用户名: 密码: 验证码:
毛竹对O_3、CO_2浓度升高及其复合作用的生理响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹(Phyllostachys edulis)是中国最为重要的经济竹种,具有分布广、面积大、应用领域广、利用价值高、生长快、产量高、效益好等特点,在中国竹产业发展和区域生态环境保护中起到极为重要的作用。为揭示毛竹对大气主要温室气体浓度升高的生理响应规律,给气候变化背景下的毛竹林适应性管理提供理论依据,开展了O_3和CO_2浓度升高及其复合作用对毛竹生理生态的影响研究。主要研究结果如下:
     (1)毛竹对大气O_3浓度升高的生理响应
     随着O_3浓度的升高,毛竹叶片Chl和Car含量、SOD活性均呈下降趋势,可溶性蛋白、MDA和O_2-含量、POD活性均呈升高趋势。与过滤大气相比,100nl·L~(-1)和150nl·L~(-1)O_3浓度处理的毛竹叶片光合色素含量、SOD活性极显著降低,叶片可溶性蛋白、MDA、O_2-含量和POD活性极显著升高;低浓度O_3(≤50nl·L~(-1))并未对毛竹造成明显的生理伤害,而长时间高浓度O_3(≥100nl·L~(-1))胁迫,会导致毛竹叶片光合色素降解或合成受阻,叶片老化加快,膜脂过氧化程度加剧,膜结构和抗氧化系统功能遭到破坏,影响毛竹的正常生长。
     (2)毛竹和四季竹耐受臭氧胁迫能力的差异
     运用主成分分析法对毛竹和四季竹叶片叶绿素、类胡萝卜素、MDA、可溶性蛋白含量和SOD、POD活性等生理指标进行了耐受O_3胁迫能力的差异性比较分析,表明叶片Chl和MDA含量是反映毛竹、四季竹对O_3胁迫耐受力的重要指标。虽然高浓度O_3胁迫对毛竹和四季竹的生长均有着负面影响,但毛竹对O_3胁迫的耐受能力明显弱于四季竹。
     (3)大气CO_2浓度升高对毛竹叶片膜脂过氧化和抗氧化酶的影响
     与环境大气比较,500μmol·mol~(-1)CO_2浓度处理30d时对毛竹叶片光合色素、膜脂过氧化和抗氧化系统影响并不明显,仅叶片CAT活性显著降低。随着处理时间的延长,对毛竹叶片膜脂过氧化和抗氧化系统的影响逐渐显现,至处理90d时,除叶片可溶性糖含量无明显变化,叶绿素、MDA和可溶性蛋白含量,SOD、POD、CAT和APX活性均有显著变化;700μmol·mol~(-1)CO_2浓度处理在各个处理时间点(30、60、90d)上对毛竹叶片膜脂过氧化和抗氧化系统的影响均较500μmol·mol~(-1)CO_2浓度处理明显。处理30d时毛竹叶片可溶性糖含量和抗氧化酶活性就有明显变化,处理90d时,叶绿素、MDA、可溶性糖和可溶性蛋白含量,SOD、POD、CAT和APX活性均有显著变化;研究表明大气CO_2浓度升高一定程度上能增强毛竹的抗氧化能力,但光合产物的过量积累也会造成碳水化合物源-库失衡和Rubisco的再生受到反馈作用抑制。
     (4)大气CO_2浓度升高对毛竹叶片主要养分元素化学计量特征的影响
     不同的CO_2浓度条件下,毛竹叶片C、N、P和K含量变化范围分别为512.13~543.30、19.23~22.97、1.26~0.96和8.40~5.88mg g~(-1),叶片C:N、C:P、C:K、N:P、N:K和K:P变化范围分别为26.64~23.65、406.58~565.93、60.98~92.40、15.26~23.93、2.29~3.91和7.00~6.22。与环境背景大气比较,CO_2浓度升高到500μmol mol~(-1),对毛竹叶片主要养分元素的化学计量特征并不会产生明显影响,反映了毛竹对高浓度CO_2环境的较强适应能力。但CO_2浓度升高到700μmol mol~(-1),毛竹叶片主要养分元素化学计量特征会发生明显的适应性变化;CO_2浓度升高对毛竹生长的NK限制性作用没有明显影响,但明显增强了毛竹生长的P素限制性作用。
     (5)大气CO_2浓度升高对毛竹立竹器官矿质离子吸收、运输和分配的影响
     除CO_2浓度700μmol mol~(-1)对Ca~(2+)浓度在毛竹立竹器官中大小排序会产生影响外,CO_2浓度升高对Na~+、Fe~((2+,3+))、Mg~(2+)、Ca~(2+)浓度立竹器官中大小排序并没有明显影响。CO_2浓度升高对竹叶Fe~((2+,3+))和竹枝Fe~((2+,3+))、Mg~(2+)浓度无明显影响,但对立竹器官的其它矿质离子浓度会有不同程度的影响,竹叶Ca~(2+)和Mg~(2+)、竹枝Na~+和Ca~(2+)、竹秆Na~+和Ca~(2+)及Mg~(2+)、竹根Na~+和Mg~(2+)浓度明显提高,竹叶Na~+、竹秆Fe~((2+,3+))、竹根Fe~((2+,3+))和Ca~(2+)浓度明显降低;随着CO_2浓度的升高,竹叶Fe~((2+,3+))/Na~+、Mg~(2+)/Na~+和Ca~(2+)/Na~+,竹枝Ca~(2+)/Mg~(2+)及各器官Mg~(2+)/Fe~((2+,3+))、Ca~(2+)/Fe~((2+,3+))均逐渐增大,而竹枝、竹秆、竹根Fe~((2+,3+))/Na~+、Mg~(2+)/Na~+、Ca~(2+)/Na~+和竹叶、竹秆、竹根Ca~(2+)/Mg~(2+)均逐渐减小;CO_2浓度升高后除竹根-竹秆SCa,Na、竹秆-竹枝SMg, Fe和竹枝-竹叶SCa,Mg明显下降外,其余的立竹器官矿质离子向上运输系数变化平缓或有明显提高;研究表明CO_2浓度升高增强了毛竹立竹根部积累Na~+能力和Fe~((2+,3+))、Ca~(2+)和Mg~(2+)的向上选择性运输能力,提高了光合器官竹叶中矿质养分元素浓度,维持体内矿质养分元素平衡,有利于提高毛竹的光合作用能力和对高浓度CO_2环境的适应能力。
     (6)大气O_3和CO_2浓度升高复合作用对毛竹生理生态的影响
     短期(30d)高浓度O_3能刺激毛竹叶片抗氧化酶活性和渗透调节物质含量的提高,清除活性氧能力增强,并未出现膜脂过氧化,但长期(90d)O_3胁迫,毛竹叶片抗氧化酶活性降低,膜脂过氧化程度加剧,膜结构破坏,发生严重的伤害效应;短期高浓度CO_2总体上对毛竹叶片膜脂过氧化和抗氧化系统影响并不明显,而长期高浓度CO_2一定程度上能增强毛竹的抗氧化能力和渗透调节功能,减轻氧化损伤;高浓度O_3和CO_2复合作用下,毛竹叶片能够维持较高的抗氧化酶活性和渗透调节物质含量,有效地调节活性氧产生与清除的平衡,膜脂过氧化程度变化不明显。说明高浓度CO_2一定程度上可缓解高浓度O_3对毛竹所造成的生理伤害。
The moso bamboo (Phyllostachys edulis) is the most important economic bamboo speciein China. The bamboo has the characteristic of widely distribution and application large areaof plantion, high value, fast growth, high output and good benefit.The bamboo plays anextremely important role in bamboo industry development and regional ecologicalenvironmental protection in China. In order to demenstrate the physiological response law ofthe moso bamboo interacting with atmospheric CO_2concentrationincreasing and provide thetheory basis for climate change under the background of bamboo forest adaptive management,the different concentration of O_3and CO_2and the compound of physiological function ofecological effects of bamboo was studied. The main research results were as follows:
