用户名: 密码: 验证码:
坡面水蚀输沙动力过程试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡面侵蚀是水力侵蚀的重要组成部分,其发生发展过程是土壤侵蚀动力机制研究的核心内容,也是水土流失防治和土壤侵蚀物理模型建立的关键所在。本研究针对坡面径流分散、剥离、输移和沉积过程的关键环节,采用变坡土槽放水冲刷试验方法,结合稀土元素(REE)复合示踪技术和坡面流速、径流宽、水沙等的观测,运用灰色关联和回归分析等方法,系统地分析了坡面侵蚀动力与侵蚀产沙的时空变化规律,阐明了坡面侵蚀产沙与水蚀动力因子之间的动态响应过程,揭示了土壤剥蚀率与沿程水蚀动力参数及含沙量之间的动态响应关系,建立了坡面土壤剥蚀率的计算模型。主要取得了如下结论:
     (1)阐明了径流冲刷条件下主要水蚀动力参数和坡面侵蚀产沙特征的时空变化规律。
     在放水冲刷试验条件下,坡面水流流态特征和动力特征表现为:坡面径流沿程雷诺数、水流剪切力和水流功率逐渐减少;沿程佛汝德数和流速逐渐增加;径流剪切力和径流功率随时间增加有增大的趋势;其侵蚀产沙特征表现为坡面上部土壤侵蚀最为剧烈,是坡面侵蚀产沙的主要来源。从坡上到坡下,各坡段产沙量占总产沙量的百分比急剧减少;产沙量沿土层深度方向越来越小;不同坡度和流量条件下产沙量在开始的1-2min内便达到最大值,随着时间的推移逐渐减少。
     (2)建立了试验条件下坡面径流产沙的计算模型
     根据两坡段径流冲刷试验和REE示踪的结果,运用灰色关联和多元回归分析方法,分析了各坡段产沙量和水蚀因子之间的关系,结果表明:就单个因子对产沙量的影响而言,水流功率对产沙量影响最大;对多个因子组合对产沙量的影响时发现,流量和坡度组合对产沙量影响最大,据此建立了坡面径流侵蚀产沙量与坡度和放水流量的幂函数关系模型(W_1=aS~bQ~c,a,b,c为系数),这为分坡段侵蚀产沙计算提供工具。
     (3)建立了坡面不同空间部位径流含沙量与主要水动力参数的相关关系
     根据两坡段径流冲刷试验和REE示踪的结果,对不同坡段径流含沙量时空变化规律的分析结果表明:各坡段的径流含沙量随时间的增加呈下降的趋势,沿程径流含沙量逐渐增加。通过对不同坡段径流含沙量与佛汝德数和相对重力作用(aω_s/V)的分析,建立了各坡段坡面径流含沙量与佛汝德数和相对重力作用的幂函数关系式(S_w=K(aω_s/V)~a(V~2/gR)~b,K,a,b为系数)。
     (4)揭示了土壤剥蚀率随水流含沙量变化的特征
     根据两坡段径流冲刷试验和REE示踪的结果可以看出,同一坡度和流量条件下,各坡段土壤剥蚀率随水流含沙量线性增加,不同坡度和流量条件下,各坡段土壤剥蚀率与水流含沙量呈幂函数关系(D_r=αS_w~β,α、β为系数)。
     (5)揭示了土壤剥蚀率随水蚀动力和水流输沙能力非线性变化的特征
     根据两坡段径流冲刷试验和REE示踪的结果,通过对不同坡度、不同流量的土壤剥蚀率D_r与有效剪切力(τ-τ_c)和输沙率和挟沙力比值(qS_w/T_c)之间关系的分析,发现当坡度为小手21°时,土壤剥蚀率Dr与有效剪切力和输沙率和挟沙力比值之间线性相关显著;而当坡度大于21°时,土壤剥蚀率与有效剪切力和输沙率和挟沙力比值之间存在幂函数关系(D_r=0.011(τ-τ_c)~0.161|1-qS_w/T_c|~(-11.02),R~2=0.752),从以上分析可知,在试验坡度范围内,坡度为21°是侵蚀产沙的临界坡度。
     (6)建立了计算土壤剥蚀率的经验模型
     根据一个坡段径流冲刷试验结果表明,土壤剥蚀率受水流剪切力、水流功率、单位水流功率和单宽能耗因素的影响,运用灰色关联方法对土壤剥蚀率与水蚀因子关系进行了分析,分析结果表明:在坡度相同的条件下,土壤剥蚀率随单宽能耗线性增加(D_r=6.95(△E_耗-1.45),R~2=0.91);在流量相同的条件下,水流剪切力与土壤剥蚀率存在幂函数关系(D_r=2.05τ~(1.7),R~2=0.908);在不同坡度和流量条件下,土壤剥蚀率与坡度和流量之间呈幂函数关系(D_r=1.264S~(0.722)Q~(1.083),R~2=0.695)。
     通过对土壤剥蚀率与水蚀因子之间关系的逐步回归分析,建立了基于水流功率和坡度的土壤剥蚀率计算方程(D_r=11.22+34.01ω-2.18S,R~2=0.977)。
Soil erosion on the slope is one of the important contents in water erosion. Its process and development is the core of soil erosion dynamic mechanics, and also is the key for the prevention of soil and water loss and development of physical model for soil erosion prediction. In this paper, runoff scouring on slope-changing flume was adopted to study dispatch, detachment, transportation and sedimentation process on the slope by runoff. Combined with Rare Erath Element (REE) tracing method, grey correlation analysis and statitical method, spatial and tempoal changing patterns of slope erosion dynamic and sedeiment yield process was analyzed, corresponding relation between erosion dynamic parameters and sedeiment yield was stated, followed that relation between soil detachment rate and erosion dynamic parameters and sediment content was revealed, and at last soil detachment rate model was setup. Based on those research, following conclusions can be reached:
     (1) Expounding the spatial and tempoal changing patterns of slope erosion dynamic and sedeiment yield process
     Under the experimental condition, main runoff dynamic paramets changing regularly. Reynold number, runoff shear stress and runoff power decreased along the slope, while Fr and flow velocity increased; runoff power and runoff shear stress increased with time. To sediment yield, soil erosion was most intensive on upper parts, and also was the main source of sediment. From the upper to the bottom, percentage of sediment yield on each section decreased, together with the sediment yield along the depth direction. Analysis of sediment yield under different slope gradient and flow discharge indicated that sediment yield reached its peak value in 1-2 minutes, and decreased gradually with time.
