用户名: 密码: 验证码:
纳米复合破乳剂的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油作为目前世界上最重要的能源受到了各国政府的高度重视,石油从地下开采出来时基本上都是含有不同数量水的原油乳状液,是不能直接应用和加工的,必须进行破乳脱水。破乳脱水方法主要分为物理方法和化学药剂法,由于物理方法存在多种不适合大规模应用的缺点,目前使用最广泛的还是化学药剂破乳,即破乳剂破乳脱水。
     本文首先开发了一种确定原油乳状液最佳破乳温度的新方法——粘度降法。并用正交实验法对其准确性进行了验证。重点研究了将无机纳米微粒运用于聚合物破乳剂中以提高破乳剂的破乳脱水性能,主要使用直接分散法、表面接枝法和原位生成法将纳米微粒结合于聚合物破乳剂中得到含纳米结构的纳米复合破乳剂。实验结果表明,使用原位法将纳米二氧化硅与破乳剂TA1031结合而获得的复合破乳剂性能最好,它是在纳米级氧化物的生成过程中用有机高分子破乳剂将无机纳米氧化物包覆或者接枝,得到含有纳米结构的复合破乳剂。在实验室研究中该复合破乳剂可以使破乳脱水的时间加快30分钟左右,脱水率也可以提高20%~30%左右,脱出水很清,油水界面齐。
     原位法合成的纳米复合破乳剂的现场药剂试验表明:处理孤东东四联注聚和油田采出液,在处理量增加,加药量仍是250kg/d时,外输油含水基本小于10%;达到孤东采油厂的规定指标。在东一联使用时,在井排来液条件相同的情况下和在外输水含油量相同时,纳米破乳剂的使用量仅为原有机高分子破乳剂的30%左右,减少破乳剂用量近70%;在孤四联游离水预分水器的试验中,未加纳米预脱水剂前,出水含油在2000mg/L以上。纳米预脱水剂加量在300mg/L时,作用时间20分钟,预分水器水出口水中含油130mg/l。
     另外还通过电镜、红外、拉曼和核磁共振等多种现代分析手段对所合成的纳米复合破乳剂进行表征分析,分析了纳米复合破乳剂的形成机理和破乳剂机理。
The petroleum was one of the most important energy sources all over the world. The petroleum was exploited and formed emulsion included different amount water, which could not be directly applied and processed. It was necessary to separate the water completely from the petroleum emulsion before transporting or refining them. The method of demulsification included physical method and chemical method. Because the physical method was awkward to widespread industrializing application, the chemical agents(demulsifier) was used widely to separate the water completely from emulsion.
     A new method to confirm proper demulsifing temperature of crude oil emulsion by viscometric drop method was developed and was certified by Orthogonal experimental design. Apply inorganic nano-particle on polyether demulsifier to improve the demulsification performance of the original polyether demulsifier. Make nano-particle integrate with polyether demulsifier to form nano-composite demulsifier by direct dispersion method, surface graft method and In-situ synthesis method. The test result showed that the demulsification performance of the nano-composite demulsifier synthesized by In-situ synthesis method was the best. The nano-oxides were coated or cross linked by the macromolecule polyether demulsifier and the composite demulsifier was got. Experiment Testing showed that the ratio of demulsification would be improved 20% to 30% and the time of demulification and dewatering would be greatly shorten about 30 min with regular oil/water interface and clear separated water.
     The demulsification performance of the composite demulsifier synthesized by in-situ synthesis method in the field was very good. In Gudong Dongsilian when the treatment amount of emulsion increased but the dosage of composite demulsifier still was 250kg/d, water content in transported crude oil was <10% and meet the specification of Gudong Oil Production Plant. In Gudong Dongyilian when the condition of emulsion and oil content in transported water held the line, the dosage of composite demulsifier only was 30% of the dosage of organic macromolecule demulsifier, the reduction rates was about 70%. The test of dissociative water prolapsus implement in Gusilian showed that the oil content in transported water was above 2000mg/L before adding nano-composite demulsifier, when the dosage of nano-composite demulsifier was 300mg/L and treating time was 20min, the oil content in water flow from prolapsus implement was 130mg/L.
     The nano-composite demulsifier was charactered by FTIR, SEM, RAMAN and ~1H-NMR. The formation mechanism and demulsiflcation mechanism of nano-composite demulsifier were analyzed.