     (1) Physiology responses of Phyllostachys edulis to elevate atmospheric ozoneconcentration
     As the ozone concentration increasing, the content of the chlorophyll, carotenoid, andSOD activity decreased; while the content of souble protein, MDA, O_2-and the activity ofPOD increased. Through treating with ozone at concentrations of100nl·L~(-1)and150nl·L~(-1),photosynthetic pigments contents and SOD activity significantly decreased; however, solubleprotein content MDA content, O_2-content and POD activity increased, The results suggestedthat the elongated ozone exposure inhibited the growth of Ph.edulis by restricting thesynthesis or speeding the degradation of photosynthetic pigments; accelerating the aging ofleaves; intensifing the damage to membrane lipid, and destroying the structure of cellmembrane and the function of anti-oxidation system.
     (2) The differences of O_3stress tolerance between Phyllostachys edulis andOligostachyum lubricum
     Using the principal component analysis method, the physiological indexes of the toleranceof differences O_3ability comparison of Ph. edulis and O. lubricum leaves chlorophyll andcarotenoids, MDA and soluble protein, SOD and POD activity, etc. were analysised. The results indicated that leaf Chl and MDA content was important index for the reflection of thePh. edulis and O. lubricum to the O_3stress tolerance. Although Ph. edulis and O. lubricumwere subject to the negative impact of high concentration O_3stress, the result implied that O.lubricum was much tolerant to O_3than Ph. edulis based on major factor analysis.
     (3) Effects of elevated CO_2on lipid peroxidation and anti-oxidation system inPhyllostachys edulis
     The physiological indicators exhibited no signicicant differences between CK and500μmol·mol~(-1)treatment except CAT activity which decreased significantly in the initial30d.With elonged CO_2treatment, the photosynthetic pigment and membrane lipid peroxidationand anti-oxidation system in leaves of Ph. edulis were gradually impacted. After90d, thephysiological indicators increased or decreased significantly except soluble sugar. The effect of700μmol·mol~(-1)treatment was more significant than500μmol·mol~(-1)treatment on membranelipid peroxidation and anti-oxidation system in leaves of Ph. edulis. Under700μmol·mol~(-1)treatment, the soluble sugar concentration and anti-oxidation enzyme activity changedsignificantly in30d, and all the physiological indicators significantly changed in90d. Weconclued elevated atmospheric CO_2concentration could enhance the antioxidant capacity ofPh. edulis to a certain extent, however, the excessive accumulation of photosynthetic productscould also result in carbohydrate source-libraies imbalance and feedback inhibition of Rubiscoregeneration.
     (4) Effects of Elevated CO_2on the Characteristics of Leaf Nutrients in Phyllostachysedulis
     Under the different concentrations of CO_2, the content of leaf C, N, P, K ranged in512.13~543.30,19.23~22.97,1.26~0.96,8.40~5.88mg/g respectively in Ph.edulis. The leafC:N、C:P、C:K、N:P、N:K、K:P in Ph.edulis ranged from26.64to23.65,406.58to565.93,60.98to92.40,15.26to23.93,2.29to3.91,7.00to6.22and27.39to32.40. Compared withthe background of environmental atmospheric, CO_2concentration increased to500μmol·mol~(-1)made no difference on stoichiometric characteristics of the main nutrient elements in Ph.edulis.But elevated CO_2concentration increased to700μmol·mol~(-1)had significant difference. Elevated CO_2concentration Ph.edulis NK restrictive effect on the growth had no obviouseffect, However, It significantly enhanced the restrictive effect of P concentration to Ph.edulisgrowth.