     (2)Establishing the runoff and sediment yield model on slope under experimental condition
     According to the runoff scouring data and analysis of REE, combined with grey correlation and multivariate statistical analysis, the relation between sediment yield and hydro-dynamic parameters was analyszed. The results indicated that among all the factors, runoff power contributed most to sediment yield; while amog the combinations of factors, combination of runoff discharge and slope contributd the most to the sediment yield. Based onthis, relation between sediment yield and slope and runoff discharge was set up as W_1 = aS~bQ~c,which provided method for the calculation of sediment yield on each section.
     (3) Establishing the relation between sediment concentration of different section and main hydrodynamic parameters.
     According to the runoff scouring experiment and REE tracing data, temporal and spatial patterns of sediment concentrattion on different slope section were analyzed. Result indicated that sediment concentrattion on different slope section decreased with time, which increased along the slope. Based on the analysis of sediment concentrattion on different slope section,froude mumber (V~2/gR) and relative gravitational effect (aω_s/V), power function was set up amongthese factors as S_w = K(aω_s/V)~a(V~2/gR)~b.
     (4) Revealing the changing patterns of soil detachment rate with sediment concentration According to the runoff scouring experiment and REE tracing data, it can be concludedthat under the same slope and runoff discharge, soil detachment rate changed with sediment concentration linearly, while under diferent slope and runoff discharge, power functions,listed as D_r =αS_w~β, was existed between soil detachment rate and sediment concentration.
     (5) Revealing the non-linear characters of soil detachment with sediment transportation
     Based on the runoff scouring experiment and REE tracing data, relation among soildetachment rate, effective shear stress (τ-τ_c ), and the ratio between sediment transportation rate and sediment-carrying capability was analyzed. And the results indicated that linear relation was existed among soil detachment rate, effective shear stress, and the ratio between sediment transportation rate and sediment-carrying capability when slope was less than 21°, while slope was more than 21°, power function was existed among these factors, which waslisted as D_r = 0.011 (τ-τ_c)~(0.161)|1-qS_w/T_c|~(-11.02).It was also can be concluded that critical slope forsediment yield was 21°in this experiment.
     (6) Establishing the statitical model for soil detachment rate calculation
     Results of runoff scouring experiment indicated that soil detachment rate was influencedby shear stress, runoff power, unit runoff power and unit runoff energy consumption. Analysisby gray correlation and stepwise regression indicated that linear relation asD_r =6.95(△E_耗-1.45) was existed between soil detachment rate and unit runoff energyconsumption under the same slope condition; power relation as D_r =2.05τ~(1.7) was existed between runoff shear stress and soil detachment rate under the same runoff discharge; and power relation as D_r =1.264S~(0.722)Q~(1.083) was existed between runoff shear stress, slope andsoil detachment rate under different slope and runoff discharge.
     Based on stepwise regression analysis the relation between soil detachment rate and hydrodynamic parameters, equation for soil detachment calculation was determined asD_r = 11.22 + 34.01ω- 2.18S.
引文
[1]杨瑞珍.我国坡耕地资源及其利用模式[J].资源科学,1994(1):1-7.
    