引文
[1].Bessler D U,Chilingarian G V.Surface Operation in Petroleum Production I,in:Chilingarian G V ed.Elservier,1987
    [2]赵富麟,油田化学[M.山东东营:石油大学出版社,2000
    [3]郑晓宇,吴肇亮,油田化学品,化学工业出版社,北京,2001
    [4]Γ.C.卢托什金著,郝继红译.油气水的收集与处理,北京:石油工业出版社,1987
    [5]宁廷伟.原油破乳剂的胜利油田的应用和发展,油田化学,1994,11(1):87-91
    [6]李平,朱建民.原油乳状液的稳定与破乳机理研究进展,精细化工,2001,18(2):89-93
    [7]郭广慧,陈玉成.表面活性剂对乳状液膜分离效率的影响,日用化学工业,2005,35(6):380-383
    [8]Acevedo S.Escobar G.,Gutierrez L B,et al.Synthesis and isolation of octylated asphaltene standards for calibration of g.p.c,columns and determination of asphaltene molecular weights,Fuel,1992,71(9):1077-1079
    [9]Luyrisser I,Rivas H.Acevedo S.Isolation and characterization of natural surfactants present in extra heavy crude oils.J Disper Sci Technol,1984,5(1):1-18
    [10]Speight J G,Wernick D L.,Gould K.A.et al.Molecular weight and association of asphaltenes:A critical review.Rev Inst Fr PET,1985,40(1):51-56
    [11]Storm D A,Sheu E Y.Characterization of colloidal asphaltenic particles in heavy oil,Fuel,1995,74(8):1140-1145
    [12]王子军.石油沥青质的化学和物理:Ⅱ沥青质的化学组成和结构,石油沥青,1996,10(1):26-36
    [13]王子军.石油沥青质的化学和物理:Ⅳ.石油沥青质溶液的胶体化学,石油沥青,1996,10(3):36-48
    [14]Storm D A.et al.Asphaltenes and Asphalts,in:Yen t F,Chilinggerian G V ed.Elsevier,1994
    [15]晏德福.沥青质和沥青质组成和结构的研究,有机地球化学文集,兰州:甘肃科学技术出版社,1986
    [16]Galtsev V E,Ametov I M.,Grinberg O Y.Asphaltene association in crude oil as studied by ENDOR,Fuel,1995,74(5):670-673
    [17]李朋远,甄鹏,沅淑玲等.原油乳状液稳定性研究Ⅶ,蜡晶对油水界面膜性质的影响,石油学报(石油加工),1999,15(5):1-5
    [18]Tabme D E.Sharma MM.Factors controlling thestability of colloid-stabized emulsion.J coloid Interface sci,1993,157:244-253
    [19]丁德盘,孙在春,杨国华.原油乳状液的稳定与破乳,油田化学,1998,15(1):82-86,96
    [20]郑忠.胶体化学导论,北京:高等教育出版社,1989,
    [21]梁为民.凝聚与絮凝,北京:冶金工业出版社,1987
    [22]张帆,王福宾,张石兴.油水乳状液性质及其影响因素,石油大学学报:自然科学版,2003,24(12):2-3
    [23]Toda Kiyoshi,Furuse Hisamoto,Extension of Einstein's viscosity equation to that for concentrated dispersions of solutes and particles:Journal of Bioscience and Bioengineering,2006,102(6):524-528
    [24]Sibree J O.Viscosity of emulsions:Transactions of the Faraday Society,1930,26(1):26-36
    [25]黄正华.油水混合质相对介电常数的研究,油气田地面工程,2000,19(2):8-9,19
    [26]Kokal,S.,Crude-oil emulsions:a state-of-the-art review,SPE Production & Facilities,2005,20(1):5-13
    [27]Mohammed R A,Bailey A I,Luckham P F,et al.Dewatering of crude oil emulsions 2.Interfacial properties of the asphaltic constituents of crude oil,Colliods Surf,A.1993,80:237-242
    [28]Tabme D E,Sharma M M.Factors controlling thestability of colloid-stabized emulsion,J.Coll.Inter,Sci,1993,157:244-253
    [29]李明远,甄鹏.原油乳状液稳定性研究:Ⅳ.界面膜特性与原油乳状液稳定性,石油学报(石油加工),1998,14(3):1-5
