neapolitana. Biotechnol Lett.2008,30(1):103-109
    [42] Nguyen T A D, Kim J P, Kim M S, et al. Optimization of hydrogenproduction by hyperthermophilic eubacteria, Thermotoga maritima andThermotoga neapolitana in batch fermentation. Int J Hydrogen Energ.2008,33(5):1483-1488
    [43] Ramachandran U, Wrana N, Cicek N, et al. Hydrogen production andend-product synthesis patterns by Clostridium termitidis strain CT1112inbatch fermentation cultures with cellobiose or alpha-cellulose. Int JHydrogen Energ.2008,33(23):7006-7012
    [44] Pan C M, Fan Y T, Zhao P, et al. Fermentative hydrogen production by thenewly isolated Clostridium beijerinckii Fanp3. Int J Hydrogen Energ.2008,33(20):5383-5391
    [45] Xing D F, Ren N Q, Li Q B, et al. Ethanoligenens harbinense gen. nov., spnov., isolated from molasses wastewater. Int J Syst Evol Micr.2006,56:755-760
    [46]林明.高效产氢发酵新菌中的产氢机理及生态学研究.哈尔滨工业大学博士学位论文.2002.
    [47]邢德峰.产氢-产乙醇细菌群落结构与功能研究.哈尔滨工业大学博士学位论文.2006.
    [48] Xing D F, Ren N Q, Wang A J, et al. Continuous hydrogen production ofauto-aggregative Ethanoligenens harbinense YUAN-3under non-sterilecondition. Int J Hydrogen Energ.2008,33(5):1489-1495
    [49] Tanisho S, Suzuki Y, Wakao N. Fermentative Hydrogen Evolution byEnterobacter-Aerogenes Strain E-82005. Int J Hydrogen Energ.1987,12(9):623-627
    [50] Tanisho S, Ishiwata Y. Continuous Hydrogen-Production from Molasses bythe Bacterium Enterobacter-Aerogenes. Int J Hydrogen Energ.1994,19(10):807-812
    [51]郭婉茜,任南琪,王相晶等.接种污泥预处理对生物制氢反应器启动的影响.化工学报.2008,59(5):1283-1287
    [52]傅秀梅,王亚楠,王长云等.生物制氢——能源、资源、环境与经济可持续发展策略.中国生物工程杂志.2007,27(2):119-125
    [53] Lay J J, Lee Y J, Noike T. Feasibility of biological hydrogen productionfrom organic fraction of municipal solid waste. Water Res.1999,33(11):2579-2586
    [54] Cheong D Y, Hansen C L. Bacterial stress enrichment enhances anaerobichydrogen production in cattle manure sludge. Appl Microbiol Biot.2006,72(4):635-643
    [55] Zuo J, Zuo Y, Zhang W, et al.Anaerobic bio-hydrogen production usingpre-heated river sediments as seed sludge. Water Sci Technol.2005,52(10-11):31-39
    [56] Lin C Y, Chou C H. Anaerobic hydrogen production from sucrose using anacid-enriched sewage sludge microflora. Eng Life Sci.2004,4(1):66-70
    [57] Chang J S, Lee K S, Lin P J. Biohydrogen production with fixed-bedbioreactors. Int J Hydrogen Energ.2002,27(11-12):1167-1174
    [58] Wu S Y, Lin C N, Chang J S. Hydrogen production with immobilizedsewage sludge in three-phase fluidized-bed bioreactors. Biotechnol Progr.2003,19(3):828-832
    [59] Lee K S, Wu J F, Lo Y S, et al. Anaerobic hydrogen production with anefficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng.2004,87(5):648-657
    [60] Chen C C, Lin C Y, Lin M C. Acid-base enrichment enhances anaerobichydrogen production process. Appl Microbiol Biot.2002,58(2):224-228
    [61] Ueno Y, Haruta S, Ishii M, et al. Microbial community in anaerobichydrogen-producing microflora enriched from sludge compost. ApplMicrobiol Biot.2001,57(4):555-562
    [62] Ueno Y, Kawai T, Sato S, et al. Biological Production of Hydrogen fromCellulose by Natural Anaerobic Microflora. J Ferment Bioeng.1995,79(4):395-397
    [63] Ueno Y, Otsuka S, Morimoto M. Hydrogen production from industrialwastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng.1996,82(2):194-197
    [64] Ueno Y, Haruta S, Ishii M, et al. Changes in product formation and bacterialcommunity by dilution rate on carbohydrate fermentation by methanogenicmicroflora in continuous flow stirred tank reactor. Appl Microbiol Biot.2001,57(1-2):65-73