    [2]刘秉正,吴发启.土壤侵蚀[M].西安:陕西人民出版社,1997.
    
    [3]王占礼.中国土壤侵蚀影响因素及其危害分析[J].农业工程学报,2000(4):32-36.
    
    [4] Nearing M.A., Lane L.J., AlbertE.E. et al. Prediction technology for soil erosion by water: Status and research needs[J]. Soil Sci. Soc. Am. J., 1990,54(6): 1702-1711.
    
    [5] Moore I.D., Burch G.J. Sediment transport capacity of sheet and rill flow:Application of unit stream power thory[J]. Water Resources Research, 1986 (22): 1350-1360.
    
    [6] Hirschi M.C., Barfield B.J. KYERMO-A physically based research erosion model[J]. Part I :Model development. Transactions of the ASAE, 1988,31 (3):804-813.
    
    [7] Ewing L., Mitchell K. Overland flow and sediment transport on small plots[J].Transactions of the ASAE,1986,29(6):1572-1581
    
    [8] Foster G, Meyer D. A closed-form soil erosion equation for upland areas[C]. In Sedimentation: Symposium to Honor Professor H. R Einstein, ed. W. Shen 12.2-12.9 Fort Collins, Colo.: Water Resources Publications, 1972.
    
    [9] Borah D. Sediment discharge model for small watersheds[J]. Transactions of the ASAE, 1989, 32(3):1572-1581.
    
    [10] Rose C, Williams R., Sander C, et al. Av mathematical model of soil erosion and deposition processed:I .Theory for a plane land element[J]. Soil Sci. Sco. of Am.J. 1983,47(5): 991-995.
    
    [11] Kemper W, Trout J., et al. Forrow erosion and water and soil management[J]. Transactions of the ASAE, 1985,28(5):1564-1572.
    
    [12]罗佑新,张龙庭,李敏.灰色系统理论及其在机械工程中的应用[M].北京:国防科技大学出版社,2001.12.
    
    [13]朱湖根等.有时序与非时序系统的灰色关联度分析[J].信息与控制,1992.
    
    [14]倪焱.灰色系统理论在水土流失因素分析中的应用[J].水土保持通报,1986(2):80-83.
    
    [15]陈利华,余新晓.影响土壤侵蚀因子分析-灰色系统理论在土壤侵蚀研究中的应用[J].水土保持科技报,1987(2):14-16,61.
    
    [16]朱建林.预测到2000年全国水土流失面积将达200多万平方公里[J].水土保持学报,1988(4):
    
    [17]朱湖根,何松苗.长江上游人类活动增沙量推算的研究[J].水土保持学报,1991(1)32-37.
    
    [18]唐小明,李长安.土壤侵蚀速率研究方法综述[J].地球科学进,1999(3):274-278.
    
    [19]田均良.黄土高原土壤元素含量及其地域分布规律[J].水土保持学报,1992,6(1):77-83.
    
    [20]Knaus R.M. et al A new soil horizon maker method for measuring recent accretion [J]. Estuaries, 1986, 12(4):269-283.
    
    [21] Knaus,R.W.,D.L.VanGent. Accretion and cancel impacts in a rapidly resents accretion [J]. Estuaries . 1989, 12(4): 269-283.
    
    [22] MA Yingjun, LIU Congqiang. Chemical weathering crust: a long-term storage of elements and itsimplications for sediment provenance[J].2001, 107-110.
    
    [23] Gerald Matisoff, Michael E. Ketterer, Christopher G Wilson. Transport of rare earth element-taggedsoil particles in response to thunderstorm runoff[J]. Environmental Science & Technology.2001, 35(16): 3356-3362.
    
    [24] Zhang ,X.C, Friedrich,J.M., Nearing MA, Norton LD. Potential use of rare earth oxides as tracers forsoil erosion andaggregation studies[J]. Soil Science Society of America Journal.2001, 65 (5):1508-1515.
    
    [25] Zhang, X.C., Nearing, M.A., Polyakov, V.O., Friedrich JM. Using rare-earth oxide tracers forstudying soil erosion[J]. Soil Science Society of America Journal.2003, 6 (1): 279-288.
    
    [26] Polyakov, V.O., Nearing MA.Rare earth element oxides for tracing sediment movement[J]. Catena.2004, 55 (3): 255-276.
    
