用户名: 密码: 验证码:
基于多羟基配体构筑锰金属簇合物的合成和磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要致力于合成以含有三羟基官能团的配体构筑一系列具有新型结构骨架的高核金属锰簇合物,并对化合物的结构和磁性展开的研究与理论解释。具体如下:
     第一章为绪论,简单介绍分子磁化学以及单分子磁体相关物理理论知识的研究进展并对其进行了简单的总结与评论;第二章介绍了含有三羟基的席夫碱为有机配体体系溶液法合成条件下,合成了两个高核锰簇合物1?2和四个高价态的低核配合物3?6。解析了它们的晶体结构,并研究了它们的磁性;第三章介绍了在三羟基醇为有机配体体系溶液法合成条件下,利用碱金属阳离子和叠氮阴离子引入,合成了两个二维的高核锰簇合物7?8,它们都是以高核锰簇合物作为次级结构单元通过离子键或共价键进一步构筑出二维的拓展结构,而相应磁性研究表明Mn?O核内部或之间存在竞争的反铁磁耦合作用;第四章介绍了在有机膦为配体体系溶液法合成条件下,利用不同的前驱体为金属锰源,在不同碱性物质存在下合成了四个高核锰簇合物9 ?12,它们分别都具有[Mn3]n单元骨架结构;第五章对本论文的工作做出了总结并进行展望。
     本论文详细研究和讨论了上述化合物的合成方法,影响因素,结构特点以及磁性质等,为探索合成具有新型结构和优良性能的高核锰化合物提供了基础。
Polynuclear paramagnetic clusters (PMCs) have been the focus of considerable research efforts due to their potential to act as single-molecule magnets (SMMs), which represent nanoscale magnetic particles with a well-defined size. The studies on single-molecule magnets are in the interface between molecule?based magnets and nano scale magneticmaterials. Study of their unusual magnetic behavior will be not only beneficial for both physics and chemistry, but also potentially used in high?density information storage devices for quantum computing. So, the investigation has become one of the most active arenas in materials and inorganic chemistry for their interesting properties and potential application. Up to now, a great number of mixed-valence manganese clusters have been synthesized and their magnetic properties have been widely studied, mainly because they often exhibit large, and sometimes abnormally large, spin values in the ground state (S), and a negative uniaxial anisotropy (D) arises from the presence of Jahn-Teller distorted MnШions. Although manganese-carboxylate complexes with various sorts of capping/bridging ligands (oximes, amino-alcohol, tripodal alcohols, etc.) have been extensively developed affording various nuclearities, it is still a tremendous challenge for researchers to rationally design, precisely control, and effectively re-assemble novel PMCs not seen in manganese chemistry. As we know, different organic ligands play a crucial role in the successful synthesis of clusters with different properties, and the synthetic approaches towards new PMCs assemblies which usually involve the one-pot reaction of metal salts with different polydentate ligands or the ligand-substitution/modification of PMCs precursors would produce novel molecular architectures with fascinating magnetic behavior. Additionally, with pleasing structural aesthetics and interesting physical properties, Azides, in particular, is the most versatile ligand in terms of being an efficient magnetic coupler capable of constructing diverse structural topologies, and it has been found to bridge modes (μ1,1-(end-on, EO),μ1,3-(end-to-end, EE),μ1,1,3,μ1,1,1,μ1,1,1,1,μ1,1,3,3,μ1,1,1,3,3,3). In this dissertation, we have prepared 12 new polynuclear manganese clusters by using different organic ligands (tripodal Schiff base、tripodal alcohol and phosphonate) and analyzed their structures and magnetization. These results will be introduced from the following three issues:
     (1) Under the room temperature, we have shown that the versatile predesigned quinquedentate Schiff base ligand H4L (2-{[(2-hydroxy-3-methoxyphenyl)methylene]amino}-2-(hydroxymethyl)-1,3-propanediol) together with its coligand azides under different manganese metal salt conditions can provide access to two unusual polynuclear Mn8 1 and Mn16 2 clusters. Their structural characterizations show that the two compounds are the first examples to include two and four alternant tetrahedral MnIII3MnII cores bridged by quinquedentate Schiff base and versatile azides groups, and it is noteworthy that only three examples with triple symmetric EE and EO in binuclear Ni complexes have been reported while the combination of triple bridgingμ1,1-azides in manganese chemistry has never been explored until recently. The magnetic properties of the two compounds have been carefully studied solid-state dc and ac magnetic susceptibility measurements, which reveal dominant antiferromagnetic interactions between the both of magnetic centers, and the rapid increase of the frequency-dependence in the in-phase signal with decreasing temperature. Not adding the coligand azides, four oligomers manganese clusters have been constructed from the only rigid organic Schiff base ligand. Their structural characterizations show that the schiff base ligands can easily stabilize the high oxidation state of manganese but usually lead to low-dimensional MnШcompounds. In addition, azide ligands have been widely employed in polynuclear transition-metal compounds and as part of one-, two-, or three-dimensional extended networks, where the N3- ion has been found to exhibit a wide variety of coordination modes.