    [65] Ren N Q, Guo W Q, Wang X J, et al. Effects of different pretreatmentmethods on fermentation types and dominant bacteria for hydrogenproduction. Int J Hydrogen Energ.2008,33(16):4318-4324
    [66] Zhu H G, Beland M. Evaluation of alternative methods of preparinghydrogen producing seeds from digested wastewater sludge. Int J HydrogenEnerg.2006,31(14):1980-1988
    [67] Gunsalus R, Romesser P J A, Wolfe R S. Preparation of coenzyme Manalogues and their activity in the methyl coenzyme M reductase system ofMethanobacterium thermoautotrophicum. Biochemistry.1978,17(12):2374-2377
    [68] Sprott G D, Jarrel K F, Shaw K M, et al. Acetylene as inhibitor ofmethanogenic bacteria. J Gen Microbiol.1982,128(10):2453-2462
    [69] Scholten J C M, Conrad R, Stams A J M. Effect of2-bromo-ethane sulfonate,molybdate and chloroform on acetate consumption by methanogenic andsulfate-reducing populations in freshwater sediment. Fems Microbiol Ecol.2000,32(1):35-42
    [70] Chidthaisong A, Conrad R. Specificity of chloroform,2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis andother anaerobic processes in anoxic rice field soil. Soil Biol Biochem.2000,32(7):977-988
    [71] Wang J L, Wan W. Comparison of different pretreatment methods forenriching hydrogen-producing bacteria from digested sludge. Int JHydrogen Energ.2008,33(12):2934-2941
    [72] Mu Y, Yu H Q, Wang G. Evaluation of three methods for enrichingH-2-producing cultures from anaerobic sludge. Enzyme Microb Tech.2007,40(4):947-953
    [73] Hu B, Chen S L. Pretreatment of methanogenic granules for immobilizedhydrogen fermentation. Int J Hydrogen Energ.2007,32(15):3266-3273
    [74] Mohan S V, Babu V L, Sarma P N. Effect of various pretreatment methodson anaerobic mixed microflora to enhance biohydrogen production utilizingdairy wastewater as substrate. Bioresource Technol.2008,99(1):59-67
    [75]郭婉茜,任南琪,曲媛媛等.两种类型生物制氢反应器的运行及产氢特性.哈尔滨工业大学学报.2009,41(4):72-76
    [76] Younesi H, Najafpour G K, Ku Ismail S, et al. Biohydrogen production ina continuous stirred tank bioreactor from synthesis gas by anaerobicphotosynthetic bacterium: Rhodopirillum rubrum. Bioresource Technol.2008,99(7):2612-2619
    [77] Ding J, Wang X, Zhou X F, et al. CFD optimization of continuousstirred-tank (CSTR) reactor for biohydrogen production. BioresourceTechnol.2010,101(18):7005-7013
    [78] Show K Y, Zhang Z P, Tay J H, et al. Production of hydrogen in a granularsludge-based anaerobic continuous stirred tank reactor. Int J HydrogenEnerg.2007,32(18):4744-4753
    [79] Zhang Z P, Show K Y, Tay J H, et al. Effect of hydraulic retention time onbiohydrogen production and anaerobic microbial community. ProcessBiochem.2006,41(10):2118-2123
    [80] Fang H H P, Liu H, Zhang T. Characterization of a hydrogen-producinggranular sludge. Biotechnol Bioeng.2002,78(1):44-52
    [81] Wu S Y, Hung C H, Lin C N, et al. Fermentative hydrogen production andbacterial community structure in high-rate anaerobic bioreactors containingsilicone-immobilized and self-flocculated sludge. Biotechnol Bioeng.2006,93(5):934-946
    [82]Zhang Z P, Show K Y, Tay J H, et al. Rapid formation of hydrogen-producinggranules in an anaerobic continuous stirred tank reactor induced by acidincubation. Biotechnol Bioeng.2007,96(6):1040-1050
    [83] Zhang Z P, Tay J H, Show K Y, et al. Biohydrogen production in a granularactivated carbon anaerobic fluidized bed reactor. Int J Hydrogen Energ.2007,32(2):185-191
    [84] Bhaskar Y V, Mohan S V, Sarma P N. Effect of substrate loading rate ofchemical wastewater on fermentative biohydrogen production in biofilmconfigured sequencing batch reactor. Bioresource Technol.2008,99(15):6941-6948
