用户名: 密码: 验证码:
短发夹基因干扰细胞周期检测点激酶1/2表达对脑肿瘤干细胞放疗敏感性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的原代培养出具有干细胞特性的胶质瘤干细胞并进行体内体外的鉴定,为胶质瘤干细胞靶向治疗实验奠定基础。
     方法术中留取高级别胶质瘤标本(术后病理证实WHOⅢ或以上胶质瘤),组织胰酶消化法提取细胞,用悬浮神经球培养方法培养出胶质瘤干细胞(Glioblastomastem-like cell, GSC);免疫荧光法、RT-PCR法检测GSCs表面标志物,在裸鼠(Bulb/cnude mice)颅内再次成瘤实验检测GSCs成瘤性。对数据采用SPSS17.0进行统计学分析。
     结果在悬浮神经球干细胞培养条件下,成功培养出成球生长的胶质瘤干细胞球(GSC-Sph);RT-PCR、Western Blotting和免疫荧光检测提示原代培养的GSCs高表达CD133(3.02%~4.92%); Western Blotting检测提示GSCs在蛋白水平高表达Nestin;将原代培养的GSCs种植于裸鼠脑内,8周后成瘤,成功构建裸鼠原位移植瘤模型。结论通过留取人高级别胶质瘤原代悬浮神经球干细胞培养方法可以得到具有干细胞特性的GSCs。其高表达干细胞表面标志物CD133和Nestin。GSCs原位种植于鼠脑8周后成瘤,原代GSCs有成瘤性。
     目的构建针对细胞周期检测点激酶1和2(Checkpoint kinase1/2, Chk1/2)基因的短发夹RNA (shRNA)表达载体,包装成慢病毒,建立稳定转染的GSCs细胞株,为研究干扰Chk1或Chk2基因的表达对治疗脑胶质瘤的方法研究提供理论基础。
     方法从GenBank数据库中查找Chk1和Chk2基因的核苷酸序列,根据所查序列分别设计出能转录的短发夹样RNA (shRNA)的DNA序列,命名为Chk1-shRNA和Chk2-shRNA,同时设计1条阴性对照DNA序列,命名为negative-shRNA,设计的序列合成后与pLKO.1-TRC质粒载体连接,构建质粒,并包装慢病毒。重组表达慢病毒载体转染原代GSCs,用嘌呤霉素筛选后扩增获得稳定细胞株。逆转录酶-聚合酶连反应(RT-PCR)和免疫印迹(Western blot)分别在核酸水平及蛋白水平上检测Chk1和Chk2的表达情况。
     结果成功构建重组质粒后,利用限制性酶切位点和琼脂糖凝胶电泳鉴定shRNA片段成功插入到预定位点;送公司进行基因序列检测,与设计序列一致。利用嘌呤霉素抗性对转染慢病毒后的GSCs细胞筛选出稳定转染三种质粒的细胞,干扰Chk1组和干扰Chk2组细胞Chk1和Chk2的表达情况在mRNA水平和蛋白水平上显著低于阴性对照组。
     结论构建了干扰Chk1或Chk2基因的shRNA慢病毒载体,成功转染GSCs后可抑制Chk1或Chk2基因的表达,为下一步探讨Chk1和(或) Chk2基因在脑胶质瘤细胞中的生物学作用奠定基础。
     目的研究干扰Chk1/2基因表达对脑胶质瘤干细胞放疗抵抗性的影响,为胶质瘤的靶向基因治疗提供新的途径。
     方法从GenBank数据查找出Chk1和Chk2基因的DNA序列,并以此各设计1条短发夹基因RNA (Small hairpin RNA, shRNA)的DNA序列,构建慢病毒并转染GSCs进行传代扩增。用RT-PCR和Western blot方法分别在核酸和蛋白水平上测定Chk1及Chk2的表达。转染后的GSCs经X照射后,进行细胞周期和凋亡的检测。
     结果RT-PCR和Western blot提示稳定转染Chk1-shRNA和Chk2-shRNA细胞在蛋白和mRNA水平上Chk1和Chk2的表达被抑制。放疗后,细胞周期检测提示对照组60.28±1.28%阻滞在G2/M期,而Chk1-shRNA组细胞仅22.37±2.01%在G2/M期,与未放疗组细胞23.77±2.31%相差不大(P>0.05);Chk1-shRNA组细胞放疗后的凋亡率较对照组和Chk2-shRNA组细胞高,而对照组与Chk2-shRNA组之间差异无显著性意义。
     结论慢病毒转染细胞可以有效的将干扰Chk1和干扰Chk2基因带到GSCs并发挥作用,干扰Chk1可以增加放疗对GSCs的敏感性,为胶质瘤的治疗提供新的治疗途径。
Objective To obtain glioma stem-like cells (GSCs) primary and identify the stem cellcharacteristics in vivo and in vitro, establish the foundation for glioma targeted therapy.
     Methods Specimens of high grade glioma were obtained from operations, the grade wasconfirmed by pathological examination, WHOⅢ or above. The specimens were digested bytrypsin for extraction cells, suspension neurosphere culture to cultivate glioma stem-likecells. Immunofluorescence assay and RT-PCR assay for detection of GSCs surface markers.GSCs were planted into brain of nude mice to detect the tumor formation of GSCs. Thedata were analyzed by SPSS17.0.