     (5) Effects of Elevated CO_2on mineral ion uptake, transportation and distribution ofPhyllostachys edulis
     Except Ca~(2+)concentration in the Ph.edulis organs size sorting would generate, at the CO_2concentration of700μmol mol~(-1), the elevated CO_2concentration.had no significant impact tothe concentrations of Na~+and Fe~((2+,3+))and Mg~(2+)and Ca~(2+)in the different Ph.edulis organs sizesorting. With the CO_2concentration increasing, the concentration of Fe~((2+,3+))in the leaf andFe~((2+,3+)), Mg~(2+)in the branch had no significant effect, but other mineral ion concentration inother organs had influence in some extent. The concentrations of Mg~(2+)and Ca~(2+)in the leaf,Na~+and Ca~(2+)in the branch, Na~+and Ca~(2+)and Mg~(2+)in the stem, Na~+and Mg~(2+)in the rootincreased significantly, but Na~+in the leaf, Fe~((2+,3+))in the stem and root, Ca~(2+)in the root haddecreased significantly. The ratios of Fe~((2+,3+))/Na~+、Mg~(2+)/Na and Ca~(2+)/Na~+in the leaf,Ca~(2+)/Mg~(2+)in the branch, Mg~(2+)/Fe~((2+,3+))、Ca~(2+)/Fe~((2+,3+))in all organs increased gradually,however, Fe~((2+,3+))/Na~+, Mg~(2+)/Na~+and Ca~(2+)/Na~+in the branch and stem and root, Ca~(2+)/Mg~(2+)inthe leaf and stem and root decreased gradually. Except root to stem, SMg, Fefrom stem to branch,SCa,Mgfrom branch to leaf decreased significantly under the elevated CO_2concentration. otherorgan ions upward transporting ability changed or increased significantly. The study showedthat elevated CO_2enhanced more Na~+accumulation in the root, up selective transporting abilityof Fe~((2+,3+)), Ca~(2+)and Mg~(2+), elevated the mineral nutrient concentrations in the leaf, andmaintained the balance of mineral elements. thereby elevated concentration of CO_2couldincrease the adaptation capacity of Ph. edulis in high CO_2concentration environment.
     (6) Physiology responses of Phyllostachys edulis Leaves to elevated atmospheric O_3and CO_2concentration
     After30d of exposure, elevated O_3could stimulate the activity of anti-oxidation and thecontent of osmotic adjusting substances, which can balance reactive oxygen species production,resulting in no significantly increase in malondialdehyde content. Along with the decline of antioxidant, intense the damage to membrane lipid and destroy the structure of cell membrane.Short-term treatment of high concentration of CO_2on membrane lipid peroxidation andantioxidant system in the leaves of Ph. edulis effect was not evident, and long-term treatmentof high concentration of CO_2would increase the antioxidant ability of Ph. edulis andosmotic adjustment function in a certain extent, and thus, alleviate the oxidative stress. Incombination of elevated CO_2and O_3, the leaves of Ph. edulis could maintain high levels ofantioxidant enzymes and osmotic adjustment substances content to effectively regulate reactiveoxygen species generation and clearing balance. The results indicated that elevated CO_2couldameliorate the oxidative stress in some extent.
引文
安卓,牛得草,文海燕,等.氮素添加对黄土高原典型草原芒草氮磷重吸收率及C:N:P化学计量特征的影响.植物生态学报,2011,35(8):801-807
    白月明.水稻与冬小麦对臭氧的反应及其敏感性试验研究.中国生态农业学报,2002,10(1):13-16
    白月明,王春乙,刘玲,等.O3浓度增加对油菜影响的诊断试验研究.应用气象学报,2002,13(3):364-370
    白月明,王春乙,温民,等.臭氧浓度和熏气时间对菠菜生长和产量的影响.中国农业科学,2004,37(12):1971-1975
    陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2006,54-124
    陈平平.大气二氧化碳浓度升高对植物的影响.生物学通报,2002,37(3):20-22
    付宇.不同臭氧浓度对大豆活性氧代谢及保护同工酶的影响.沈阳农业大学硕士学位论文,2009
    郭建平,高素华,白月明,等.CO2浓度倍增对春小麦不同品系影响的试验研究.资源科学,1999,21(6):25-28
    顾大形,陈双林,黄玉清.土壤氮磷对四季竹叶片氮磷化学计量特征和叶绿素含量的影响.植物生态学报,2011,35(12):1219-1225
    郝兴宇,李萍,杨宏斌,等.大气CO2浓度升高对绿豆生长及C、N吸收的影响.中国生态农业学报,2011,19(4):794-798
    郝玉波,刘华琳,慈晓科,等.砷对玉米生长、抗氧化系统及离子平衡的影响.应用生态学报,2010,21(12):3183-3190
    何平.大气温室效应与植物光合性状-大气-CO2浓度升高对油桐和烟草光合气体交换及叶上网脂类组成的影响.中南林学院学报,1998,18(3):17-22
    胡莹莹,赵天宏,徐玲,等.CO2浓度升高对春小麦不同生育时期抗氧化系统的影响.华北农学报,2007,22(5):15-18
    黄建军,王希华.浙江天童32种常绿阔叶树叶片的营养及结构特征.华东师范大学学报(自然科学版),2003,2003(1):92-97