    [85] Buitron G, Carvajal C. Biohydrogen production from Tequila vinasses inan anaerobic sequencing batch reactor: Effect of initial substrateconcentration, temperature and hydraulic retention time. BioresourceTechnol.2010,101(23):9071-9077
    [86] Oh S E, Lyer P, Bruns M A, et al. Biological hydrogen production using amembrane bioreactor. Biotechnol Bioeng.2004,87(1):119-127
    [87] Li C L, Fang H H P. Fermentative hydrogen production from wastewater andsolid wastes by mixed cultures. Crit Rev Env Sci Tec.2007,37(1):1-39
    [88] Show K Y, Lee D J, Chang J S. Bioreactor and process design forbiohydrogen production. Bioresource Technol.2011,102(18):8524-8533
    [89] Palazzi E, Fabiano B, Perego P. Process development of continuoushydrogen production by Enterobacter aerogenes in a packed column reactor.Bioprocess Eng.2000,22(3):205-213
    [90] Chang F Y, Lin C Y. Biohydrogen production using an up-flow anaerobicsludge blanket reactor. Int J Hydrogen Energ.2004,29(1):33-39
    [91] Lo Y C, Lee K S, Lin P J, et al. Bioreactors configured with distributors andcarriers enhance the performance of continuous dark hydrogen fermentation.Bioresource Technol.2009,100(19):4381-4387
    [92] Lin C N, Wu S Y, Chang J S, et al. Biohydrogen production in a three-phasefluidized bed bioreactor using sewage sludge immobilized byethylene-vinyl acetate copolymer. Bioresource Technol.2009,100(13):3298-3301
    [93] Kanai T, Imanaka H, Nakajima A, et al. Continuous hydrogen production bythe hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. JBiotechnol.2005,116(3):271-282
    [94] Lee K S, Lin P J, Chang J S. Temperature effects on biohydrogen productionin a granular sludge bed induced by activated carbon carriers. Int JHydrogen Energ.2006,31(4):465-472
    [95] Oh Y K, Kim S H, Kim M S, et al. Thermophilic biohydrogen productionfrom glucose with trickling biofilter. Biotechnol Bioeng.2004,88(6):690-698
    [96] Zhang Z P, Adav S S, Show K Y, et al.Characteristics of Rapidly FormedHydrogen-Producing Granules and Biofilms. Biotechnol Bioeng.2008,101(5):926-936
    [97] Fang H H P, Liu H. Effect of pH on hydrogen production from glucose by amixed culture. Bioresource Technol.2002,82(1):87-93
    [98] Ren N Q, Wang A J, Cao G L, et al. Bioconversion of lignocellulosicbiomass to hydrogen: Potential and challenges. Biotechnol Adv.2009,27(6):1051-1060
    [99] Mohan S V. Harnessing of biohydrogen from wastewater treatment usingmixed fermentative consortia: Process evaluation towards optimization. IntJ Hydrogen Energ.2009,34(17):7460-7474
    [100] Yokoi H, Saitsu A, Uchida H, et al. Microbial hydrogen production fromsweet potato starch residue. J Biosci Bioeng.2001,91(1):58-63
    [101] Lin C Y, Lay C H. A nutrient formulation for fermentative hydrogenproduction using anaerobic sewage sludge microflora. Int J Hydrogen Energ.2005,30(3):285-292
    [102] Lin C Y, Lay C H. Carbon/nitrogen-ratio effect on fermentative hydrogenproduction by mixed microflora. Int J Hydrogen Energ.2004,29(1):41-45
    [103] Wang J L, Wan W. Factors influencing fermentative hydrogen production:A review. Int J Hydrogen Energ.2009,34(2):799-811
    [104] Shima S, Pilak O, Vogt S, et al. The crystal structure of [Fe]-hydrogenasereveals the geometry of the active site. Science.2008,321(5888):572-575
    [105] Peguin S, Soucaille P. Modulation of Carbon and Electron Flow inClostridium-Acetobutylicum by Iron Limitation and Methyl ViologenAddition. Appl Environ Microb.1995,61(1):403-405
    [106] Junelles A M, Janatiidrissi R,Petitdemange H, et al. Iron Effect onAcetone Butanol Fermentation. Curr Microbiol.1988,17(5):299-303