     Results The GSCs were successfully cultured in the suspension neural stem cell cultureconditions, CD133(11.02%~33.55%) were expressed highly in the primary GSCsaccording to the RT-PCR, western blotting and immune fluorescent. Nestin was alsoexpressed highly in protein level. The GSCs were planted into brain of nude mice, the brainbearing tumor after8weeks, the model of brain tumor was built successfully.
     Conclusions The GSCs could be obtained primary from high grade glioma specimens withthe way of suspension neurosphere culture and the GSCs exhibited the properties of thestem-like cell. The GSCs cell line was tumorigenic.
     Objective Construct the lentiviral expression vectors of shRNA interference specific toChk1or Chk2gene, then to screen the stably transfected cells of GSCs. And study on theinterference Chk1or Chk2gene to GSCs.
     Methods The DNA sequences of Chk1or Chk2were obtained from the Genbank and theshRNA were designed and synthesized, and one scrambled shRNA sequences served asnegative control. The shRNA were inserted into plasmids of pLKO.1. The recombinantlentiviral vectors were transfected into GSCs, and the stably transfected GSCs wereobtained after being screened by puromycin. Reverse transcriptase-polymerase chainreaction (RT-PCR) and Western blotting were adopted to detect the inhibitory effect onChk1or Chk2at the mRNA level and the protein level respectively.
     Results The expressions of Chk1or Chk2were significantly down-regulated by shRNA oflentiviral vectors in the stably transfected Chk1-shRNA and Chk2-shRNA GSCs. Theresults were tested by Western blotting and RT-PCR.
     Conclusions The expression of Chk1or Chk2in the GSCs can be significantlydown-regulated by RNA interference (RNAi) which mediated by the shRNA of lentiviralexpressing vectors. The stably transfected GSCs were obtained for further study.
     Objective Study on lentivirus transfected the interfered Chk1/Chk2gene to primarygloblastoma stem-like cells (GSCs) for therapy of radiosensitization. it would be a new methodcan be chosed to treatment of glioma.
     Methods The DNA sequences of Chk1or Chk2gene were obtained from the Genbank andshRNA were designed and synthesized. The shRNA lentiviral vectors were constructed andtransfected into GSCs. Reverse transcriptase-polymerase chain reactions (RT-PCR) andWestern blotting were used to detect the inhibitory effect on Chk1or Chk2at the mRNAlevel and the protein level in the GSCs. X-ray treated these GSCs, then cell cycle andapoptosis were detected.
     Results After radiation, most of group radiation and group radiation&interfere Chk2wereblocked in G2/M; The rate of apoptosis after radiation: Group interfere Chk1higher thangroup control and group interfere Chk2.
     Conclusions Lentiviral transfection interfere with Chk1and Chk2could down-regulateChk1and Chk2genes expression, which could improve the sensitivity of GSCs inradiotherapy. It may be a good method in the treatment of glioblastoma.
引文
1.雷霆主编.脑肿瘤学.北京:中国医药科技出版社,2005,219-220.
    2. Jemal A, Siegel R, Ward E, et al: Cancer statistics. CA Cancer J Clin.2006,56:106-130.
    3. Gilbert MR. Recurrent glioblastoma: a fresh look at current therapies and emergingnovel approaches. Semin Oncol.2011,38(4): S21-23.
    4. Franceschi E, Tosoni A, Bartolini S, et al. Treatment options for recurrentglioblastoma: pitfalls and future trends. Expert Rev Anticancer Ther.2009,9(5):613-619.
    5. Lakomy R, Burkon P, Buikonova D, et al. New therapeutic options in therapy ofglioblastoma multiforme. Klin Onkol.2010,23(6):381-387.
    6. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance bypreferential activation of the DNA damage response. Nature.2006,444(7120):756-760.
    7. McCord AM, Jamal M, Williams ES, et al. CD133+glioblastoma stem-like cells areradiosensitive with a defective DNA damage response compared with established celllines. Clin Cancer Res.2009,15(16):5145-5153.
    8. Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adultglioblastoma multiforme. Oncogene.2004,23(58):9392-9400.
    9. Ignatova TN, Kukekov VG, Laywell ED, et al. Human cortical glial tumors containneural stem-like cells expressing astroglial and neuronal markers in vitro. Glia.2002,39(3):193-206.
    10. Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic,stem-like neural precursors from human glioblastoma. Cancer Res.2004,64(19):7011-7021.
    11. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in humanbrain tumors. Cancer Res.2003,63(18):5821-5828.
    12. Singh SK, Clarke ID, Terasaki M, et al. Identification of human brain tumourinitiating cells. Nature.2004,432(7015):396-401.
    13. Morgan MA, Parsels LA, Zhao L, et al. Mechanism of radiosensitization by theChk1/2inhibitor AZD7762involves abrogation of the G2checkpoint and inhibitionof homologous recombinational DNA repair. Cancer Res.2003,70:4972-4981.
    14. Chiao MT, Yang YC, Cheng WY, et al. CD133+glioblastoma stem-like cells inducevascular mimicry in vivo. Curr Neurovasc Res.2011,8(3):210-219.
    15. Stephanie C, Jessica B, Thilo E, et al. Radiobiological evaluation and correlation withthe local effect model (LEM) of carbon ion radiation therapy and temozolomide inglioblastoma cell lines. Radiat. Biol.2009,85(2):126-136.
    16. Lei L, Story M, Legerski R, et al. Cellular responses to ionizing radiation damage.Radiation Oncology Biol Phys.2001,49(4):1157-1162.