    黄玉源,黄益宗,李秋霞,等.臭氧对南方三种木本植物的急性伤害症状及其生理指标变化.生态环境,2006,15(4):674-681
    蒋高明.植物生理生态学.北京:高等教育出版社,2004
    蒋跃林,张仕定,张庆国.大气CO2浓度升高对茶树光合生理特性的影响.茶叶科学,2005,25(1):43-48
    江泽慧,萧江华,许煌灿.世界竹藤.沈阳:辽宁科学技术出版社,2002
    金明红,冯宗炜,张福珠.臭氧对水稻叶片膜脂过氧化和抗氧化系统的影响.环境科学,2000,21(3):3-5
    金明红,冯宗炜.臭氧对冬小麦叶片膜保护系统的影响.生态学报,2002,20(3):444-447
    李伏生,康绍忠.不同氮和水分条件下CO2浓度升高对小麦碳氮比和碳磷比的影响.植物生态学报,2002,26(3):295-302
    李锦树,王洪春,王文英,等.干旱对玉米细胞透性及膜脂的影响.植物生理学报,1983,9(3):223-228
    李睿.竹类生态学研究进展与展望.见:董鸣,Werger MJA.生态学研究文集.重庆:西南师范大学出版社,1999,20-26
    李睿,钟章成,M.J.A.维尔格.毛竹的无性系生长与立竹密度和叶龄结构的关.植物生态学报,1997,21(6):545-550
    李永华,刘丽娜,叶庆生.高CO2浓度对红掌的生长和光合作用的影响.热带亚热带植物学报,2005,13(4):343-346
    李忠光,龚明.植物中超氧阴离子自由基测定方法的改进.云南植物研究,2005,27(2):211-216
    林久生,王根轩.CO2倍增对渗透胁迫下小麦叶片的抗氧化酶类及细胞程序性死亡的影响.植物生理学报,2000,26(5):453-457
    刘爱荣,张远兵,张雪平,等.铅污染对高羊茅生长、无机离子分布和铅积累的影响.核农学报,2009,23(1):128-133
    刘静,赵海涛,盛海君,等.铁对太湖常见藻类生长及Ca2+、Mg2+离子吸收的影响.环境科学与技术,2011,34(1):59-64
    刘延吉,田晓艳,阮燕烨,等.大豆对CO2、O3污染的逆境反应.大豆科学,2007,26(3):347-350
    施建敏,杨光耀,杨清培,等.厚壁毛竹光合作用对CO2浓度倍增的短期响应.广西植物,2010,30(5):636-640
    梁建萍,刘咏梅,牛远,等.高温和CO2浓度倍增对华北落叶松幼苗抗氧化酶及脂质过氧化的影响.中国生态农业学报,2007,15(3):100-103
    卢涛,何兴元,陈炜.O3和CO2浓度升高对油松针叶抗氧化系统的影响.生态学杂志,2009,28(7):1316-1323
    卢从明,张其德,冯丽洁,等.CO2浓度倍增对谷子拔节期和灌浆期光合色素含量和PSⅡ功能的影响.植物学报,1997,39(9):874-878
    罗华河.毛竹生物特性与栽培管理措施.中国林副特产,2004,73(6):29-31
    马红亮,朱建国,谢祖斌.植物地上部分对大气CO2浓度升高的响应.生态环境,2004,13(3):390-393
    马红亮,朱建国,谢祖彬,等.开放式空气CO2浓度升高对冬小麦P、 K吸收和C:N、C:P的影响.农业环境科学学报,2005,24(6):1192-1198
    宁建凤,郑青松,杨少海,等.高盐胁迫对罗布麻生长及离子平衡的影响.应用生态学报,2010,21(2):325-330
    彭长连,林植芳,林桂珠.高浓度CO2对水稻叶片膜脂过氧化和抗氧化酶活性的影响.中国水稻科学,1999,25:39-43
    任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量特征研究.环境科学,2007,28(12):1-9
    阮亚男,何兴元,陈玮,等.CO2浓度倍增对城市银杏叶片膜脂过氧化与抗氧化酶活性的影响.生态学报,2007,27(3):1106-1112
    阮亚男,何兴元,陈玮,等.CO2浓度倍增对城市油松抗氧化酶活性的影响.生态学杂志,2009,28(5):839-844
    孙同兴,张昕,张长胜.CO2浓度倍增对紫花苜蓿叶片结构的影响.莱阳农学院学报,1999,16(1):1-5
    王春乙,郭建平,王修兰,等.CO2浓度增加对C3、C4作物生理特性影响的实验研究.作物学报,2000,26(6):813-817
    王春乙,潘亚茹,白月明,等. CO2浓度增加对中国主要作物的试验研究.气象学报,1997,55(1):88-94
    王大力,林伟宏.CO2浓度升高对水稻根系分泌物的影响-总有机碳,甲醇和乙酸含量的变化.生态学报,1999,19(4):570-572
    王美玉,赵天宏,张巍巍,等.CO2浓度升高对两种沈阳城市森林树种光合特性的影响.植物学报,2007,24(4):470-476
    王美玉.CO2和O3浓度升高及其复合作用对银杏光合机理的影响.沈阳农业大学硕士学位论文,2007
    王为民,王晨,李春俭,等.大气二氧化碳浓度升高对植物生长的影响.西北植物学报,2000,20(4):676-683
    韦彩妙,林植芳,孔国辉.提高CO2浓度对两种亚热带树苗光合作用的影响.植物学报,1996,38(2):123-130
    吴家森,胡睦萌,蔡庭付.毛竹生长与土壤环境.竹子研究刊,2006,25(2):3-6
    吴统贵,吴明,刘丽,等.杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化.植物生态学报,2010,34(1):23-28
    萧江华.中国竹林经营学.北京:科学出版社,2010
    谢祖斌,朱建国,张雅丽,等.水稻生长及其体内C、N、P组成对开放式CO2浓度增加和N、P施肥的响应.应用生态学报,2002,13(10):1223-1230
    邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述.应用生态学报,2000,11(5):785-790
    徐文铎,付士磊,何兴元,等.大气CO2和O3浓度升高对银杏构件生长的影响.生态学杂志,2008,27(10):2669-1674
    阎恩荣,王希华,郭明,等.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征.植物生态学报,2010,34(1):48-57
    阎凯,付登高,何峰,等.滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征.植物生态学报,2011,35(4):353-361
    颜坤,陈玮,张国友,等.高浓度二氧化碳和臭氧升高对蒙古栎叶片活性氧代谢的影响.应用生态学报,2010,21(3):557-562
    杨成龙,段瑞军,李瑞梅,等.盐生植物海马齿耐盐的生理特性.生态学报,2010,30(17):4617-4627
    杨春武,李长有,张美丽,等.盐、碱胁迫下小麦体内的pH及离子平衡.应用生态学报,2008,19(5):1000-1005
    羊留冬,杨燕,王根绪,等.短期增温对贡嘎山峨眉冷杉幼苗生长及其CNP化学计量特征的影响.生态学报,2011,31(13):3668-3676
    杨松涛,李彦舫,胡玉熹.CO2浓度倍增对10种禾本科植物叶片形态结构的影响.植物学报,1997,39(9):859-866
    杨铁钊,殷全玉,丁永乐,等.烟草气孔特性、抗氧化酶活性与臭氧伤害的关系.植物生态学报,2004,28(5):672-679
    张利阳,温国胜,张汝民,等.毛竹光合生理对气候变化的短期响应模拟.浙江农林大学学报,2011,28(4):555-561
    张培玉.臭氧处理对海带膜脂过氧化和脱脂化伤害研究.环境科学学报,2003,13(6):792-796
    张其德,卢从明,刘丽娜,等.CO2浓度倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响.植物学报,1997,39(9):845-848
    张巍巍.臭氧浓度升高对银杏与油松活性氧及抗氧化系统的影响.沈阳农业大学硕士学位论文,2007
    张巍巍,牛俊峰,冯兆忠,等.全缘冬青幼苗对大气O3浓度升高的响应.环境科学,2011,32(8):2414-2421
    张巍巍,牛俊峰,王效科,等.大气臭氧浓度增加对湿地松的影响.环境科学,2011,32(6):1710-1716
    张巍巍,赵天宏,王美玉,等.O3浓度升高对油松光合作用的影响.农业环境科学学报,2007,26(3):1024-1028
    张巍巍,赵天宏,王美玉,等.臭氧浓度升高对银杏光合作用的影响.生态学杂志,2007,26(5):645-649
    张巍巍,郑飞翔,王效科,等.大气臭氧浓度升高对水稻叶片膜脂过氧化及保护酶活性的影响.应用生态学报,2008,19(11):2485-2489
    张宪政,陈凤玉.植物生理学试验技术.辽宁:辽宁科学技术出版社,1994
    郑凤英,彭少麟.植物生理生态对大气CO2浓度倍增响应的整合分析.植物学报,2001,43(11):1101-1109