     (2) Two 2D coordination polymetic networks compounds of [Na3MnШ6(μ6-O)(thme)4(PhCO2)6(H2O)]·OH 7 and [NaMnШ4MnII8O2(thme)4(N3)- (OAc)8(AcOH)2(CH3O)4] 8 with 1,1,1-tris(hydroxymethyl)-methane (H3thme) as the ligand have been synthesized. Single crystal X-ray diffraction reveals that compound 7 reveals a 2D extended structure based on homovalent hexanuclear clusters similar to the first reported mixed-valent hexanuclear manganese clusters. The structure of the manganese-oxygen core of 7, which is the same as Lindqvist anion [M6O19]n–, can be described as an octahedron. Compound 7 is the first homo-valence repeating unit like Lindqvist anion [M6O19]n– reported in honeycomb-shaped or hexagonal networks for a manganese coordination polymer. Compound 8 is the mixed-valence dodecanuclear Mn cluster acted respectively as network nodes in the formation of rhombic grid-like layer structures, and it is only the second highest-nuclearity known where an azido has been used to bridge discrete large clusters in a stepwise manner to form a polymer. In addition, magnetic studies of 7 reveal that antiferromagnetically-coupled paramagnetic cluster behavior is operative within the hexameric Mn6 cluster and 8 exhibits antiferromagnetic coupling interactions and the interesting frequency dependant in-phase as well as out-of-phase susceptibility signals observed, respectively.
     (3) The syntheses, structures and magnetic properties of polynuclear manganese with benzylphosphonic acid ligand are investigated from simple manganese starting materials by manipulating reaction conditions. Four polynuclear manganese clusters (9 ?12) are prepared at the room temperature, and which are structurally chararcterized by X?ray single crystal diffraction. Their crystal structures can be described as Mn9、Mn10、Mn20 and Mn23 using the alternant triangle [Mn3]n units. Magnetic mearments of them indicate that competitive ferromagnetic and antiferromagnetic coupling in the manganese cores produce a spin ground state of S = 8,S = 10 and S = 22. The S = 22 of 11 and the core of 12 may be the largest spin ground state and largest manganese cluster based on phosphoate ligand in the reported examples.
引文
[1] (a) X. Z. You. Moleculer-based Materials Opto-electronic Functional Compunds. Shanghai: Science Press, 2001; (b) J. Becher and K. Schaumburg, etc. Molecular Engineering for Advanced Materials, 1995; (c) O. Kahn, etc. Magnetism: A Supramolcular Function, Weinheim: VCH, 1996.
    [2] G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli, MRS Bulletin, 2000, 25, 66.
    [3] R. Sessoli, H.–L. Ysai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, D. N. Hendricson, J. Am. Chem. Soc., 1993, 115, 1804.
    [4] R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature, 1993, 365, 141.
    [5] E. D. Dahlberg, J.–G, Phys. Today, 1995, 34.
    [6] W. Wernsdorfer, R. Sessoli, Science, 1999, 284, 133.
    [7] D. A. Garanin, E. M. Chudnovsky, Phys. Rev., B, 1997, 56, 11102.
    [8] D. D. Awschalom, D. P. Divincenzo, Phys. Today, 1995, 48, 43; b) D. L. Leslie-Pelecky, R. D. Rieke, Chem. Mater., 1996, 8, 1770.
    [9] (a) R. Politi, A. Rettori, F. Hartmann-Boutron, J. Villain, Phys. Rev. Lett., 1995, 75, 537-540.; (b) J. M. Hernandez, X. Zhang, F. Luis, J. Barilome`, J. Tejeda, R. Ziolo, Euro. Phys. Lett., 1996, 35, 301.