    17. Herman A, Stan S, Hahm E, et al. Activation of anvel ataxia-telangiectasia mutatedand Rad3related/checkpoint kinase1-dependent prometaphase checkpoint in cancercells by diallyl trisulfide, a promising cancer chemo preventive constituent ofprocessed garlic. Mol Cancer Ther.2007,6(4):1249-1261.
    18. Zachos G, Black E, Walker M, et al. Chk1is required for spindle checkpoint function.Dev Cell.2007,12(2):247-260.
    19. Zhou BB, Anderson HJ, Roberge M, et al. Targeting DNA checkpoint kinases incancer therapy.Cancer Biol Ther.2003,2(4):16-22.
    20. Zhou BB, Bartek J. Targeting the checkpoint kinases: chemosensitization versuschemoprotection. Nat Rev Cancer.2004,4(3):216-225.
    21. Zhou X M, Qiao J, Wang B. et al. Expressions of ATM, ATR, Chk1and Chk2genesin human glioma. Chin J Neuromed.2009,7(8):653-657.
    22. Sancer A, Lindsey-Boltz LA Unsal-Kacmaz K, et al. Molecular mechanisms ofmammalian DNA repair and DNA damage checkpoints. Annu Rec Biochem.2004,73:39-45.
    23. Ma Q F, Huang X Y, Gao Q L, et al. Expressions of Chk1/2and Plk1Protein inEndometrial Carcinoma. Cancer Reseach on Prevention and Treatment.2008,35(6):424-426.
    24. Niida H, Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis.2006,21(1):3-9.
    25. Gao Q, Zhou J, Huang X, et al. Selective targeting of checkpoint kinase1in tumorcells with a novel potent oncolytic adenovirus. Mol Ther.2006,13(5):928-937.
    26.叶飞,高庆蕾,黄晓园等. Chk1/2反义寡核苷酸对顺铂诱导的A549细胞生物学行为的影响.华中科技大学学报(医学版).2008,37(6):733-736.
    27. Mayer R, Sminia P. Reirradiation tolerance of the human brain. Int J Radiat OncolBiol Phys.2008,70:1350-1360.
    28. Scha¨fer U, Micke O, Schuller P, et al. The effect of sequential radiochemotherapy inpreirradiated malignant gliomas in a phase II study. J Neurooncol.2004,67:233-239.
    29. Lederman G, Wronski M, Arbit E, et al. Treatment of recurrent glioblastomamultiforme using fractionated stereotactic radiosurgery and concurrent paclitaxel. AmJ Clin Oncol.2000,23:155-159.
    30. Stupp R, Mason WP, vanden Bent MJ, et al. Radiotherapy plus concomitant andadjuvant temozolomide for glioblastoma. N Engl J Med.2005,352:987-996.
    31. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell.2007,28:739-745.
    32. Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM andATM-dependent signaling pathways. DNA Repair (Amst).2004,3:889-900.
    33. Zou L, Cortez D, Elledge SJ. Regulation of ATR substrate selection by Rad17dependent loading of Rad9complexes onto chromatin. Genes Dev.2002,16:198-208.
    34. Jallepalli PV, Lengauer C, Vogelstein B, et al. The Chk2tumor suppressor is notrequired for p53responses in human cancer cells. J Biol Chem.2003,278:20475-9.
    35. Brodsky MH, Weinert BT, Tsang G, et al. Drosophila melanogaster MNK/Chk2andp53regulate multiple DNA repair and apoptotic pathways following DNA damage.Mol Cell Biol.2004,24:1219-31.
    36. Matsuoka S, Rotman G, Ogawa A, et al. Ataxia telangiectasia-mutated phosphorylatesChk2in vivo and in vitro. Proc Natl Acad Sci USA.2000,97:10389-94.
    37. Zachos G, Rainey MD, Gillespie DA. Chk1-dependent S-M checkpoint delay invertebrate cells is linked tomaintenance of viable replication structures. Mol Cell Biol.2005,25:563-74.
    38. Sorensen CS, Hansen LT, Dziegielewski J, et al. The cell cycle checkpoint kinaseChk1is required for mammalian homologous recombination repair. Nat Cell Biol.2005,7:195-201.
    39. Shechter D, Costanzo V, Gautier J. Regulation of DNA replication by ATR: signalingin response to DNA intermediates. DNA Repair (Amst).2004,3:901-8.
    40. Liu X, Guo Y, Li Y, et al. Molecular basis for G2arrest induced by2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine and consequences ofcheckpoint abrogation. Cancer Res.2005,65:6874-81.
    1Vescovi AL, Galli R, Reynolds BA. Brain tumor stem cells. Nature Reviews Cancer.2006,6:425-43.
    2Stupp R, Hegi ME, Targeting brain-tumor stem cells. Nat Biotechnol.2007,25(2):193-194.
    3Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumor initiatingcells. Nature.2004,432(7015):396–401.
    4Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic,stem-like neural precursors from human glioblastoma. Cancer Res.2004,64(19):7011-7021.
    5Binello E, Germano IM. Targeting glioma stem cells: a novel framework for braintumors. Cancer Sci.2011,102(11):1958-1966.
    6Wan F, Zhang S, Xie R, et al. The utility and limitations of neurosphere assay, CD133immunophenotyping and side population assay in glioma stem cell research. BrainPathol.2010,20(5):877-889.