    [27]Zhang, X. C, Li, Z. B., Ding, W F. Validation of WEPP sediment feedback relationships using spatiallydistributed rill erosion data[J]. Soil Science Society of America Journal .2005, 69 (5) : 1440-1447.
    
    [28] Kimoto,A.,Nearing,M. A.,Zhang, X. C. et al. Applicability of rare earth element oxides as a sedimenttracer for coarse-textured soils[J]. Catena.2006,65(3):214-221.
    
    [29] Junliang T, PeiHuaz, PuLing L. Ree tracer method for soil erosion studies[J]. Int J Sed Res, 1994,(9): 39-46.
    
    [30]田均良,周佩华,刘普灵.土壤侵蚀REE示踪研究法初报[J].水土保持学报,1992,6(4):23-27.
    
    [31]田均良.侵蚀泥沙坡面沉积研究初报[J].水土保持研究,1997,4(2):57-63.
    
    [32]石辉,段宏斌,刘普灵.坡面土壤侵蚀分布规律的初步研究[J].水土保持研究,1997, 4(2):64-68,74.
    
    [33]石辉,刘普灵,田均良.土壤侵蚀的中子活化示踪法研究[J].水科学进展,2000,11(2):126.132.
    
    [34]周佩华,田均良,刘普灵.黄土高原土壤侵蚀与稀土元素示踪研究[J].水土保持研究,1997, 4(2):2-9.
    
    [35]刘普灵,田均良,周佩华.土壤侵蚀稀土元素示踪法操作技术[J].水土保持研究,1997,4(2): 10-16.
    
    [36]刘普灵,武春龙,琚彤军,等.稀土元素示踪法在坡面土壤侵蚀垂直分布研究中的应用[J].水科 学进展,2001,12(3):331-335.
    
    [37]李雅琦,田均良,刘普灵.可活化稳定核素示踪法在土壤侵蚀研究中的应用[J].核技术,1997, 20(7):418-422.
    
    [38]李雅琦,吴普特,刘普灵.REE示踪法研究土壤侵蚀的室内模拟实验[J].水土保持研究,1997, 4(2):26-33.
    
    [39]李雅琦,吴普特,刘普灵.土壤侵蚀示踪的中子活化分析技术[J].水土保持研究,1997,4(2): 21-25,46.
    
    [40]吴普特,刘普灵,武春龙.坡面侵蚀垂直分布特征动态变化过程初步研究[J].水土保持研究, 1997,4(2):41-46.
    
    [41]吴普特,刘普灵.沟坡侵蚀REE示踪法试验研究初报[J].水土保持研究,1997,4(2):69-74.
    
    [42]吴普特,周佩华,武春龙.坡面细沟侵蚀垂直分布特征研究[J].水土保持研究,1997,4(2): 47-56.
    
    [43]石辉,田均良,刘普灵.小流域侵蚀产沙时间分布的模拟试验[J].水土保持研究,1997,4(2):85-91.
    
    [44]石辉,田均良,刘普灵.小流域侵蚀产沙空间分布的模拟试验[J].水土保持研究,1997,4(2):75-79.
    
    [45]武春龙,刘普灵,邓世清.坡面土壤侵蚀垂直分布定量分析研究[J].水土保持研究,1997,4(2): 34-40.
    
    [46]杨武德,王兆骞,眭国平,等.红壤坡地不同土地利用方式的时空分布规律研究[J].应用生态 学报,1998,9(2):155-158.
    
    [47]杨武德,王兆骞,眭国平,等.红壤坡地土壤侵蚀定位土芯Eu示踪法研究[J].土壤侵蚀与水土 保持学报,1998,4(1):61-65.
    
    [48]眭国平,徐锴,罗雯泓,等.中子活化分析技术在野外红壤侵蚀研究中的应用[J].核技术,2000, 23(4):285-288.
    
    [49]琚彤军,田均良,刘普灵,等.REE示踪条带施放法研究坡面土壤侵蚀垂直分布规律[J].核农学 报,1999,13(6):347-352.
    
    [50]刘普灵,田均良,周佩华,等.土壤侵蚀稀土元素示踪法实验研究[J].稀土,2001,22(2):37-40.
    
    [51]李勉,李占斌,丁文峰等.黄土坡面细沟侵蚀过程的REE示踪[J].地理学报,2002,57(2):218-223.
    
    [52]赵晓光,石辉.用稀土元素示踪方法研究裸露坡面沿程侵蚀与沉积[J].林业科学,2003,39 (2):98-101.
    