    [107] Schonheit P, Brandis A, Thauer R K. Ferredoxin degradation in growingClostridium pasteurianum during periods of iron deprivation. ArchMicrobiol.1979,120(1):73-76
    [108] Dabrock B, Bahl H, Gottschalk G. Parameters Affecting Solvent Productionby Clostridium-Pasteurianum. Appl Environ Microb.1992,58(4):1233-1239
    [109] Lee Y J, Miyahara T, Noike T. Effect of iron concentration on hydrogenfermentation. Bioresource Technol.2001,80(3):227-231
    [110] Kim S H, Han S K, Shin H S. Effect of substrate concentration on hydrogenproduction and16S rDNA-based analysis of the microbial community in acontinuous fermenter. Process Biochem.2006,41(1):199-207
    [111] Kyazze G, Martinez-Perez N, Dinsdale R, et al. Influence of substrateconcentration on the stability and yield of continuous biohydrogenproduction. Biotechnol Bioeng.2006,93(5):971-979
    [112] Van Ginkel S, Logan B E. Inhibition of biohydrogen production byundissociated acetic and butyric acids. Environ Sci Technol.2005,39(23):9351-9356
    [113] Zhang Z P, Show K Y, Tay J H, et al. Biohydrogen production withanaerobic fluidized bed reactors-A comparison of biofilm-based andgranule-based systems. Int J Hydrogen Energ.2008,33(5):1559-1564
    [114] Tiwari M K, Guha S, Harendranath C S, et al. Influence of extrinsic factorson granulation in UASB reactor. Appl Microbiol Biot.2006,71(2):145-154
    [115] Mizuno O, Ohara T, Shinya M, et al. Characteristics of hydrogenproduction from bean curd manufacturing waste by anaerobic microflora.Water Sci Technol.2000,42(3-4):345-350
    [116] Hussy I, Hawkes F R, Dinsdale R, et al. Continuous fermentative hydrogenproduction from a wheat starch co-product by mixed microflora. BiotechnolBioeng.2003,84(6):619-626
    [117] Kim D H, Han S K, Kim S H, et al. Effect of gas sparging on continuousfermentative hydrogen production. Int J Hydrogen Energ.2006,31(15):2158-2169
    [118] Lo Y C, Bai M D, Chen W M, et al. Cellulosic hydrogen production witha sequencing bacterial hydrolysis and dark fermentation strategy.Bioresource Technol.2008,99(17):8299-8303
    [119] Lo Y C, Su Y C, Chen C Y, et al. Biohydrogen production from cellulosichydrolysate produced via temperature-shift-enhanced bacterial cellulosehydrolysis. Bioresource Technol.2009,100(23):5802-5807
    [120] Luo G, Talebnia F, Karakashev D, et al. Enhanced bioenergy recovery fromrapeseed plant in a biorefinery concept. Bioresource Technol.2011,102(2):1433-1439
    [121] Antonopoulou G, Ntaikou I, Gavala H N, et al. Biohydrogen productionfrom sweet sorghum biomass using mixed acidogenic cultures and purecultures of Ruminococcus albus. Global Nest J.2007,9(2):144-151
    [122] Okamoto M, Miyahara T, Mizuno O, et al. Biological hydrogen potential ofmaterials characteristic of the organic fraction of municipal solid wastes.Water Sci Technol.2000,41(3):25-32
    [123] Van Ginkel S W, Oh S E, Logan B E. Biohydrogen gas production fromfood processing and domestic wastewaters. Int J Hydrogen Energ.2005,30(15):1535-1542
    [124] Luo G, Xie L, Zou Z H, et al. Evaluation of pretreatment methods on mixedinoculum for both batch and continuous thermophilic biohydrogenproduction from cassava stillage. Bioresource Technol.2010,101(3):959-964
    [125] Zhang M L, Fan Y T, Xing Y, et al. Enhanced biohydrogen production fromcornstalk wastes with acidification pretreatment by mixed anaerobiccultures. Biomass Bioenerg.2007,31(4):250-254
    [126] Juang C P, Whang L M, Cheng H H. Evaluation of bioenergy recoveryprocesses treating organic residues from ethanol fermentation process.Bioresource Technol.2011,102(9):5394-5399