    7Woolard K, Fine HA. Glioma stem cells: better flat than round. Cell Stem Cell.2009,4(6):466-467.
    8Pollard SM, Yoshikawa K, Clark ID, et al. Glioma stem cell lines expanded in adherentculture have tumor-specific phenotypes and are suitable for chemical and geneticscreens. Cell Stem Cell.2009,4(6):568-580.
    9Campos B, Wan F, Farhadi M, et al. Differentiation therapy exerts antitumor effects onstem-like glioma cells. Clin Cancer Res.2010,16(10):2715-2728.
    10Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance bypreferential activation of the DNA damage response. Nature.2006,444(7120):756-760.
    11张驰宇,徐顺高,黄新祥.一种新颖简便的荧光实时RT-PCR相对定量方法的建立.生物化学与生物物理进展,2005,32:883-888.
    12Huang Q, Zhang QB, Dong J, et al. Glioma stem cells are more aggressive in recurrenttumors with malignant progression than in the primary tumor, and both can bemaintained long-term in vitro. BMC Cancer,2008,8:304.
    13王中勇,刁艺,黄强等.人脑肿瘤组织块裸小鼠原位移植方法研究及移植瘤的亲本特征分析.中华神经医学杂志,2009,8(5):446-451.
    14Raso A, Negri F, Gregorio A, et a1.Successful isolation and long-term establishment ofa cell line with stem cell-1ike features from an anaplastic medulloblastoma. NeuropatholAppl Neurobiol,2008,34(3):306-315.
    15Ayala R, Shu T, Tsai LH. Trekking across the brain: the journey of neuronal migration.Cell,2007,128:29-43.
    16Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumorsuppressor brat regulates self-renewal in Drosophila neural stem cells. Cell.2006,124:1241-1253.
    17Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumorangiogenesis through vascular endothelial growth factor. Cancer Res.2006,66:7843–7848.
    18Bello B, Reichert H, Hirth F. The brain tumor gene negatively regulates neuralprogenitor cell proliferation in the larval central brain of Drosophila. Development.2006,133:2639–2648.2006
    19Clark PA, Treisman DM, Ebben J, et al. Developmental signaling pathways in braintumor-derived stem-like cells. Dev Dyn.2007,236:3297–3308.
    20Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumor initiatingcells. Nature.2004,432:396–401.
    21Yip S, Sabetrasekh R, Sidman RL, et al. Neural stem cells as novel cancer therapeuticvehicles. Eur J Cancer.2006,42:1298–1308.
    22Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133(-) glioblastoma-derivedcancer stem cells show differential growth characteristics and molecular profiles. CancerRes.2007,67:4010–4015.
    23Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stemcells. Cancer Cell.2007,11:69–82.
    24Buchman JJ, Tsai LH: Spindle regulation in neural precursors of flies and mammals. NatRev Neurosci.2007,8:89-100.
    25Shen Q, Goderie SK, Jin L, et al. Endothelial cells stimulate self-renewal and expandneurogenesis of neural stem cells. Science.2004,304:1338-1340.
    26Prince ME, Sivanandan R, Kaczorowski A. et al. Identification of a subpopulation ofcells with cancer stem cell properties in head and neck squamous cell carcinoma. ProcNatl Acad Sci USA.2007,104:973–978.
    27Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature.2001,414:105-111.
    28Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of humancoloncancer-initiating cells. Nature,2007,445:111-115.
    29Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in humanbrain tumors. Cancer Res.2003,63:5821-5828.
    30Lee J, Kotliarova S, Kotliarov Y, et al. Tumor stem cells derived from glioblastomascultured in bFGF and EGF more closely mirror the phenotype and genotype of primarytumors than do serum-cultured cell lines. Cancer Cell.2006,9:391-403.
    1Sanchez Y, Wong C, Thoma RS, et al. Conservation of the CHK1checkpoint pathwayin mammals: linkage of DNA damage to CDK regulation through Cdc25. Science,1997,277(5331):1497-150.
    2Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance bypreferential activation of the DNA damage response. Nature,2006,444(7120):756-760.
    3蔡明俊,雷霆,郭东生. RNA干扰技术在胶质瘤治疗中的应用.中国临床神经外科杂志,2007,12(5):319-321.
    4雷霆主编.脑肿瘤学.北京:中国医药科技出版社,2005,219-220.
    5Stephanie C, Jessica B, Thilo E, et al. Radiobiological evaluation and correlation withthe local effect model (LEM) of carbon ion radiation therapy and temozolomide inglioblastoma cell lines. Radiat. Biol.2009,85(2),126-136.
    6陶胜忠、易伟、艾文兵、王煜、万峰、雷霆、薛德麟原代培养多形胶质母细胞瘤的增殖与放射感性.中华神经外科疾病研究杂志,2005,4(4):306-308.
    7陶胜忠、艾文兵、王煜、万峰、雷霆、薛德麟人脑胶质瘤中NF-κB与EGFR表达的表达于不同放疗敏感性的关系。家用医学杂志2005,21(3):258-260.
    8Michael B. Kastan. Jiri Bartek. Cell-cycle checkpoints and cancer. Nature,2004,432:316-323.
    9Zhou B B, Anderson HJ, Roberge M.Targeting DNAcheckpoint kinases in cancertherapy.Cancer Biol Ther,2003,2(4):16-22.