    [53]丁文峰,李占斌,丁登山.稀土元素示踪法在坡面侵蚀产沙垂直分布研究中的应用[J],农业工 程学报,2003,19(2):65-69.
    
    [54]宋炜,刘普灵,杨明义利用REE示踪法研究坡面侵蚀过程[J].水科学进展,2004,15(2):197-201.
    
    [55]宋炜,刘普灵,杨明义,等.坡面侵蚀形态转变过程的REE示踪法研究[J].中国稀土学报,2003, 21(6): 711-715.
    
    [56]薛亚洲,刘普灵,杨明义,等.黄土坡面侵蚀产沙时空演变的REE示踪技术研究[J].水科学进 展,2005,16(2):174-180.
    
    [57]薛亚洲,刘普灵,杨明义,等.REE示踪研究坡面侵蚀时空演变过程[J].中国稀土学报,2004, 22(5):698-703.
    
    [58]雷廷武,张晴雯,赵军.细沟水蚀动态过程的稳定性稀土元素示踪研究[J].水利学报,2004, 12(12):84-91.
    
    [59]张晴雯,雷廷武,赵军.应用REE示踪法研究细沟流净剥蚀率[J].土壤学报,2005,42(1):163-166
    
    [60]唐泽军,雷廷武,张晴雯等.稀土元素(REE)示踪土壤侵蚀动态过程的降雨模拟试验研究[J]. 农业工程学报,2006,22(3):32-35.
    
    [61] Foster G.R, Huggins L.F,Meyer L.D. A laboratory study of rill hydraulics. I: Velocity relationships[J].Transactions of ASAE,1984,27(3):790-796.
    
    [62] Guy B.T, Dickinson W.T, Rudra R.P. The roles of rainfall and runoff in the sediment transport capacity of interrill flow[J]. The transactions of the ASAE,1987,30(5):1378-1387.
    
    [63]江忠善,宋文经.坡面流速的试验[C].杨凌:西北水土保持研究所集刊第7集,1988.
    
    [64]陈国祥.土壤侵蚀与流域产沙的物理过程及预报模型[C].全国泥沙基本理论研究学术研讨会会议论文集,北京:中国水利水电出版社,1995,1378-1387.
    
    [65] Govers G Relationships between discharge, Velocity ,and flow area for rills eroding loose, non-layered materials[J]. Earth Surface Processes Landforms, 1992,17:515-528.
    
    [66] Abrahams A.D,Li G, Parsons J., Rill hydraulics on a semiarid hillslope, southern Arizons[J]. EarthSurfaceProcesses and Landforms, 1996,21:35-47.
    
    [67] Nearing M.,Simanton R.,Norton D. et al. Soil erotion by surface water flow on a stony, semiarid hillslope[J].Earth Surface Processes and Landforms, 1999,24:677-686.
    
    [68]张光辉,卫海燕,刘宝元.坡面流水动力特性研究[J].水土保持学报,2001(1):58-61.
    
    [69]郑良勇.黄土地区陡坡水蚀动力过程实验研究(D),杨凌:西北农林大学,2003:6.
    
    [70] Abraham A.D.,Parsons A.J.,Luk S.H. Field measurement of the velocity of overland flow using dye tracing[J]. Earth Surface Processes and Landforms, 1986(11):653-657.
    
    [71]Guy B.T.,Dickinson W.T.,RP. The rules of rainfall in the sediment transport capacity of inter rill flow[J]. Transactions of the ASAE,1987,30(5):1378-1387.
    
    [72]唐洪武,徐夕荣,张志军.粒子图象测速技术及其在垂直进水口漩涡流场中的应用[J].水动力学研究与进展,1999(3):127-134.
    
    [73] Jau-Yau Lu,et al.. Characteristics of shallow rain-impacted flow over smooth bed[J].Journal of hydraulic engineering, 1998(9): 1242-1252.
    
    [74] Horton R.E.,Leach H.R.,Vliet V.R. Laminar sheet-flow[J]. Transaction of the American Geophysical Union,1934(15):393-404.
    
    [75] Emmett W.W. The hydraulics of overland flow on hillslopes[D]. US Geological Professional Paper, 1970,662-A,A-1 ,A-68.
    
    [76] Luk S.H.,Merz W. Use of the salt tracing technique to determine the velocity of overland flow[J].Soiltechnology, 1992(5):289-301.
    
    [77] King K.W.,Norton L. Methods of rill flow velocity dynamics[J].American Society of Agricultural Engineering Meeting Presentation Paper, 1992: 2542-2548.
    
    [78] Gang Li,Abrahams A.D.,Atkinson J.F. Correction factors in the determinations of mean velocity of overland flow[J].Earth Surface Processes and Landform,1996(21):509-515.
    
