用户名: 密码: 验证码:
基于工业机器人控制的滚边压合技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业机器人控制的滚边压合技术是近年来发展的热点之一,机器人控制的滚边压合技术的出现是迎合目前汽车市场发展趋势的必然,工业机器人技术在压合领域中的应用,根据轿车生产制造技术的要求,不但要满足其生产部件总成的安全性,同时在车身塑形,涂胶,机器人压合头,机器人编程等多方面都提出了更高的要求。
     由于此项技术游离于机器人控制技术、压合技术、机械制造技术、计算机模拟技术之间,是各专业学科研究的综合应用,并且也是在近几年刚刚开始应用,目前在国内还没有针对此项技术专门的研究。所以本课题,通过对实际生产中此项技术的系统构成、建模编程、工具使用、轨迹规划、质量控制和调整等核心内容进行研究。
     论文基于工业机器人滚边压合的技术特点,采用ROBCAD建模技术,离线编程方法,Audit评审标准与质量调整优化手段等,剖析出机器人控制的滚边压合技术的突出技术优势和特点,最后基于研究得出工业机器人滚边压合技术特性及适用范畴。
     介绍了工业机器人制造技术和压合技术的发展历史和概况,从发展的历史中得出了机器人技术和压合技术的结合点,滚边压合技术出现的必然性,将机器人的优势和滚边压合的优势结合,逐步取代传统标准翻边设备,并阐述了课题研究的范围和内容。着重就工业机器人滚边系统的构型进行了研究,阐述了滚边压合的原理、工艺设计标准、硬件构成,并结合B型车前盖的压合工艺特点进行了详细的分析,得出滚边压合系统组成灵活多变,组合方式必须满足工艺需求,同时可以采用多套压合轮组,并采取轮组工具更换的方式满足更加复杂的工艺要求的结论。机器人控制的滚边压合是一门综合研究的课题,不单纯的涉及到机器人程序编制,还涉及到整个系统的自动控制及通讯,是一套复杂的综合系统。课题以B型车的生产工位为例通过对自动控制、机器人编程步骤,标准、离线编程等环节进行分析、整理和研究,理清了控制技术的关键点和构架脉络,并根据机器人滚边压合技术的特性剖析了产品的质量缺陷及质量控制方法及标准。
Industrial robot technology applies in the field of pressing, according to the requirements of car manufacturing, not only needs to meet the safety requirement of its production parts assembly, but also raises higher requirements in the body shaping, coating, robot pressing head, robot programming and so on.
     The roller hemming technology is the integrated application of the robot control technology, lamination technology, manufacturing technology, and computer simulation technology,. Besides, it is just beginning to applications in recent years and there is no specific study of this technology in our country. Therefore, this paper will study the core content of the technology, including system structure of this technology in actual production, modeling programming, tool, path planning, and quality controlling and adjusting.
     Based on technical features of industrial robot Control roller hemming using ROBCAD modeling techniques, off-line programming method, Audit evaluation criteria and quality adjustment and optimization means, the paper analyzes outstanding technical advantages and features. According to this result, we can draw the conclusion what the technical characteristics and application areas of roller hemming technology are.
     The paper introduces the development history and overview of the industrial robots manufacturing and roller hemming technology. From the study of their history we can deduce intersection points of them. It is inevitable for the appearance of industrial robot roller hemming technology,. This technology combines the advantages of robots and roller hemming, so it would replace the traditional standard flanging equipment. This paper is focused on industrial robots roller hemming system configuration, and expounds the principles of roller hemming, process design criteria and hardware construction ,combined with a detailed analysis of the Model B front cover roller hemming process features also conclude that roller hemming system composition is flexible, but composition method must meet the process requirement. So we can use several sets of crimping wheels, and change the whole set of wheels tool to meet the technological requirements.
     Roller hemming based on Industrial robot control is a comprehensive study subject, not simply related to the robot programming, but also to automatic control and communications of the whole system. Therefore,it is a complex integrated system.
     Taken Model B car work station as an example, through the analysis, collation and study of robot programming procedures, standards, off-line programming and other aspects, the paper clarifies the key points and framework of the control technology, and analyzes the product quality defects, quality control methods and standards, according to characteristic of robots roller hemming technology.