    10Zhou B B, Bartek J. Targeting the checkpoint kinases: chemosensitization versuschemoprotection.Nat Rev Cancer,2004,4(3):216-225
    11周雪梅,乔健,王娆等,人脑胶质瘤中ATM、ATR、Chk1和Chk2基因表达研究.中华神经医学杂志,2009,8(7):653-656.
    12Gao Q, Zhou J, Huang X, et al. Selective targeting of checkpoint kinase1in tumor cellswith a novel potent oncolytic adenovirus. Mol Ther,2006,13(5):928-937.
    13Hannon GJ, Conklin DS RNA interference by short hairpin RNAs expressed invertebrate cells. Methods Mol Biol,2004,257(1):255.
    14Niida H,Nakanishi M.DNA damage checkpoints in mammals. Mutagenesis,2006,21(1):3-9.
    15Bashir SM, Harborth J, Lendeckel W, et al. Duplexes of21-nucleotide RNAs mediateRNA interference in cultured mammalian cells. Nature,2001,411(6836):494-498.
    16Brummelkamp T R, Bernards R A system for stable expression of short interferingRNAs in mammalian cells. Science,2002,296:550.
    17Rmezani A, Hawley T S, Hawley R G. Performance and safty-enhanced lentiviralvectors containing the human interferon-beta scaffold attachment region and thechicken beta-globin insulator. Blood,2003,101(12):4717-4724.
    18Bartosch B, Cosset FL. Strategies for retargeted gene delivery using vectors derivedfrom lentiviruses. Curr Gene Ther,2004,4(4):427-443.
    19Kappes J C, Wu X, Wakefield J K. Production of trans-lentiviral vector with predictablesafety. Methods Mol Med,2003,76:449-465.
    20Pandya S, Klimatcheva E, Planelles V. Lentivirus and foamy virus vectors: novel genetherapy tools. Exper Opin Biol Ther,2001,1(1):17-40。
    21Iwakuma T, Cui Y, Chang L. Self-inactivating lentiviral vector with U3and U5modications, Virology,1999,261(1):120-132
    1Legler, J. M. et al. Brain and other central nervous system cancers: recent trends inincidence and mortality. Natl Cancer Inst.1999,91:1382-1390.
    2Laperriere N, Zuraw L, Cairncross G et al. Radiotherapy for newly diagnosedmalignant glioma in adults: a systematic review. Radiother Oncol2002,64:259-73.
    3Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, BignerDD, Rich JN. Glioma stem cells promote radioresistance by preferential activation ofthe DNA damage response. Nature,2006,444(7120):756-760.
    4Zhou BB, Anderson HJ, Roberge M, et al. Targeting DNA checkpoint kinases in cancertherapy. Cancer Biol Ther,2003,2(4):16-22.
    5Campos B, Wan F, Farhadi M, et al. Differentiation therapy exerts antitumor effects onstem-like glioma cells. Clin Cancer Res.2010,16(10):2715-2728.
    6Stephanie C, Jessica B, Thilo E, et al. Radiobiological evaluation and correlation withthe local effect model (LEM) of carbon ion radiation therapy and temozolomide inglioblastoma cell lines. Radiat. Biol.2009,85(2):126-136.
    7Narayana A, Gruber D, Kunnakkat S, et al. A clinical trial of bevacizumab,tmozolomide, and radiation for newly diagnosed glioblastoma. J. Neurosurg,2012,116,341-345.
    8Piccirillo SG, Vescovi AL. Brain tumor stem cells: possibilities of new therapeuticstrategies. Expert Opin. Biol. Ther,2007,7,1129-1135.
    9Xie Z, Chin LS. Molecular and cell biology of brain tumor stem cells: lesions fromnrural progenitor/stem cells. Neurosurg. Focus,2008,24,1-7.
    10Lei L, Story M, Legerski R, et al. Cellular responses to ionizing radiation damage.Radiation Oncology Biol Phys,2001,49(4):1157-1162.
    11Herman A, Stan S, Hahm E, et al. Activation of anvel ataxia-telangiectasia mutated andRad3related/checkpoint kinase1-dependent prometaphase checkpoint in cancer cellsby diallyl trisulfide, a promising cancer chemo preventive constituent of processedgarlic. Mol Cancer Ther,2007,6(4):1249-1261
    12Zachos G, Black E, Walker M, et al. Chk1is required for spindle checkpoint function.Dev Cell,2007,12(2):247-260.
    13McCord AM, Jamal M, Willams ES, et al. CD133+Glioblastoma Stem-like Cells areRadiosensitive with a Defective DNA Damage Response Compared with EstablishedCell Lines. Clin. Cancer Res,2009,15:5145-5153
    14Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature.,200418:316-323.
    15Zhou BB, Bartek J. Targeting the checkpoint kinases: chemosensitization versuschemoprotection. Nat Rev Cancer,2004,4(3):216-225.
    16Zhou XM, Qiao J, Wang B, et al. Expressions of ATM, ATR, Chk1and Chk2genes inhuman glioma. Chin J Neuromed,2009,7(8):653-657.
    17Sancer A, Lindsey-Boltz LA Unsal-Kacmaz K, et al. Molecular mechanisms ofmammalian DNA repair and DNA damage checkpoints. Annu Rec Biochem,2004,73:39-45.
    18Ma Q F, Huang X Y, Gao Q L, et al. Expressions of Chk1/2and Plk1Protein inEndometrial Carcinoma. Cancer Reseach on Prevention and Treatment,2008,35(6):424-426.