    赵光影,刘景双,窦晶鑫,等.CO2浓度倍增对湿地小叶章生理特性的影响.环境科学研究,2008,21(5):134-138
    赵广琦,王勋陵,张利权.增强UV-B辐射和CO2倍增的交互作用对蚕豆幼苗的保护酶活性及脂质过氧化作用影响.应用与环境生物学报,2005,11(3):293-299
    赵天宏,史奕,王春乙,等.CO2和O3浓度倍增及其复合作用对大豆叶绿素含量的影响.生态学杂志,2003,22(6):117-120
    赵天宏,史奕,黄国宏,等.CO2和O3浓度倍增及其交互作用对大豆叶绿体超微结构的影响.应用生态学报,2003,14(12):2229-2232
    赵天宏,史奕,王春乙,等.CO2和O3浓度倍增及其复合作用对大豆叶绿素含量的影响.生态学杂志,2003,22(6):117-120
    赵天宏,王美玉,张巍巍,等.大气CO2浓度升高对植物光合作用的影响.生态环境,2006,15(5):1096-1100
    赵天宏,孙加伟,赵艺欣,等.CO2和O3浓度升高及其复合作用对玉米活性氧代谢及抗氧化酶活性的影响.生态学报,2008,28(8):3644-3653
    赵天宏,孙加伟,付宇,等.CO2和O3浓度升高对春小麦活性氧代谢及抗氧化酶活性的影响.中国农业科学,2009,42(1):64-71
    郑淑霞,上官周平.黄土高原地区植物叶片养分组成的空间分布格局.自然科学进展,2006,16(8):965-973
    周康群.臭氧对广州主要栽培蔬菜生长的影响.华中农业大学学报,2001,20(4):344-347
    周秀骥.长江三角洲地区近地层大气和生态系统的互作研究.北京:气象科学出版社,2004
    左宝玉,张泉,姜桂珍,等. CO2浓度倍增对小麦叶绿体超微结构、超分子结构及光谱特性的影响.植物学报,2002,44(8):908-912
    左闻韵,贺金生,韩梅,等.植物气孔对大气CO2浓度和温度升高的反应-基于在CO2浓度和温度梯度中生长的10种植物的观测.生态学报,2005,25(3):565-574
    Ainsworth EA, Davey PA, Bernacchi CJ, et al. A metaamalysis of elevated CO2effects on soybean(Glycinemax) physiology, growth and yield. Global Change Biology,2002,8:695-709
    Ainsworth EA, Long SP. What have we learned from15years of free-air CO2enrichment(face)? Ameta-analytic review of responses of photosynthesis, canopy properties and plant production to rising CO2.New Phytologist,2005,165(2):351-372
    Anil S, Grantz DA. Ozone impacts on competition between tomato and yellow nutsedge: Above-andbelow-ground effects. Crop Science,2005,45(4):1587-1595
    A.S.Heagle, J.E. Miller.冬小麦生长和产量对臭氧和二氧化碳混合物的反应.谢国禄译自Crop Science,2000,40(6):1656-1664
    Asada K. Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plant. Physilogia Plantarum,1992,85:235-241
    Bernardo FT, Rudordd CL, Mulchi EH, et al. Effects of enhangced O3and CO2enrichment on plantcharacteristics in wheat and corn. Environmental Pollution,1996,94(1):53-60
    B.J.Mulholland, J.Craigon, C.R.Black, et al. Effects of elecated CO2and O3on the rate and duration of graingrowth and harvest index in spring wheat(Triticum aestivum L.).Global Change Biology,1998,4(6):627-635
    Bhattacharya J, Ghoshdastidar K, Chatterjee A, et al. Synechocystis Fe superoxide dismutase gene confersoxidative stress tolerance to Escherichia coli. Biochemical and Biophysical Research Communications,2004,316:540-544
    Bielenberg DG, Lynch JP, Pell EJ. Nitrogen dynamics during O3-induced accelerated senescence in hybirdpoplar. Plant, Cell and Environment,2002,25:501-512
    Bortier K, Ceulemans R, Temmeman LD. Effects of tropospheric ozone on woody plants//Agrawal SB,Agrawal M, EDS. Environmental Pollution and Plant Responses Boca Raton, FL: CRC press,2000,153-174
    Camol M, Hogenboom L, Jach M E, et al. Elevated atmospheric CO2in open top chambers increases netnitrification and potential denitrification. Global Change Biology,2002,8:590-598
    Casano LM, Gomez LD, Lascano HR, et al. Inactivation and degradation of CuZn-SOD by active oxygenspecies in wheat chloroplasts exposed to photooxidative stress. Plant&Cell Physiology,1997,38:433-440
    Castagna A, Nali C, Ciompi S, et al. Ozone exposure affects photosynthesis of pumpkin (Cucurbita pepo)plants. New Phytologist,2001,152:223-229
    Darbah JNT, Kubiske ME, Nelson N, et al. Effects of decadal exposure to interacting elevated CO2and/or O3on paper brich(Betula papyrifera) reproduction. Environmental Pollution,2008,155:446-452
    Dhidnsa RS, Plumb-Dhidnsa P,Thorpe TA. Leaf senescence:correlated with increased leaves of membranepermeability and peroxidation,and decreased leaves of superoxide dismutase and catalase.J Exp Bot,1981,32(126):93-101
    Di Cagno R, Guidi L, GaRa LD, et al. Combined cadmium and ozone treatments affect photosynthesis andascorbate-dependent defences in sunflower. New Phytologist,2001,151:627-636
    Donnelly A, Craigon J, Black CR, et al. Does elevated CO2ameliorate the impact of O3on chlorophyllcontent and photosynthesis in potato(Solanum tuberosum)? Physiologia Plantarum,2001,111:501-511