    [79]胡世雄,靳长兴.坡面流与坡面侵蚀动力过程研究的最新进展[J].地理学报,1998,17(2):326-327.
    
    [80] Horton R.E., Erosion development of streams and their drainage basins,Hydrophysical approach to quantitative morphology[J]. Bull.Geol.Soc.Am., 1845(56):275-370.
    
    [81] Foster GR. The overland flow process under natural conditions[J]. Biologocal Effects in the hydrological cycle,Proc. Of the Third International seminar for Hydrology Professors[J].Purdue University, Lafayette, 1973,173-185.
    
    [82] Foster GR.,Huggins L.F., Meyer L.D. A laboratory atudy of rill hydraulics, Ⅱ. Shear stress relationships[J].Transactions of the ASAE, 1984,27(3):797-804.
    
    [83]汤立群,陈国祥.坡面土壤侵蚀公式的建立及其在流域产沙计算中的应用[J].水科学进展,1994,5(2):104-110.
    
    [84] Bagnold R. An approach to the sediment transport problem from general physics(R), U S Geol. Surv. Prof. Paper, 1966.
    
    [85] Yang C.T. Unit stream power and sediment transport, Hydraul[J]. Div. Am. Soc. Civ. Eng., 1972, 98(10): 1805-1826.
    
    [86] Yang C.T. Incipient motion and sediment transport[J].Hydraul.Div.Am. Soc. Civ. Eng. 1973,99 (10):1679-1704.
    
    [87] Yang C.T.,Song C.C.S. Theory of minimum rate of energy dissipation[J]. Hydraul. Div. Am. Soc. Civ. Eng.,1979,105(7):769-784.
    
    [88] Yang C.T. Minimum unit stream power and fluvial hydraulics[J]. Journal of the Hydraulics Division, ASAE,1976(102):919-934.
    
    [89] Yang C.T.,Song CCS. Theory of minimum energy dissipation rate[J], Encyclopedia of Fluid Mechanics, vol.l,ed.N.P. Cheremisinoff, Gulf Publishing Company, chap. 11,1984.
    
    [90]鲁克新.陡坡薄层水流侵蚀动力过程实验研究[D].西安:西安理工大学,2001:3.
    
    [91]丁文峰.黄土区坡面径流侵蚀的动力过程实验研究[D].杨凌:西北农林大学,2001:6.
    
    [92]郑良勇,李占斌,李鹏.黄土区陡坡侵蚀过程试验研究[J].土壤与环境,2002,11(4):356-359
    
    [93] Lyle W M,Smerdon E T. Relation of compaction and other soil properties to erosion resistance of soils. Trans[J].ASAE,1965,8:419-422.
    
    [94] Foster G R, Meyer L.D. Transport of soil particles by shallow flow[J]. Trans of the ASAE, 1972,15(1):99-102.
    
    [95] Nearing M. A.,Bradford J.M.,Parker S.C Soil detachment by shallow flow at low slopes[J]. Soil Sci. Soc. Am. J.,1991,55(2):339-344.
    
    [96] Nearing M.A.,Simanton J.R. Norton L.D. et al. Soil erosion by surface water flow on a stony, semiarid hillslope[J]. Earth Surf. Process. Landforms, 1999,24:677-686.
    
    [97]张光辉,刘宝元,张科利.坡面径流分离土壤的水动力学实验研究[J].土壤学报,2002,39(6): 882-886.
    
    [98]李占斌,鲁克新,丁文峰.黄土坡面土壤侵蚀动力过程实验研究[J].水土保持学报,2002,16(2):5-7,49.
    
    [99] Nearing M.,Foster R.,Lane J., et al. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology[J]. Transactions of the ASAE,1980,32(5):1587-1593.
    
    [100] Elliot W.J.,Laflen J.M. A process-based rill erosion model[J]. Trans.ASAE, 1993, 36(1):65-72.
    
    [101] Morgan R.,Quinton N.,Smith E., et al. The European Soil Erosion Model(EUROSEEM): a dynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Processes and Landforms, 1998(23):527-544.
    
    [102] De Roo A.,Wesseling G, Ritsma G LISEM:A single-event, physical based hydrological and soils erosion model for drainage basin. I :theory, input and output[J]. Hydrological Processes, 1996(10) :1107-1117.
    
    [103] Govers G Empirical relationships for the transport capacity of overland flow:Erosion, transport, and deposition process[J]. LAHS Pub1,1990(189):45-63.
    
    [104]蔡强国.小流域侵蚀产流过程模型[C].第二届全国泥沙基本理论研究学术讨论会论文集.北京:中国水利水电出版社,1995,233-238.
    