    [127] Kim M S, Lee D Y. Fermentative hydrogen production fromtofu-processing waste and anaerobic digester sludge using microbialconsortium. Bioresource Technol.2010,101:S48-S52
    [128] Su H B, Cheng J, Zhou J H, et al. Hydrogen production from waterhyacinth through dark-and photo-fermentation. Int J Hydrogen Energ.2010,35(17):8929-8937
    [129] Eroglu E, Eroglu I, Gunduz U, et al. Biological hydrogen production fromolive mill wastewater with two-stage processes. Int J Hydrogen Energ.2006,31(11):1527-1535
    [130] Yang H H, Guo L J, Liu F. Enhanced bio-hydrogen production fromcorncob by a two-step process: Dark-and photo-fermentation. BioresourceTechnol.2010,101(6):2049-2052
    [131] Liu B F, Ren N Q, Xing D F, et al.Hydrogen production by immobilizedR. faecalis RLD-53using soluble metabolites from ethanol fermentationbacteria E. harbinense B49. Bioresource Technol.2009,100(10):2719-2723
    [132] Kyazze G, Popov A, Dinsdale R, et al.Influence of catholyte pH andtemperature on hydrogen production from acetate using a two chamberconcentric tubular microbial electrolysis cell. Int J Hydrogen Energ.2010,35(15):7716-7722
    [133] Lalaurette E, Thammannagowda S, Mohagheghi A, et al. Hydrogenproduction from cellulose in a two-stage process combining fermentationand electrohydrogenesis. Int J Hydrogen Energ.2009,34(15):6201-6210
    [134] Lu L, Ren N Q, Xing D F, et al. Hydrogen production with effluent from anethanol-H2-coproducing fermentation reactor using a single-chambermicrobial electrolysis cell. Biosens Bioelectron.2009,24(10):3055-3060
    [135] Hafez H, Nakhla G, El Naggar H. Biological Hydrogen Production fromCorn-Syrup Waste Using a Novel System. Energies.2009,2(2):445-455
    [136]李楠.发酵法生物制氢反应器的快速启动与工程控制对策研究.哈尔滨工业大学硕士学位论文.2005.
    [137] Ren N Q, Gong M L. Acclimation strategy of a biohydrogen producingpopulation in a continuous-flow reactor with carbohydrate fermentation.Eng Life Sci.2006,6(4):403-409
    [138] Hungate R E. The anaerobic mesophilic cellulolytic bacteria.BacteriolRev.1950,14(1):1-49
    [139]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.第四版.中国环境科学出版社,2002:27~30
    [140]李建政,张妮,李楠等. HRT对发酵产氢厌氧活性污泥系统的影响.哈尔滨工业大学学报.2006,11(38):1140~1146
    [141] Miller G L. Use of dinitrosalicylic acid reagent for determination ofreducing sugar. Anal. Chem.1959,31(3):426-427
    [142]张妮.发酵法生物制氢反应系统生物强化技术研究.哈尔滨工业大学硕士学位论文.2005.
    [143]郭婉茜.附着型和颗粒型膨胀床生物制氢反应器的运行调控.哈尔滨工业大学博士学位论文.2008.
    [144] Owen W F, Stuckey D C, Healy J B, et al. Bioassay for monitoringbiochemical methane potential and anaerobic toxicity. Water Res.1979,13(6):485-492
    [145] Hafez H, Baghchehsaraee B, Nakhla G, et al. Comparative assessment ofdecoupling of biomass and hydraulic retention times in hydrogenproduction bioreactors. Int J Hydrogen Energ.2009,34(18):7603-7611
    [146] Guo W Q, Ren N Q, Wang X J, et al.Biohydrogen production fromethanol-type fermentation of molasses in an expanded granular sludge bed(EGSB) reactor. Int J Hydrogen Energ.2008,33(19):4981-4988
    [147] Ren N Q, Li J Z, Li B K, et al.Biohydrogen production from molasses byanaerobic fermentation with a pilot-scale bioreactor system. Int J HydrogenEnerg.2006,31(15):2147-2157
    [148] Ren N Q, Tang J, Liu B F, et al. Biological hydrogen production incontinuous stirred tank reactor systems with suspended and attachedmicrobial growth. Int J Hydrogen Energ.2010,35(7):2807-2813
    [149]鲍立新,李建政,刘乾亮,张妮.有机负荷对连续流厌氧发酵产氢系统的影响。哈尔滨工业大学学报.2007,8
    [150]胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社.2003:155-191
    [151] Speece R E.工业废水的厌氧生物技术.李亚新译.中国建筑工业出版社.2001:194-225,232-258
    [152]张冰.典型废水厌氧处理反应器流场分析与优化研究.哈尔滨工业大学博士学位论文.2009.