    19Gao Q, Zhou J, Huang X, et al. Selective targeting of checkpoint kinase1in tumor cellswith a novel potent oncolytic adenovirus. Mol Ther,2006,13(5):928-937.
    20McMillan TJ, Tobi S, Mateos S, et al The use of DNA doublestrand breakquantification in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.,2001,49:373-377.
    21Zachos G, Black EJ, Walker M, et al. Chk1-dependent S-M checkpoint delay invertebrate cells is linked to maintenance of viable replication structures. Mol. Cell. Biol,2005,25:563-574.
    22Zachos G, Black EJ, Walker M, et al. Chk1is required for spindle checkpoint function.Dev. Cell.,2007,12:247-260.
    23Ahn J, Urist M, Prives C. Questioning the role of checkpoint kinase2in the p53DNAdamage response. J. Biol. Chem,2003,278:20480-20489.
    24Varmark H, Kwak S, Theurkauf WE, A role for Chk2in DNA damage induced mitoticdelays in human colorectal cancer cells. Cell Cycle,2010,9:312-320.
    25Carrassa L, Broggini M, Erba. et al. Chk1, but not Chk2, is involved in the cellularresponse to DNA damaging agents: differential activity in cells expressing or not p53.Cell Cycle,2005,3:1177-1181.
    1.雷霆主编.脑肿瘤学.北京:中国医药科技出版社,2005,219-220.
    2. Grossman SA, Ye X, Piantadosi S, et al. Survival of patients with newly diagnosedglioblastoma treated with radiation and temozolomide in research studies in the UnitedStates. Clin Cancer Res.2010,16(8):2443–2449.
    3. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med,2008,359(5):492–507.
    4. Stupp R, Hegi ME, van den Bent MJ, et al. Changing paradigms–an update on themultidisciplinary management of malignant glioma. Oncologist.2006,11(2):165–180.
    5. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit fromtemozolomide in glioblastoma. N Engl J Med.2005,352(10):997-1003.
    6. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant andadjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in arandomised phase III study:5-year analysis of the EORTC-NCIC trial. Lancet Oncol.2009,10(5):459-466.
    7. Curtin JF, King GD, Candolfi M, et al. Combining cytotoxic and immune-mediatedgene therapy to treat brain tumors. Curr Top Med Chem.2005,5(12):1151-1170.
    8. Heimberger AB, Sampson JH. The PEPvIII-KLH (CDX-110) vaccine in glioblastomamultiforme patients. Expert Opin Biol Ther.2009,9(8):1087-1098.
    9. Wheeler CJ, Black KL. DCVax-Brain and DC vaccines in the treatment of GBM.Expert Opin Investig Drugs.2009,18(4):509-519.
    10. Rechard S. Molecular surgery for brain tumors. Science,1992,256(5063):1513.
    11.封林森,马建华,胡卫星等.逆转录病毒介导Fcy-Fur融合基因联合5-FC治疗胶质瘤的体内试验研究.实用临床医药杂志,2009,131:38-42.
    12. Ferguson S, Lesniak MS. Percival Bailey and the classification of brain tumors.Neurosurg Focus.2005,15:18(4):e7.
    13. Dai C, Holland EC. A strocyte differentiation states and glioma formation. Cancer J,2003,9(2):72-81.
    14. Louis DN, Holland EC, Cairncross JG. Glioma classification: a molecular reapp raisal.Am J Pathol,2001,159(3):779-786.
    15. Holland EC. Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet,2001,2(2):120-129.
    16. Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumorselective gene therapy. Gene Ther.2008,15(10):739–752.
    17. Aghi M, Chiocca EA. Gene therapy for glioblastoma. Neurosurg Focus.2006,20(4):E18.
    18. Candolfi M, Kroeger KM, Muhammad AK, et al. Castro MG. Gene therapy for braincancer: combination therapies provide enhanced efficacy and safety. Curr Gene Ther.2009,9(5):409–421.
    19. Lawler SE, Peruzzi PP, Chiocca EA. Genetic strategies for brain tumor therapy. CancerGene Ther.2006,13(3):225–233.
    20. Ferguson SD, Ahmed AU, Thaci B, et al. Crossing the boundaries: stem cells and genetherapy. Discov Med.2010,9(46):192-196.
    21. Jiang H, Gomez-Manzano C, Lang FF, et al. Oncolytic adenovirus: preclinical andclinical studies in patients with human malignant gliomas. Curr Gene Ther.2009,9(5):422-427.
    22. Markert JM, Parker JN, Buchsbaum DJ, et al. Oncolytic HSV-1for the treatment ofbrain tumours. Herpes.2006,13(3):66-71.
    23. Beltinger C, Fulda S, Kammertoens T, et al. Herpes simplex virus thymidinekinase/ganciclovir-induced apoptosis involves ligand-independent death receptoraggregation and activation of caspases. Proc Natl Acad Sci U S A.1999,96(15):8699–8704.
    24. Mesnil M, Yamasaki H. Bystander effect in herpes simplex virus-thymidinekinase/ganciclovir cancer gene therapy: role of gap-junc-tional intercellularcommunication. Cancer Res.2000,60(15):3989–3999.
    25. Germano IM, Fable J, Gultekin SH, et al. Adenovirus/herpes simplex-thymidinekinase/ganciclovir complex: preliminary results of a phase I trial in patients withrecurrent malignant gliomas. J Neurooncol.2003,65(3):279-289.