    [105]张科利,唐克丽.黄土坡面细沟侵蚀能力的水动力学实验研究[J].土壤学报,2000,37(1):9-15.
    
    [106] Foster G,Huggins F.Deposition of sediment by overland flow on concave slopes[J]. Soil Erosion: Prediction and Control, Soil Conservation Society of American, Ankeny,Iowa,1976.
    
    [107] Alonoso C.,Neibling H.,Foster R.Estimating sediment transport capacity in watershed modeling[J]. Transaction of the ASAE, 1981,24(5): 1211-1220.
    
    [108] Mien P.,Simons B.Sediment transport capacity of overland flow[J].Transaction of the ASAE, 1986,28(3):755-762.
    
    [109] Lu J.Y.,Cassol A., Foster R.,et al. Seective transport and depostion of sediment particles in shallow flow[J]. Transaction of the ASAE,1988,31(4):1141-1147.
    
    [110] Govers G,Rauws G Transporting capacity of overland flow on plane and on irrigular beds[J].Earth Surface Processes and Landform, 1986(11):515-524.
    
    [111] Abrhams D.,Gary Li. Effect of saltating sediment on flow resistance and bed roughness in overland flow[J]. Earth Surface Processes and Landforms, 1998(23):953-960.
    
    [112]Gary Li, Abrahams D. Controls of sediment transport capacity in laminar interrill flow on stoneovered surfaces[J]. Water Resources Research, 1999,35(1 ):305-310.
    
    [113]黄才安,奚斌.水流强度指标与推移质输沙率[J].扬州大学学报,1999,2(1):66-71
    
    [114]黄才安,严恺,奚斌.泥沙输移强度计算公式的再研究[J].水动力学研究与进展,2003,18(5):626-632
    
    [115]黄才安,杨志达.泥沙输移与水流强度指标[J].水利学报,2003(6):1-7.
    
    [116]肖培青,郑粉莉,姚文艺.坡沟系统侵蚀产沙及其耦合关系研究[J].泥沙研究,2007(2):30-35.
    
    [117]郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀影响因素的研究[J].土壤学报,1989,26(2):109-113.
    
    [118]孔亚平,张科利.黄土坡面侵蚀产沙沿程变化的模拟试验研究[J].泥沙研究,2003,(1):33-37.
    
    [119]吴普特,周佩华.黄土坡面薄层水流侵蚀实验研究[J].土壤侵蚀与水土保持学报,1996,2(2):40-45.
    
    [120] Woolhiser D A, Liggett J A. Unsteady, one-dimension flow over a plane-the rising hydrograph[J]. Water Resl967,3(3):753-771.
    
    [121] Selby M J. Hillslope materials and processes [M].England: Oxford University Press, 1993.
    
    [122]江忠善,李秀英.坡面流速试验研究[A].中国科学院水利部水土保持研究所刊集[C],1985, (7):46-52.
    
    [123]丘世钧.红土坡面水蚀机制[J].热带地貌,1992,13(1):8-92.
    
    [124]吴长文,王礼先.林地坡面的水动力学特性及其阻延地表径流的研究[J].水土保持学报,1995, 9(6):31-38.
    
    [125]雷阿林,唐克丽.坡沟系统土壤侵蚀研究回顾与展望[J].水土保持通报,1997,17(3):37-43.
    
    [126]张光辉.坡面薄层水流水动力学特性的实验研究[J].水科学进展,2002,13(3):159-165.
    
    [127]梅欣佩.降雨条件下坡面薄层水流水动力学特性试验研究[D].西安:西安理工大学,2004:4.
    
    [128]敬向锋,吕宏兴,潘成忠等.坡面薄层水流流态判定方法的初步探讨[J]..农业工程学报,2007,23(5):56-61.
    
    [129]敬向锋.坡面薄层水流水动力学规律的试验研究[D].杨凌:西北农林科技大学,2007:11.
    
    [130]雷阿林,唐克丽.黄土坡面细沟侵蚀的动力条件[J].土壤侵蚀与水土保持学报,1998,4(3):39-43, 72.
    
    [131]郭维东,裴国霞,韩会玲.水力学[M].北京:中国水利水电出版社,2005.9.
    
    [132] Yang Nam Yoon and Harry GWenzel,Mechanics ofsheet flow under simulated rainfall[J].ASCE, 1971,97 (9) :1367-1386.
    
    [133] Shen,H.W.,Li,R.M.,Rainfall effects on sheet flow over smooth surface[J].Transactions of the ASAE, 1973,99:771-792.
    