    Dorothea SH. The rapid yellowing of spruce at a mountain site in the Central Black Forest
    (Germany) Combined effects of Mg deficiency and ozone on biochemical, physiological and structuralproperties of the chloroplasts. Juornal of Plant Physiology,2004,161(4):423-438
    Dransfield S, Widjaja EA. Bamboos-plant resources of Southeast Asia, No.7. Leiden:Backhuys Publishers,1995
    Elina Oksanen, Johanna Riikonen, Seija Kaakinen, et al. Structural characterstics and chemical compositionof birch(Betula pendula)leaves are modified by increasing CO2and ozone. Global Change Biology,2005,11(5):732-748
    Elser JJ, Stemer RW, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. EcologyLetters,2003,3:540-550
    Elser JJ, Dobberfuhl D, Mackay NA, et al. Organism size, life history, and N:P stoichiometry towards aunified view of cellular and ecosystem processes. BioScience,1996,46:674-684
    Estes BL, Enebak SA, Chappellka AH. Loblolly pine seedling growth after inoculation with plantgrowth-promoting rhizobacteria and ozone exposure. Canadian Journal of Rorest Research,2004,34(7):1410-1417
    Fitzgerald L, Booker, Stephen A, Prior, et al. Decomposition of soybean grown under elevatedconcentrations of CO2and O3. Global Change Biology,2005,11(4):685-698
    Gaucher C, Costanzo N, Afif D, et al. The impact of elevated ozone and carbon dioxide on young Acersaccharum seedlings. Physiologia Plantarum,2003,117:392-402
    Ghannoum O, Caemmerer SV, Ziska LH, et al. The growth response of C4plants to rising atmospheric CO2partial pressure: a reassessment. Plant, Cell and Environment,2000,23:931-942
    Gillespie K M, Rogers A, Ainsworth EA. Growth at elevated ozone or elevated carbon dioxide concentrationalters antioxidant capacity and response to acute oxidative stress in soybean(Glycine max). Journal ofExperimental Botany,2011,62:1-12
    Güsewell S, Koersleman W, Verhoevon JTA. Biomass N:P ratios as indicators of nutrient limitation for plantpopolations in wetlands. Ecological Monographs,2003,13(2):372-384.
    Han WX, Fang JY, Guo DL, et al. Leaf nitrogen and phosphorus stoichimetry across753terrestrial plantspecies in China. New Phytologist,2005,168(2):377-385
    He XY, Ruan YN, Chen W, et al. Responses of the anti-oxidative system in leaves of Ginkgo biloba toelevated ozone concentration in an urban area. Botanical Studies,2006,47:409-416.
    IPCC. Climate change: the scientific basis.Cambridge University Press. Cambridge,2007
    Idso SB, Kimball BA, Anderson MG, et al. Growth responses of a succulent plant, Agave vilmoriana, toelevated CO2. Plant Physicol,1986,80:796-797
    Imai K, Kobori K. Effects of interaction between ozone and carbon dioxide on gas exchange, ascorbic acidcontent, and visible leaf symptoms in rice leaves. Photosynthetica,2008,46:387-394.
    Isebrands JG, Mcdonald EP, Kruger E, et al. Growth responses of populus tremuloides clones to interactingelevated carbon dioxide and tropospheric ozone. Environmental Pollution,2001,115(3):359-371
    Joao Cardoso-Vilhena, Luis Balaguer, Derek Eamus, et al.Mechanisms underlying the amelioration ofO3-induced damage by elevated atmospheric concentrations of CO2. Journal of Experimental Botany,2004,55(397):771-781
    Kangasjar VJ, Talvinen J, Utriainen M, et al. Plant defense systems inducted by ozone. Plant Cell andEnvironment,1994,17:783-794
    Karlsson PE, Medin EL, Sellden G, et al. Impact of ozone and reduced water supply on the biomassaccumulation of Norway spruce saplings. Environmental Pollution,2002,119:237-244.
    Karnosky DF, Skelly JM, Percy KE, et al. Perspectives regarding50years of research on effects oftropospheric ozone air pollution on US forests. Environmental Pollution,2007,147:489-506.
    Kelting DL, Burger JA, Edwards GS. The effects of ozone on the root dynamics of seedlings and mature redoak(Quercus rubra L.). Forest Ecology and Managent,1995,79:197-206.