    26. Immonen A, Vapalahti M, Tyynela K, et al. AdvHSV-tk gene therapy with intravenousganciclovir improves survival in human malignant glioma: a randomised, controlledstudy. Mol Ther.2004,10(5):967-972.
    27. Sandmair AM, Loimas S, Puranen P, et al. Thymidine kinase gene therapy for humanmalignant glioma, using replication-deficient retroviruses or adenoviruses. Hum GeneTher.2000,11(16):2197-2205.
    28. Smitt PS, Driesse M, Wolbers J, et al. Treatment of relapsed malignant glioma with anadenoviral vector containing the herpes simplex thymidine kinase gene followed byganciclovir. Mol Ther.2003,7(6):851-858.
    29. Okada H, Low KL, Kohanbash G, et al. Expression of glioma-associated antigens inpediatric brain stem and non-brain stem gliomas. J Neurooncol.2008,88(3):245-250.
    30. Wykosky J, Gibo DM, Stanton C, et al. Interleukin-13receptor alpha2, EphA2, andFos-related antigen1as molecular denominators of high-grade astrocytomas andspecific targets for combinatorial therapy. Clin Cancer Res.2008,14(1):199-208.
    31. Hershey GK. IL-13receptors and signaling pathways: an evolving web. J Allergy ClinImmunol.2003,111(4):677-690.
    32.陈骅,黄强,董军等. CDC2敲低治疗人脑胶质瘤的实验研究.中华神经外科杂志,2008,24(9):663-669.
    33. Olejniczak M, Galka P, Krzyzosiak W. Sequence-non-specific effects of RNAinterference triggers and microRNA regulators. Nucleic Acids Res,2010,38(1):1-16.
    34.刘猛,吴承远,刘光玉等.反义缺氧诱导因子抑制胶质瘤的实验研究.中华神经外科杂志,2006,22(9):574-576.
    35. Kondo Y, Koga S, Komata T, et al. Treatment of prostate cancer in vitro and vivo with225A2anti-telomerase RNA component. Oncogene,2000,19(18):2205-2211.
    36. Rittierodt M, Tschernig T, Harada K, et al. Modulation of multidrug resistanceassociated P2glycoprotein in human U287MG and HUV ECC cells with antisenseoligodeoxynucleotides to MDR1mRNA. Path biology,2004,71(3):123-128.
    37.于如同,陈冲,石琼等. MDR1shRNA对人脑胶质瘤干细胞多药耐药性实验研究.中华神经外科疾病研究杂志,2008,7(6):494-497.
    38. Broder H, Anderson A, Kremen TJ, et al. MART-1adenovirus-transduced dendriticcell immunization in a murine model of metastatic central nervous system tumor. JNeurooncol.2003,64(1-2):21-30.
    39. Choi BD, Archer GE, Mitchell DA, et al. EGFRvIII-targeted vaccination therapy ofmalignant glioma. Brain Pathol.2009,19(4):713-723.
    40. Heimberger AB, Archer GE, Crotty LE, et al. Dendritic cells pulsed with atumor-specific peptide induce long-lasting immunity and are effective against murineintracerebral melanoma. Neurosurgery.2002,50(1):158-164.
    41. Liau LM, Prins RM, Kiertscher SM, et al. Dendritic cell vaccination in glioblastomapatients induces systemic and intracranial T-cell responses modulated by the localcentral nervous system tumor microenvironment. Clin Cancer Res.2005,11(15):5515-5525.
    42. Yu JS, Liu G, Ying H, et al. Vaccination with tumor lysate-pulsed dendritic cells elicitsantigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res.2004,64(14):4973-4979.
    43. Gomez GG, Kruse CA. Mechanisms of malignant glioma immune resistance andsources of immunosuppression. Gene Ther Mol Biol.2006,10(A):133-146.
    44. Learn CA, Fecci PE, Schmittling RJ, et al. Profiling of CD4+, CD8+, andCD4+CD25+CD45RO+FoxP3+T cells in patients with malignant glioma revealsdifferential expression of the immunologic transcriptome compared with T cells fromhealthy volunteers. Clin Cancer Res.2006,12(24):7306-7315.
    45. Yang I, Han SJ, Kaur G, et al. The role of microglia in central nervous systemimmunity and glioma immunology. J Clin Neurosci.2009,14(2)134-141.
    46. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of theimmune system. Nat Rev Immunol.2009,9(3):162-174.
    47. Rodrigues JC, Gonzalez GC, Zhang L, et al. Normal human monocytes exposed toglioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol.2010,12(4):351-365.
    48. Brawand P, Fitzpatrick DR, Greenfield BW, et al. Murine plasmacytoid pre-dendriticcells generated from Flt3ligand-supplemented bone marrow cultures are immatureAPCs. J Immunol.2002,169(12):6711-6719.
    49. Diao J, Winter E, Chen W, et al. Characterization of distinct conventional andplasmacytoid dendritic cell-committed precursors in murine bone marrow. J Immunol.2004,173(3):1826-1833.
    50. Pulendran B, Lingappa J, Kennedy MK, et al. Developmental pathways of dendriticcells in vivo: distinct function, phenotype, and localization of dendritic cell subsets inFLT3ligand-treated mice. J Immunol.1997,159(5):2222-2231.
    51. Candolfi M, Kroeger KM, Muhammad AK, et al. Gene therapy for brain cancer:combination therapies provide enhanced efficacy and safety. Curr Gene Ther.2009,9(5):409-421.