    [30]郭正阳.ASP驱采出乳状液的形成、稳定及破乳机理研究,石油大学(北京)硕士学位论文(2000)
    [31]乔建江,詹敏.乳化原油的破乳机理研究:Ⅰ.油水界面张力对破乳效果的影响,石油学报:石油加工,1999,15(2):1-5
    [32]王明宪.浅论影响原油乳状液破乳的因素,油气田地面工程,1995,14(1):24-25
    [33]康万利,董喜贵.三次采油化学原理,北京:化学工业出版社,1997
    [34]张鸿仁,油田原油脱水,北京:石油工业出版社.1990.8
    [35]赵国玺.表面活性剂的物理化学,北京:北京大学出版社,1984
    [36]秦国鲲.影响原油超声波破乳效果的因素分析,油气地质与采收率,2005,12(4):76-77
    [37]章德玉,刘有智,焦纬洲等.无机微孔膜外压内抽法对W/O乳状液破乳效果影响的研究,化学工业与工程技术,2006,27(1):25-28
    [38]夏立新,刘泉,张路等.微波辐射破乳研究进展,化学研究与应用,2005,17(5):588-591;
    [39]Xia Lixin,Cao Guoying,Lu Shiwei,et al,Demulsification of solids-stabilized emulsions under microwave radiation Journal of Macromolecular Science-Pure and Applied Chemistry,2006,43(1):71-81
    [40]康万利,孙春柳.油田乳状液破乳方法研究进展,管道技术与设备,2006,(2):1-4
    [41]刘宏魏,高秀军,郭丽梅等.新型原油脱水方法,油气田地面工程,2007,26(3):32-33
    [42]Ichikawa Tsuneki,Itoh Keisuke,Yamamoto Shigeki,et al.Rapid demulsification of dense oil-in-water emulsion by low external electric field:I.Experimental evidence,Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,242(1-3):21-26
    [43]蔺爱国,刘培勇,刘刚.膜分离技术在油田含油污水处理中的应用研究进展,工业水处理,2006,25(1):10-17
    [44]冯志强,杨永军,朱成君等.原油生物破乳剂的研究与应用,石油大学学报:自然科学版,2004,28(3)93-95,99
    [45]Pekdemir T,Akay G,Dogru M,t al.Demulsification of highly stable water-in-oil emulsions:Separation Science and Technology,2003,38(5):1161-1183
    [46]Hahn A U,Mittal K L,Mechanism of demulsification of oil-in water emulsion in the centrifuge.Colloid and Polymer Science,1979,257(9):959-967
    [47]Kim Y H,Wasan D T,Breen P J,Study of dynamic interfacial mechanisms for demulsification of water-in-oil emulsions,Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,95(2-3):235-247
    [48]聂建波,黄万抚.乳状液破乳机理研究进展,江西有色金属,2004,18(2):38-40
    [49]Grutters Mark,Dijk Menno,Dubey Sheila,et al.Asphaltene induced w/o emusilon:False or true?.Journal of Dispersion Science and Technology,2007,28(3):357-360
    [50]Zapryanov Z,Malhotra A K,Wasan D T,Emulsion stability:an analysis of the effects of bulk and interfacial properties on film mobility and drainage rate,1983,9(2):105-129
    [51]戚文彬,蒲炳寅.表面活性剂和分析化学(第二版).北京:中国计量出版社,1987
    [52]Bhardwaj A,Hanland S,Kinetics of coalescence of water droplets in water-in-crude oil emulsions,J.Disper.Sci.Technol.1994,15(2):133-146
    [53]施宝昌,王勤娜.原油破乳剂的开发与进展,化学进展,1997(1):61-63
    [54]刘宏.电解质破乳特性研究,江苏理工大学学报(自然科学报),2000,21(2):27-29
    [55]张瑞泉,梁成浩,刘刚.三元复合驱乳化与破乳机理,油气田地面工程,2007,26(2):21-22
    [56]张健,向问淘,韩明等.乳化原油的化学破乳作用,油田化学,2005,22(3):283-288
    [57]杜玉海,康仕芳.优秀原油破乳剂所具备的性能初探,高分子通报,2006,(11):92-95;
    [58]AL-Sabagh A M,Maysour Nermine E,El-Din M R Noor,Investigate the demulsification efficiency of some novel demulsifiers in relation to their surface active properties.Journal of Dispersion Science and Technology,2007,28(4):547-555