    Keutgen AJ, Elke P. Apoplastic antioxidative system responses to ozone stress in strawberry leaves. J PlantPhysiol,2008,165:868-875
    Kimball BA. Influence of elevated CO2on crop yield//Enoch HZ, Kimball BA. Carbon dioxide enrichmentof greenhouse crops. Boca Raton: CRC PRESS Inc,1986,105-115
    King JS. Fine foot biomass and fluxes on soil carbon in young stands of paper birch and trembling aspen aseffected by elevated atmospheric CO2and troposperic O3. Oecologia,2001(128):237-250
    Koerselman W, Meuleman AFM. The vegetation N:P ratio: a new tool to detect the nature of nutrientlimitation. Jouanal of Applied Ecology,1996,33(6):1441-1450
    Kudeyarov VN, Biel K, Blagodatsky SA, et al. Fertilizing effect of increasing CO2concentration in theatmosphere. Eurasian Siol Science,2006,39:6-14
    Lawson T, Craigon J, Black CR, et al. Effects of elevated carbon dioxide and ozone on the growth and yieldof potatoes(Solanum tuberosum)grown in open-top charmbers. Environmental Pollution,2001,111:479-491
    Long SP. Modification of the response of photosynthetic productiivity to rising temperature by atmosphericCO2concentrations: Has its importance been underestimated? Plant, Cell and Environment,1991,14:729-739.
    Long SP, Zhu XG, Naidu SL, et al. Can improvement in photosynthesis increase crop yield?. Plant, Cell andEnvironment,2006,29:315-330.
    Lu T, He XY, Chen W, et al. Effects of elevated O3and/or elevated CO2on lipid peroxidation andanantioxidant systems in Ginkgo biloba leaves. Bull Environ Contam Toxicol,2009,83:92-96
    Lyons TM, Barnes JD. Influence of plant age on ozone resistance in Plantago major. New Phytologist,1998,138:83-89
    Manderscheid R, Burkart S, Bramm A, et al. Effect of CO2enrichment on growth and daily radiation useefficiency of wheat relation to temperature and growth stage. European Jouanal of Agronomy,2003,19:411-425
    Mark EK,Vanessa SQ, Warren EH, et al. Interannual climatic variation mediates elevated CO2and O3effectson forest growth. Global Change Biology,2006,12(6):1054-1068
    Matters GL, Scandalios JG. Synthesis of isozymes of superoxide dismutase in maize leaves in response to O3,SO2and elevated O2. Journal of Experimental Botany,1986,38:842-852.
    Mcgroddy ME, Daufresne T, Hedin LO. Scaling of C:N:P stoichiometry in forests worldwide: implicationsof terrestrial Redfield-type ratios. Ecology,2004,85:2390-2401
    Mckee IF, Eiblmeier M, Polle A. Enhanced ozone-tolerance in wheat grown at an elevated CO2concentration ozone exclusion and detoxification. New Phytologist,1997,137:278-284
    Musselman RC, Mccool PM, Oshina RJ, et al. Field chambers for assessing crop loss from air pollutants.Journal of Environmental Quality,1986,15:152-157
    Nadezhda P, Vera F, Matti R, et al. Interactive effect of spring time forest and elevated ozone on early growth,foliar injuries and leaf structure of birch(Betula pendula). New Phytologist,2003,159:623-636.
    Neill SJ, Desikan R, Clarke A. Hydrogen peroxide and nitric oxide as signaling molecules in plant. Journalof Experimental Botany,2002,53:1237-1247
    Nora H, Maria A, Christian H, et al. Seasonal difference and within-canopy variations of antioxidants inmature spruce(Picea abies)trees under elevated ozone in a free-air exposure system. Environ Pollut,2008,154:241-253
    Oksanen E, Riikonen J, Kaakinen S, et al. Structural characteristics and chemical composition ofbrich(Betula pendula)leaves are modified by increasing CO2and ozone. Global Change Biology,2005,11:732-748
    Paoletti E, Seufert G, Della RG, et al. Photosynthetic responses to elevated CO2and O3in Quercus ilexleaves at a natural CO2spring. Environmental Pollution,2007,147:516-524
    Pell EJ, Sinn JP, Brendley BW, et al. Differential response of four tree species to ozone-induced accelerationof foliar senescence. Plant, Cell&Environment,1999,22:779-790
    Polle A, Eiblmeier M, Sheppard L, et al. Responses of antioxidative enzymes to elevated CO2in leaves ofbeech(Fagus sylvatica L.)seedlings grown under a range of nutrient regimes. Plant, Cell and Environment,1997,20:1317-1321
    Prenticer I, Arquhar G, Fasham M. The carbon cycle and atmospheric carbon dioxide in climate change2001.Cambridge. UK: Cambridge University Press,2001
    Rao MV, Hale BA, Ormrod DP. Amelioration of zone-induced oxidative damage in wheat plants grownunder high carbon dioxide. Plant Physiology,1995,109:421-432
    Rebbeck J, Scherzer AJ. Growth responses of yellow-poplar(Liriodendron tulipifera L.) exposed to5yearsof O3alone or combined with elevated CO2. Plant, Cell and Environment.2002,25:1527-1537
    Riikka Rinnan, Toini Holopainen. Ozone effects on the ultrastructure of peatland plants:Sphagnum mosses,Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum. Annals of Botany,2004,94(4):623-634
    Rinnan R, Holopainen T. Ozone effects on the ultrastructure of peatland plants: Sphagnum mosses,Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum. Annals of Botany,2004,94:623-634
    Robinson DC, Wellburn AR. Seasonal changes in the pigments of Norway spruce(Picea abies.L)Karst, andthe influence of summer ozone exposure. New Phytologist,1991,119:251-259
    RRobinson DC, Wellburn AR. Seasonal changes in the pigments of Norway spruce,Picea abies (L) Karst,andthe influence of summer ozone exposure. New Phytol,1991,119:251-259
    Shao M, Tang XY, Zhang YH, et al. City clusters in china air and surface water pollution. Frontiers inEcology and the Environment,2006,4:353-361
    Schwanz P, Picon C, Vinin P, et al. Responses of antioxidative systems to drought tress in pendunculate oakand maritime pine as modulated by elevated CO2. Plant Physiology,1996,110:393-402