引文
[1]中国机电数据网、《机电财富》杂志社、中机系(北京)信息技术研究院.2009年中国工业机器人市场研究报告.北京:86MDO-R336990911.2009:1-2;
    [2] 1995年世界工业机器人发展概况[J].机器人技术与应用. 1997 ,5-6;
    [3]王东林. ROBCAD仿真软件在机器人滚边压合技术中的应用[J]. AI汽车制造业
    [4]王立影,孙志成,卢兵兵,王芝斌.机器人滚边技术于应用[J].制造业自动化. 2010 , 51-53;
    [5]宋宏伟.机器人滚边技术在汽车制造中的应用[J].机器人(冷加工),2007,10:25-27.
    [6]孙颖,叶玉杰,高振元,祁晓钰.涂胶滚边工作站[J].自动化博览,2008,9:74-75.
    [7]张如飞,傅博深,林忠钦,王皓.车门板翻边机器人六关节角运动分析[J].机械设计与研究,2005,4(21):88-90.
    [8]林忠钦,陈关龙,王皓,等.具有回转工作台的并联式机器人翻边系统. CN1669694 [P]. 2005-09-21.
    [9] S.Thuillier,N.Le Maout,P.Y.Manach, D.Debois. Numericalsimulation of the roll hemming process.Journal of material sprocessing technology.198 (2008)226-233.
    [10] Dongok Kim,Dongwoo Shin,Youngsik Yoon,et al.The studyof residual stresses for roller hemmed Aluminum Alloys.Advanced materials research. 2007, 26-28:397-400.
    [11]长谷川荣作,儿玉彰,齐藤仁.辊子卷边方法和辊子卷边装置. CN101166588 [P]. 2008-04-23.
    [12] Simon Chaker Ranganathan Padmanabhan. Pressure monitoringmethod for roller hemming. Compiler:US 7204116 P].
    [13] Ma S. Analysis of creeping locomaotion of a snake-like robot [J]. Advanced Robotics, 2010,15(2):205-224
    [14] Shigeo HIROSE, Hiroki TAKEUCHI. Study on Roller-Walk(Basic Characteristics and its Control)[A]. Proc. ICRA’95[C],1995:917-922
    [15]蔡自兴.机器人学[M].北京:清华大学出版社,2000
    [16]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:北京航空航天大学出版社,1994
    [17]张兴国.环保压缩机装配机器人的运动学分析[J].南通工学院学报: (自然科学版), 2004,3(1):33-35
    [18]李团结.柔性机构的结构拓扑特征及其自由度分析[J].机械科学与技术, 2003, 22(1):107-109
    [19]任敬轶,孙汉旭.一种新颖的笛卡卡尔空间轨迹规划方法[J].机器人,2002 , (5) , 217-221
    [20]赵亦希,王皓,林忠钦等.汽车车身制造中翻边工艺的研究[J].机械设计与研究,2003.
    [21]机械设计手册编委会编著.机械设计手册.三版[M].北京:机械工业出版社,2004.8
    [22]中国材料工程大典编委会编著.材料塑性成形工程.一版[M].化学工业出版社,2006.1
    [23]徐燕申.机械动态设计[M].北京:机械工业出版社,1992;
    [24]彭朝阳,刘晓平.机械结构结合面参数辨识的模糊方法[N].北京邮电大学学报,2003,(3);
    [25]刘彦超.虚拟设计技术及其工程应用[D].北京:北京机电研究所,2003;
    [26]蒋孝煌.有限元法基础[M].北京:清华大学出版社,1992
    [27]颜景平,钟秉林,(日)下乡太郎.机械振动理论及应用[M].南京:东南大学出版社,1993.
    [28]陈德人.“虚拟制造”创新产品设计-从CAD发展历程展望二十-世纪的CAD技术[N〕.中国计算机报,1998(5);
    [29]马迅.轻型客车车身结构刚度与模态分析的有限元分析[J].机械科学与技术,2002(1)
    [30]杨康,韩涛.ANSYS在模态分析中的应用[J].组合机床与自动化加工技术,2005(10)
    [31]黄世霖,田吉方.机械结构动特性的灵敏度分析与修改[J].清华大学报,1986,26(4)
    [32]刘殿福,陈朝明.车身关键部件制造的柔性化技术——机器人滚边技术[J].汽车工艺与材料2010(07)
    [33] C.-Y. Chen,M.-G. Her,Y.-C. Hung,M. Karkoub. Approximating a Robot Inverse Kinematics Solution Using Fuzzy Logic Tuned by Genetic Algorithms [J] International Journal of Advanced Manufacturing Technology, 2002,20, (5) .