    [59]Poindexter,Michael K,Lindemuth,Paul M.Applied statistics:Crude oil emulsions and demulsifiers,Journal of Dispersion Science and Technology,2004,25(3):311-320
    [60]肖稳发.原油破乳剂的研究进展,精细与专用化学品,2004,12(2):18-20
    [61]Barnickel W S.Process for treating crude oil[P].US 1093098,1914
    [62]Stephenson W.K.Alkoxylatedvinyl polymer demulsifiers for crude oil emulsions[P].U S:4968449,1990
    [63]Rivers G.Polyoxy propylene triamine derivs used in demulsification of oil in wate r[P].U S:5152927,1993
    [64]Chen R G,Novel cationic amide composition of used as demulsifier[P].U S:5117058,1990
    [65]Kremer L N,Composition for demulsifying oil-in-water emulsion[P].U S:5179847,1993
    [66]Bock,Hydrophobically functionalized cationic polymers[P].EP:0464957,1992
    [67]Barhold Klaus.Method of demulsifying crude oil and water mixtures with copolymers of acrylates or methacrylates and hydrophilic comonomers[P]U S:5100258,1995
    [68]Hart P R,Breaing water-in-oil emulsions in a crude oil desalting system[P].U S:5256305,1992
    [69][Asperger.Methods for treating hydrocarbon recovery operations and industrial waters[P].U S:4826625,19911
    [70]Neil E S,Clarification of oil-in-water effluents[P].U S:5026487,1991
    [71]贺丰果,马喜平,李涛.原油破乳剂现状及其选择评价方法,上海化工,2006,31(1):32-34;
    [72]李朝法,贾鹏林,张鸿勋.原油破乳剂的研究进展,石油化工腐蚀与防护,2004,21(4):1-4;
    [73]苑世领,徐桂英.原油破乳剂发展的概括,日用化学工业,2000,(1):36-39;
    [74]黄泾,唐娜,牟占军.原油乳状液的稳定性研究与新型破乳剂研究进展,天津化工,2007,21(1):10-13
    [75]宋乃忍,刘慧英,张洪俊.CW-01反相破乳剂在油田采出水处理中的应用.油气田环境保护,1995,5(1):4-7
    [76]朱剑利.KW-04稠油污水反相破乳剂.新疆石油科技,1998,8(4):32-35
    [77]孙吉佑,曲富军.原油破乳剂的复配研究,化工矿物与加工,2004,33(3):21-22,34;
    [78]刘启瑞,张谋真,郭立民.原油破乳剂-破乳剂复配的筛选,化学研究与应用,2004,16(2):270-271
    [79]魏国晟.原油破乳剂的研究与应用,油气田地面工程,1995,14(6):24-26
    [80]徐家业.聚醚类破乳剂酯化改性研究,西北大学学报(自然科学版),1997,27(增刊):374-378
    [81]周立川.聚硅氧烷.聚氧乙烯聚氧丙烯原油破乳剂的应用研究,东北师范大学学报(自然科学版),1999,1:51-59
    [82]陈和平,徐家业.破乳剂发展的新方向,石油与天然气化工,2001,(2):108-111
    [83]孟琳.原油破乳剂的应用与发展趋势,油气田地面工程,2005,24(4):18-19
    [84]曲红杰,孙新民,毕红梅.原油破乳剂的研究应用及发展方向,内蒙古科技与经济,2007,(6):97-98
    [85]任卓琳,牟英华,崔付义.原油破乳剂机理与发展趋势,油气田地面工程,2005,24(7):16-17
    [86]Daniel-David D,Le Follotec A,Pezron Isabelle,Destabilisation of water-in-crude oil emulsions by silicone copolymer demulsifiers.Oil and Gas Science and Technology,2008,63(1):165-173
    [87]方洪波.用于高含水原油的RAK-5多元复配破乳剂,油气田地面工程,1996,15(1):44-46
    [88]牟建海.原油破乳机理研究和破乳剂的发展,化工科技市场,2002,4:26-29
    [89]沈钟,王果庭编著.胶体与表面化学,北京:化学工业出版社,1997.9
    [90]石油产品水分测定法GB 260-77 中华人民共和国国家标准
    [91]瓶试法SY5281-1991 石油天然气行业标准
    [92]污水综合排放标准GB 8978-1996中华人民共和国国家标准