    [153]张自杰.排水工程(下册).中国建筑工业出版社.2001:194-225,232-258
    [154] Hwang M H, Jang N J, Hyun S H, et al. Anaerobic bio-hydrogenproduction from ethanol fermentation: the role of pH. J Biotechnol.2004,111(3):297-309
    [155]张顺泽.讨论废水碱度对活性污泥的影响.化工环保,1994(1):17-19
    [156] Li H Z, Li B K, Zhu G F, et al. Hydrogen production from diluted molassesby anaerobic hydrogen producing bacteria in an anaerobic baffled reactor(ABR). Int J Hydrogen Energ.2007,32(15):3274-3283
    [157] Monmoto M, Atsuka M, Atif A A Y, et al.Biological production ofhydrogen from glucose by natural anaerobic microflora. Int J HydrogenEnerg.2004,29(7):709-713
    [158] Nath K, Das D. Improvement of fermentative hydrogen production: variousapproaches. Appl Microbiol Biot.2004,65(5):520-529
    [159] Zuo J, Zuo Y, Zhang W, et al. Anaerobic bio-hydrogen production usingpre-heated river sediments as seed sludge. Water Sci Technol.2005,52(10-11):31-39
    [160]刘敏.两相厌氧系统中产甲烷相底物转化规律研究.哈尔滨工业大学博士学位论文.2001.
    [161] Ren N Q, Chua H, Chan S Y, et al. Assessing optimal fermentation type forbio-hydrogen production in continuous-flow acidogenic reactors.Bioresource Technol.2007,98(9):1774-1780
    [162] Baghchehsaraee B, Nakhla G, Karamanev D, et al. The effect of heatpretreatment temperature on fermentative hydrogen production using mixedcultures. Int J Hydrogen Energ.2008,33(15):4064-4073
    [163] O-Thong S, Prasertsan P, Karakashev D, et al. Thermophilic fermentativehydrogen production by the newly isolated Thermoanaerobacteriumthermosaccharolyticum PSU-2. Int J Hydrogen Energ.2008,33(4):1204-1214
    [164] Xu L Y, Ren N Q, Wang X Z, et al. Biohydrogen production byEthanoligenens harbinense B49: Nutrient optimization. Int J HydrogenEnerg.2008,33(23):6962-6967
    [165] Lee H S, Rittmann B E. Evaluation of Metabolism Using Stoichiometry inFermentative Biohydrogen. Biotechnol Bioeng.2009,102(3):749-758
    [166] Lin C Y, Lay C H. Effects of carbonate and phosphate concentrations onhydrogen production using anaerobic sewage sludge microflora. Int JHydrogen Energ.2004,29(3):275-281
    [167] Lin C Y, Lee C Y, Tseng I C, et al. Biohydrogen production from sucroseusing base-enriched anaerobic mixed microflora. Process Biochem.2006,41(4):915-919
    [168] Oh S E, Van Ginkel S, Logan B E. The relative effectiveness of pH controland heat treatment for enhancing biohydrogen gas production. Environ SciTechnol.2003,37(22):5186-5190
    [169] Minton N P, Clarke D J. Clostridia-biotechnology handbook, vol3.Plenum, New York.1989.