    Shrestha A, Grantz DA. Ozone impacts on competition between tomato and yellow nutsedge: Above-andbelow-ground effects. Crop Science,2005,45:1587-1595
    Smimoff N, Wheeler GL, Loewus FA. Ascorbic acid in plants biosynthesis and function. Critical Reviews inBiothemistry and Molecular Biology,2000,35:291-314
    Stephanie JEW,Gu YF, Michael HJ, et al.Curtis responses of wild C4and C3grass (Poaceae) species toelevated atmospheric CO2concentration:a meta-analytic test of current theories and perceptions. GlobalChange Biology,1999,5(6):723-741
    Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition the physiologicaland molecular background. Plant Cell and Environment,1999,22:583-621
    Stuian I, Den Hertog J. Root growth and functioning under atmospheric CO2enrichment. Vegetation,1993,104/105:99-115
    Susana E, Rocio A, Federico JC, et al. On the response of pigments and antioxidants of pinus halepensisseedlings to Mediterranean climatic factors and long-term ozone exposure. New Phytologist,1998,138:419-432
    Tandy NE, Ginlio RT, Richardson CJ. Assay and electrophoresis of superoxide dismutase from redspruce(Picea rubens Sarg),loblolly pine(Pinus taeda L.), and Scotch pine(Pinus Sylvestris L.): A methodfor biomonitoring. Plant Physiology,1989,90:742-748
    Tausz M, Grulke NE, Wieser A. Defense and avoidance of ozone under global change. EnvironmentPollution,2007,147:525-531
    Teng NJ, Wang J, Chen T, et al. Elevated CO2induces physiological,biochemical and structure changes inleaves of Arabidopsis thaliana. New Pyhtologist,2006,172(1):92-103
    Tolley LC, Strain BR. Effect of CO2enrichment and water stress on growth of Liquidamber straciflua andpinus taeda seedlings. Canadian Journal of Botany,1984,62:2135-2139
    Torsethaugen G, Pell EJ, Assrnann SM. Ozone inhibits guard cell K+channels implicated in stomatalopening. Proceedings of the National Academy of Sciences of the United States of America,1999,96:13577-13582
    Vancamp W, Willekens H, Bowler C, et al Elevated levels of superoxide dismutase protect transgenic plantsagainst ozone damage. Nature Biotechnology,1994,12:165-168
    Venterink HO, Wassen MJ, Verkroost AWM, et al. Species richness-productivity patterns differ between N-,P-and K-limited wetlands. Ecology,2003,84:2191-2199
    Vilhena JC, Balagure L, Eamus D, et al. Mechanisms underlying the amelioration of O3-induced damage byelevated atmospheric concentrations of CO2.Journal of Experimental Botany,2004,55:771-781
    Weinstein DA, Samuelson LJ, Arthur MA. Comparison of the response of red oak(Quercus rubraL.)seedling and mature trees to ozone exposure using simulation modeling. Environmental Pollution,1998,102:307-320
    Wohlgemuth H, Mittelstrass K, Kschieseschan S, et al. Activation of an oxidative burst is a general feature ofsensitive plants exposed to the air pollutant ozone. Plant Cell Environ,2002,25(6):717-726
    Worms I, Simon DF, Hassler CS, et al. Bioavailability of trace metals to aquatic microorganisms: importanceof chemical, biological and physical processes on biouptake. Biochimie,2006,88(11):1721-1731
    Wullschleger SD, Gunderson CA, Hanson PJ, et al. Sensitivity of stomatal and canopy conductance toelevated CO2concentration-interacting variables and perspectives of scale. New phytologist,2002,25:319-331
    Wustman BA, Oksanen E, Karnosky DF, et al. Effects of elevlated CO2and O3on aspen clones varying inO3sensitivity:can CO2ameliorate the harmful effects of O3. Envirpnmental Pollution,2001,115:473-481
    Yamauchi N, Minamide T. Chlorophyll degradation by peroxidase in parsley leaves. Jap Soc Hort Sci,1985,54:265
    Yan K, Chen W, He XY, et al. Responses of photosynthesis, lipid peroxidation and antioxidant system inleaves of Quercus mongolica to elevated O3. Environment and Experimental Botany,2010,69:198-204
    Yan K, Chen W, Zhang GY, et al. Elevated CO2ameliorated oxidative stress induced by elevated O3inQuercus mongolica. Acta Physiologiae Plantarum,2010,32:375-385
    Yamaji K, Julkunen-Tiitto R, Rousi M, et al. Ozone exposure over two growing seasons alters root-to-shootratios and chemical composition of birch(Betula Pendula Roth). Global Change Biology,2003,9:1363-1377
    Yoshida M, Nouchi Y, Tovama S. Studies on the role of activity oxygen in ozone in injury to plant cells.Generation of activity oxygen in rice protoplast exposed. Plant Sci,1994,95:197-205
    Yu J, Tang XX, Zhang PY, et al. Effects of CO2enrichment on photosynthesis, lipid peroxidation andactivities of ntioxidative enzymes of Platymonas subcordiform is subjected to UV-B radiation stress. ActaBotanica Sinica,2004,46:682-690
    Zhang LX, Bai YF, Han XG. Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica,2003,45(9):1009-1018
    Zhao TH, Shi Y, Huang GH, et al. Respective and interactive effects of double CO2and O3concentrations onmembrane lipid peroxidation and antioxidative ability of soybean. Science in china Ser C Life Science,2005,48:136-141
    Zhao TH, Wang JL, Wang Y, et al. Effects of reactive oxygen species metabolic on soybean (Glycine max)under exogenous chitosan to ozone stress. Bulletin of Environmental Contamination and Toxicology,2010,85:59-63.
    Zhu JK. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,2003,6(5):441-445
    Ziska LH, Moya TB, Wassmann R, et al. Long-term growth at elevated carbon dioxide stimulates methaneemission in tropical paddy rice. Global Change Biology,1998,4:657-665

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700