    [93]吴玉新.紫外分光光度法测定污水中油含量的研究,环境保护,1998(10)p31-p33
    [94]华中师范大学编写.分析化学(第三版)上册,高等教育出版社,2004年
    [95]徐燕莉编著.表面活性剂的功能,北京:化学工业出版社,2000,107-123
    [96]朱红,王芳辉,王滨.用黏度法确定原油乳状液的合适破乳温度,现代化工,2003,23(11):40-42
    [97]王芳辉,朱红,王滨.组合设计优化法筛选原油破乳剂,北京交通大学学报(自然科学版),2005,29(6):51-54
    [98]同济大学数学教研室编.高等数学(第四版)下册,高等教育出版社,1999年
    [99]孙万明,徐现波,文作和.纳米材料及其应用,合作经济与科技,2005(07X):18-19
    [100]Chen Junshui,Liu Meichuan,Zhang Li,et al,Application of nano TiO2 towards polluted water treatment combined with electro-photochemical method[J],Water Research,2003,37(16):3815-3820
    [101]Oshida K,Nakazawa T,Miyazaki T,et al,pplication of image processing techniques for analysis of nano- and micro-spaces in carbon materials[J]Synthetic Metals,2001,125(2):223-230
    [102]姜健.米材料的卓越性能和化工应用,辽宁化工,2005,34(6):260-263
    [103]钱伯章,朱建芳.纳米技术在石油化工中的应用进展,新材料产业,2005(2):33-40
    [104]王芳辉,朱红,邹静.纳米材料在石油行业中的应用,西安石油大学学报,2006,21(6):87-91
    [105]朱捷,朱红.正交设计在单分散球形SiO_2制备中的研究,功能材料,2005,36(4):577-579
    [106]Menon V B,Wasan D T.A Review of the Factors Affecting the Stability of Solids-Stabilized Emulsions.Separation Science and Technology,1988,23(12-13):2131-2142
    [107]B.P.Bink,S.O.Lumsdon.Piekering emulsions stabilized by monodisperse latex particles:Effects of particle size,Langmuir,2001,(17):4540-4547
    [108]Abend S,Bonnke N,Gutsehner U,et al.Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides.Colloid Polym Sci,1998,276(8):730-737
    [109]Masayoshi Fuji,Takashi Takei,Tohoru Watanabe,et.al.,Wettability of fine silica powder surfaces modified with several normal alcohols,Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999(154):13-24
    [110]张蓓,汪济奎,程树军.纳米二氧化硅改性CPE的研究,功能高分子学报,2002,15(3):271-275
    [111]Jesionowski T.,Zurawska J,Krysztafkiewicz A,Surface properties and dispersion behavior of precipitated silicas,J.Mater.Sci.,2002(37):1621-1633
    [112]张超灿,何东铭,郝爽.两亲性聚合物改性二氧化硅及其与聚丙烯酸酯乳液复合体系性能研究,武汉工业大学学报,2000,22(6):8-12.;
    [113]Chen Xianyi,David Randall,Christian Perruchot,et al.,Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization,J.Colloid Interface Sci.,2003(257):56-64
    [114]朱捷.超细二氧化硅的制备和改性,北京交通大学硕士研究生论文,2005
    [115]夏建华.新型石油磺酸盐基复合驱油剂的研究,北京交通大学硕士研究生论文,2006
    [116]王芳辉,朱红.朱捷.环氧丙烷接枝聚合改性超细SiO_2的研究,现代化工,2007,27(10):38-40
    [117]宋友,包德才,宋佳萍.利用单滴法对研磨和电场联合破乳剂理的研究,河北大学学报(自然科学版)1997,17(1):85-88
    [118]康万利,岳湘安,胡靖邦.复合驱原油乳状液液膜强度,油气田地面工程,1996,15(3):32-34
    [119]许辛淑,王庆生,孙东方.化学剂对复合驱乳状液液膜强度的影响,油气田地面工程,2000,19(3):37-40
    [120]中华人民共和国石油天然气行业标准.原油中蜡、胶质、沥青质含量测定法,SY/T 7550-2004
    [121]权忠舆.有关原油流变性与石油化学的讨论,油气储运,1994,1(6):20-24
    [122]余家国,张联盟,童兵.Sol-Gel工艺制备二氧化硅超细微粉及其机理的研究,硅酸盐通报,1992(3):43-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700