    [34] Uwe Beyer,Frank ?mieja. A Heuristic Approach to the Inverse Differential Kinematics Problem [J] Journal of Intelligent and Robotic Systems, 1997,18, (4) .
    [35] The Method Study on the Pose Error Analysis of Robots [A] roceedings of the 5th International Symposium on Test and Measurement(Volume 1)[C], 2003 .
    [36] The Integrated Analysis of the POSE Error of Robots [A] roceedings of 6th International Symposium on Test and Measurement(Volume 8)[C], 2005 .
    [37]丁希仑,周乐来,周军.机器人的空间位姿误差分析方法[J]北京航空航天大学学报, 2009, (02) .
    [38] S.L. Chen,I.T. You. Kinematic and Singularity Analyses of a Six DOF 6-3-3 Parallel Link Machine Tool [J] International Journal of Advanced Manufacturing Technology, 2000,16, (11) .
    [39] Gary J. Koehler. New directions in genetic algorithm theory [J] Annals of Operations Research, 1997,75, (0) .
    [40] Y.-M. Deng,Y.C. Lam,S.B. Tor,G.A. Britton. A CAD-CAE Integrated Injection Molding Design System [J] Engineering With Computers, 2002, 18, (1) .
    [41]于亚婷,杜平安,王振伟.有限元法的应用现状研究[J]机械设计, 2005, (03) .
    [42]陈锡栋,杨婕,赵晓栋,范细秋.有限元法的发展现状及应用[J]中国制造业信息化, 2010, (11) .
    [43] ZHANG; Huai-Bin ZHANG; Bao-Zhen LI; He-Xuan Department of Chemistry; Nankai University; Tianjin 300071 Received January 16; 1991.SYNTHESIS OF ETHYL ACETATE OVER HZSM—5 CATALYST(Ⅰ) [J] Journal of Natural Gas Chemistry ,天然气化学(英文版), 1992年01期
    [44] Y.-M. Huang,K.H. Chien. Influence of Cone Semi-Angle on the Formability Limitation of the Hole-Flanging Process [J] International Journal of Advanced Manufacturing Technology, 2002, 19, (8) .
    [45]张晓胜,朴英花.板材数值模拟技术在冲压件工艺中的应用[J]汽车工艺与材料, 2002年11期
    [46]汪锐,李帆,何丹农,张质良,郦均,张苇.基于相似理论的汽车覆盖件拉深成形物理模拟与数值模拟[J]锻压技术, 2002, (01) .
    [47] Leon ?lajpah. Integrated Environment for Modelling, Simulation and Control Design for Robotic Manipulators J] Journal of Intelligent and Robotic Systems, 2001,32, (2) .
    [48] H. Claus. A Deformation Approach to Stress Distribution in Flexible Multibody Systems J] Multibody System Dynamics, 2001,6, (2) .
    [49] Jiegao Wang,Clément M. Gosselin. A New Approach for the Dynamic Analysis of Parallel Manipulators[J] Multibody System Dynamics, 1998,2, (3) .
    [50] Zixing Cai,Zhihong Peng. Cooperative Coevolutionary Adaptive Genetic Algorithm in Path Planning of Cooperative Multi-Mobile Robot Systems [J] Journal of Intelligent and Robotic Systems, 2002,33, (1) .
    [51]蒋新松.机器人及机器人学中的控制问题[J]机器人, 1990,(05) .
    [52]王亮,常欢.工业生产中人机合作的关键技术[J]机床与液压, 2008,(04) .
    [53]张建广,饶建华.模块化可重构机器人分布式控制系统的设计与实现[J]机械设计与制造, 2007,(05) .
    [54] Jing-Shan Zhao,Zhi-Jing Feng,Kai Zhou. On the workspace of spatial parallel manipulator with multi-translational degrees of freedom[J] The International Journal of Advanced Manufacturing Technology, 2005,27, (1-2) .
    [55] C. Balaguer,A. Gimenez,A. Jardon. Climbing Robots’Mobility for Inspection and Maintenance of 3D Complex Environments[ J] Autonomous Robots, 2005,18, (2) .
    [56] L. H. Tsoukalas,E. N. Houstis,G. V. Jones. Neurofuzzy Motion Planners for Intelligent Robots[ J] Journal of Intelligent and Robotic Systems, 1997,19, (3) .
    [57]江昌勇.冲压成形的质量分析及质量控制方法[J].常州工学院学报, 2007, (05) .
    [58]魏国旗.车身冲压制件的外观质量分析与控制[J].汽车科技, 2001, (05) .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700