    [170] Ohwaki K, Hungate R E. Hydrogen utilization by clostridia in sewagesludge. Appl Environ Microbiol.1977,33(6):1270-1274
    [171] Iyer P, Bruns M A, Zhang H S, et al. H2-producing bacterial communitiesfrom a heat-treated soil inoculum. Appl Microbiol Biot.2004,66(2):166-173
    [172] Fang H H P, Zhang T, Liu H. Microbial diversity of a mesophilichydrogen-producing sludge. Appl Microbiol Biot.2002,58(1):112-118
    [173] Yokoyama H, Moriya N. Ohmori H, et al. Community analysis ofhydrogen-producing extreme thermophilic anaerobic microflora enrichedfrom cow manure with five substrates. Appl Microbiol Biot.2007,77(1):213-222
    [174] Khanal S K, Chen W H, Li L, et al. Biological hydrogen production: effectsof pH and intermediate products. Int J Hydrogen Energ.2004,29(11):1123-1131
    [175] Vanandel J G, Zoutberg G R, Crabbendam P M, et al. Glucose Fermentationby Clostridium-Butyricum Grown under a Self Generated Gas Atmospherein Chemostat Culture.Appl Microbiol Biot.1985,23(1):21-26
    [176] Han S K, Kim S H, Shin H S. UASB treatment of wastewater with VFA andalcohol generated during hydrogen fermentation of food waste. ProcessBiochem.2005,40(8):2897-2905
    [177] Kim I S, Hwang M H, Jang N J, et al. Effect of low pH on the activity ofhydrogen utilizing methanogen in bio-hydrogen process. Int J HydrogenEnerg.2004,29(11):1133-1140
    [178]刘和,刘晓玲,邱坚等. C/N比对污泥厌氧发酵产酸类型及代谢途径的影响.环境科学学报.2010,30(2):340-346
    [179] Zhang J J, Li X Y, Oh S E, et al. Physical and hydrodynamic properties offlocs produced during biological hydrogen production. Biotechnol Bioeng.2004,88(7):854-860
    [180] Van Ginkel S W, Logan B. Increased biological hydrogen production withreduced organic loading. Water Res.2005,39(16):3819-3826
    [181] Lin C N, Wu S Y, Chang J S. Fermentative hydrogen production with adraft tube fluidized bed reactor containing silicone-gel-immobilizedanaerobic sludge. Int J Hydrogen Energ.2006,31(15):2200-2210
    [182] Yang H J, Shao P, Lu T M, et al. Continuous bio-hydrogen production fromcitric acid wastewater via facultative anaerobic bacteria. Int J HydrogenEnerg.2006,31(10):1306-1313
    [183] Shen L H, Bagley D M, Liss S N. Effect of organic loading rate onfermentative hydrogen production from continuous stirred tank andmembrane bioreactors. Int J Hydrogen Energ.2009,34(9):3689-3696
    [184] Shin H S, Youn J H, Kim S H. Hydrogen production from food waste inanaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energ.2004,29(13):1355-1363
    [185] Calli B, Zhao J, Nijssen E, et al. Significance of acetogenic H-2consumption in dark fermentation and effectiveness of pH. Water SciTechnol.2008,57(6):809-814
    [186] Kraemer J T, Bagley D M. Measurement of H2consumption and its role incontinuous fermentative hydrogen production. Water Sci Technol.2008,57(5):681-685
    [187] Kraemer J T, Bagley D M. Improving the yield from fermentative hydrogenproduction. Biotechnol Lett.2007,29(5):685-695
    [188] Kim I S, Park W, Hyun S H, et al. Removal of headspace CO2increasesbiological hydrogen production. Environ Sci Technol.2005,39(12):4416-4420
    [189] Angelidaki I, Siriwongrungson V, Zeny R J. Homoacetogenesis as thealternative pathway for H2sink during thermophilic anaerobic degradationof butyrate under suppressed methanogenesis. Water Res.2007,41(18):4204-4210
    [190] Shin H S. Kim D H, Han S K, et al. Effect of gas sparging on continuousfermentative hydrogen production. Int J Hydrogen Energ.2006,31(15):2158-2169
    [191] Hawkes D L, Mizuno O, Dinsdale R, et al. Enhancement of hydrogenproduction from glucose by nitrogen gas sparging. Bioresource Technol.2000,73(1):59-65
    [192] Chen S L, Hu B, Zhou X, et al. Changes in Microbial CommunityComposition Following Treatment of Methanogenic Granules withChloroform.Environ Prog Sustain.2009,28(1):60-71
    [193] Poggi-Varaldo HM, Valdez-Vazquez I, Rios-Leal E, et al. Improvement ofbiohydrogen production from solid wastes by intermittent venting and gasflushing of batch reactors headspace. Environ Sci Technol.2006,40(10):3409-3415
    [194] Ren N Q, Xu J F, Gao L F, et al. Fermentative bio-hydrogen productionfrom cellulose by cow dung compost enriched cultures. Int J HydrogenEnerg.2010,35(7):2742-2746
    [195] Tanisho S, Kuromoto M, Kadokura N. Effect of CO2removal on hydrogenproduction by fermentation. Int J Hydrogen Energ.1998,23(7):559-563
    [196] Ragsdale S W. Enzymology of the Wood-Ljungdahl pathway ofacetogenesis. Ann Ny Acad Sci.2008,1125:129-136
    [197] Drake H L, Gossner A S, Daniel S L. Old acetogens, new light. Ann NyAcad Sci.2008,1125:100-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700