    52. Curtin JF, Candolfi M, Fakhouri TM, et al. Treg depletion inhibits efficacy of cancerimmunotherapy: implications for clinical trials. PLoS ONE.2008,3(4): e1983.
    53. Ghulam Muhammad AK, Candolfi M, King GD, et al. Antiglioma immunologicalmemory in response to conditional cyto-toxic/immune-stimulatory gene therapy:humoral and cellular immunity lead to tumor regression. Clin Cancer Res.2009,15(19):6113-6127.
    54. King GD, Kroeger KM, Bresee CJ, et al. Flt3L in combination with HSV1-TKmediated gene therapy reverses brain tumor induced behavioral deficits. Mol Ther.2008,16(4):682-690.
    55. Lebedeva IV, Su ZZ, Sarkar D, et al. Restoring apoptosis as a strategy for cancer genetherapy: focus on p53and mda-7. Cancer Biol,2003,13(2):169-178.
    56. Cuddihy AR, Bristow RG. The P53protein family and radiation sensitivity: yes or no.Cancer Metastasis Rev,2004,23(324):237-257.
    57. Wen SF, Xie L, McDonald M, et al. Development and validation of sensitive assaysto quantitate gene expression after p53gene therapy and paclitaxel chemotherapyusing in vivo dosing in tumor xenograft models. Cancer Gene Ther,2000,7(11):1469-1480.
    58. Bocangel DB, Finkelstein S, Schold SC, et al. Multifaceted resistance of gliomas totemozolomide. Clin Cancer Res,2002,8(8):2725-2734.
    59. Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumorprogression. Cell Cycle.2009,8(13):2014-2018.
    60. Chen C, Skog J, Hsu CH, et al. Microfluidic isolation and transcriptome analysis ofserum microvesicles. Lab Chip.2010,10(4):505-511.
    61. Graner MW, Alzate O, Dechkovskaia AM, et al. Proteomic and immunologic analysesof brain tumor exosomes. FASEB J.2009,23(5):1541-1557.
    62. Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA andproteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol.2008,10(12):1470-1476.
    63. Dembinski JL, Spaeth EL, Fueyo J, et al. Reduction of nontarget infection andsystemic toxicity by targeted delivery of conditionally replicating viruses transportedin mesenchymal stem cells. Cancer Gene Ther.2010,17(4):289-297.
    64. Ferguson SD, Ahmed AU, Thaci B, et al. Crossing the boundaries: stem cells and genetherapy. Discov Med.2010,9(46):192-196.
    65. Kranzler J, Tyler MA, Sonabend AM, et al. Stem cells as delivery vehicles foroncolytic adenoviral virotherapy. Curr Gene Ther.2009,9(5):389-395.
    66. Yong RL, Shinojima N, Fueyo J, et al. Human bone marrow-derived mesenchymalstem cells for intravascular delivery of oncolytic aden-ovirus Delta24-RGD to humangliomas. Cancer Res.2009,69(23):8932-8940.
    67. Kendall SE, Najbauer J, Johnston HF, et al. Neural stem cell targeting of glioma isdependent on phosphoinositide3-kinase signaling. Stem Cells.2008,26(6):1575-1586.
    68. Zhao D, Najbauer J, Garcia E, Metz MZ, Gutova M, Glackin CA, Kim SU, AboodyKS. Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol CancerRes.2008,6(12):1819-1829.
    69. Sonabend AM, Ulasov IV, Tyler MA, et al. Mesenchymal stem cells effectively deliveran oncolytic adenovirus to intracranial glioma. Stem Cells.2008,26(3):831-841.
    70. Edelstein ML, Abedi MR, Wixon J, et al. Gene therapy clinical trials worldwide1989~2004-an overview. J Gene Med,2004,6(6):597-602.
    71. Puumalainen AM, Vapalahti M, Yla Herttuala S. Gene therapy for malignant gliomapatients. Adv Exp Med Biol.1998,451(7):505-509.
    72. Herrlinger U, Woiciechowski C, Sena-Esteves M, et al. Neural precursor cells fordelivery of replication conditional HSV-1vectors to intracerebral gliomas. Mol Ther.2000,1(4):347-357.
    73. Aboody KS, Brown A, Rainov NG, et al. From the cover: neural stem cells displayextensive tropism for pathology in adult brain: evidence from intracranial gliomas.Proc Natl Acad Sci USA,2000,97(23):12846-12851.
    74. Benedetti S, Pirola B, et al. Gene therapy of experimental brain tumors using neuralprogenitor cells. Nature Med,2000,6(4):447-450.
    75.范存刚,周景儒.间充质干细胞在脑胶质瘤实验性靶向治疗中的应用.国际神经病学神经外科学杂志,2010,37(1):22-25.
    76. Morrison PF, Laske DW, Bobo H, et al. High flow micro-infusion: tissue penetrationand pharmacodynamics. Am J Physiol,1994,266(122):292-305.
    77. Pannier AK, Shea LD. Controlled release systems for DNA delivery. Mol Ther,2004,10(1):19-26.
    78. Libermann TA, Nusbaum HR, Razon N, et al. Amplification, enhanced expression andpossible rearrangement of EGF receptor gene in primary human brain tumours of glialorigin. Nature,1985,313:144-147.
    79. James CD, Carlbom E, Nordenskjold M, et al. Mitotic recombination of chromosome17in astrocytomas. Proc Natl Acad Sci USA,1989,86:2858–2862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700