    [134] Emmett,W.W.,Overland flow in Hill-based rill erosion model[J].Transactions of the ASAE, 1993, 36(1):65-72.
    
    [135]姚文艺.坡面流阻力规律试验研究[J].泥沙研究,1996(1):74-81.
    
    [136]陈立,明宗富.河流动力学[M].武汉:武汉大学出版社,2001.9.
    
    [137] Lei,T.W.,Zhang,J.,Xia,W.S.,Pan,Y.H.,Soil detachment rates for sediment loaden flow in rills[J]. Transactions of the ASAE,2002,45(6): 1897-1903.
    
    [138]张晴雯.细沟水蚀动力过程试验研究[D].杨凌:西北农林科技大学,2001:11.
    
    [139] Julien,P.,Yetal.Sediment transport capacity of overland flow [J] .Trans.of ASAE, 1985,28(3):612-618.
    
    [140] Grosh,J.,Letal.Interrill erosion and runoff on very steep slopes [J] .Trans.of ASAE, 1994,37(4) : 1127-1133.
    
    [141]蔡强国等.花岗岩发育红壤坡地侵蚀产沙规律试验研究[J].泥沙研究,1996(1):89-96.
    
    [142] Mancilla,GA.,Predicition of rill density, transport capacity and associated soil loss of different tillage system under winder conditions[J].M.S.Thesis.college of Engineering and Architecture,Washington State??University,2001.
    
    [143] Lei,T.W.,Zhang,Q.,Zhao,J.,Tang,Z.,A labortory study of sediment transport capacity in the dynamic processof rill erosion[J]. Transaction of the ASAE, 2001,44(6): 1537-1542.
    
    [144]张晴雯,雷廷武,等.黄土细沟侵蚀过程中输沙能力确定的解析法[J].中国农业科学,2004,(5):700-703.
    
    [145]张建军,毕华兴.坡面水土保持林地地表径流挟沙能力研究[J].北京林业大学学报,2003,25(5):25-28.
    
    [146]张建军.黄土区不同植被条件下的土壤抗冲性[J].北京林业大学学报,2004,26(6):25-29.
    
    [147]费祥俊,邵学军.泥沙源区沟道输沙能力的计算方法[J].泥沙研究,2004(1):1-8.
    
    [148]Gabriel, A., Mancilla, Shulin Chen.Afield study on sedoment transport capacity on rills[J].Written for presentation at the 2005 ASAE annual international meeting sponsored by ASAE.2005:052051.
    
    [149] Franti,T.G,Laflen,J.M.,Watson,D.A.Predicting soil detachment from high discharge concentrated flow[J] .The Transactions of ASAE,1999,42(2):329-335
    
    [150] Zhang Guang-hui,etal.Detachment of undisturbed soil by shallow flow[J]. Soil Sci.Soc.AmJ., 2003, 67:713-719.
    
    [151] Zhang Guang-hui,etal.Soil detachmen by shallow flow[J].Trans.ASAE,2002,45(2):351-357.
    
    [152] Poesen,J.,Knapen,A.,Galindo,P. Impact of root architecture on the erosion-reducing potential of roots during concentrated flow. Earth Surface Processes and Landforms[J].2007, 32(9): 1323-1345.
    
    [153] Poesen,J.,Glindo,J.,De Baets,S.,Pals,A.Effects of microbiotic crusts under cropland in temperate environments on soil credibility during concentrated flow.Earth Surface Processes and Landforms [J] . 2007, 32(12):1884-1901.
    
    [154]王瑄,李占斌,丁文峰,刘峰.土壤剥蚀率与水流剪切力关系试验研究[J].沈阳农业大学学报,2004,35(5-6):592-594.
    
    [155]李鹏,李占斌,郑良勇,鲁克新.坡面径流侵蚀产沙动力机制比较研究[J].水土保持学报,2005,19(3):66-69.
    
    [156]李鹏,李占斌,郑良勇.黄土坡面径流侵蚀产沙动力过程模拟与研究[J].水科学进展,2006,17(4):444-449.
    
    [157]管新建,李占斌,王民,郑良勇.坡面径流水蚀动力参数室内试验及模糊贴近度分析[J].农业工程学报,2007,23(6):1-6
    
    [158]张光辉,刘宝元,何小武.黄土区原状土壤分离过程的水动力学机理研究[J].水土保持学报,2005,19(4):48-52.
    
    [159]何小武,张光辉,刘宝元.坡面薄层水流的土壤分离实验研究[J].农业工程学报,2003,19(6):52-55.
    
    [160]胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与试验研究[J].地理学报,1999,54(4):347-356.
    
    [161]袁志发,周静芊.多元统计分析[M].北京:科学技术出版社,2003.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700