    [10] (a) C. Paulsen, J.–G. Park, In quantum tunneling of Magnetization QTM’94; (b) L. Gunther, B. Barbara, Ed. Kilwer Academic publishers: Dordrecht, 1995; p. 189.
    [11] A. J. Tasiopoulos, W. Wernsdorfer, K. A. Abboud, G. Christou, Inorg. Chem., 2005, 44, 6324.
    [12] N. E. Chakov, S. Lee, A. G. Harter, P. L. Kuhns, A. P. Reyes, S. O. Hill, N. S. Dalal, W. Wernsdorfer, K. A. Abboud, G. Christou, J. Am. Chem. Soc., 2006, 128, 6975.
    [13] http://hyperphysics.phy-astr.gsu.edu/Hbase/solids/magperm.html#c1
    [14]丁峰天津师范大学博士学位论文
    [15] Singh S. P. and Ranjana,Kumar D., Indian Journal of Chemistry, 1993, 3, 843.
    [16] L .S. Sa pochak, F. E .B enincasa, R .S. Sc holield, J. L. Ba ker, K .K .C .R icco, D .Fo garty, H .Kohlmann, K. F. Ferris and P. E, Burrows, J. Am. Chem. Soc., 2002, 124, 6119.
    [17] W.?K. Dong, Y.?Z. Cheng, L. Xu and B.?W. Zhao,兰州铁道学院学报,2001, 20, 78.
    [18]张帆编,海洋出版社, 1992, 203.
    [19]孙宏建,李晓燕,崔学桂,刘德信,无机化学学报,2001,17, 239.
    [20] L .J. Childs, N .WAlcock, M .J. Hanno, Angew. Chem., Int. Ed., 2001, 40, 1079.
    [21]史卫良,陈德余,陈士明,严小敏,无机化学学报,2001,17, 239.
    [22] RoderbergB, CancerRes., 1970, 30, 1799.
    [23]余宝源,孙逸芳,傅本秋,戴寰,高等学校化学学报,1989, 10, 17.
    [24]陈德余,江银枝,应用化学, 1997, 14, 5.
    [25] (a) R. T. W. Scott, C. J. Milios, A. Vinslava, D. Lifford, S. Parsons, W. Wernsdorfer, G. Christou and E. K. Brechin, Dalton Trans., 2006, 3161; (b) R. T. W. Scott, S. Parsons, M. Murugesu, W. Wernsdorfer, G. Christou and E. K. Brechin, Angew. Chem., Int. Ed., 2005, 44, 6540; (c) M. Murugesu, J. Raftery, W. Wernsdorfer, G. Christou and E. K. Brechin, Inorg. Chem., 2004, 43, 4203.
    [26] Bouzid Menaa and Ian J. Shannon, School of Chemical Sciences,University of Birmingham, Birmingham, J. Mater. Chem., 2002, 12, 350.
    [27] A. Clearfield, Current Opinion in Solid State and Materials Science, 2002, 6, 495.
    [28] Harris notation describes the binding mode as [XY1Y2Y3…Yn], where X is the overall number of metals bound by the whole ligand, and each value of Y refers to the number of metal atoms attached to the different donor atoms. See R. A. Coxall, S. G. Harris, D. K. Henderson, S. Parson, P. A. Tasker, R. E. P. Winpenny, J. Chem. Soc., Dalton Trans., 2000, 2349.
    [29] Ewa Matczak-Jon, Veneta Videnova-Adrabińska, Supramolecular chemistry and complexation abilities of diphosphonic acids, Coordination Chemistry Reviews, 2005, 249, 2458.
    [30] Deng-Ke Cao,Jing Xiao, Yi-Zhi Li, Juan Modesto Clemente-Juan, EugenioCoronado and Li-Min Zheng, Eur. J. Inorg. Chem. 2006, 1830.
    [31] Jiang-Gao Mao, Structures and luminescent properties of lanthanide phosphonates, Coordination Chemistry Reviews, 2007, 251, 1493
    [32] W. T. A. Harrison, L. L. Dussack, A. J. Jacobson, Inorg. Chem., 1996, 35, 1461.
    [33] G. Huan, V. W. Day, A. J. Jacobson, D. P. Goshorn, J. Am. Chem. Soc., 1991, 113, 3188.
    [34] D. Kong, Y. Li, X. Ouyang, A. V. Prosvirin, H. Zhao, J. H. Ross and K. R. Dunbar, Chem. Mater., 2004, 16, 3020.
    [35] D. M. Poojary, B. Zhang, P. Bellinghausen and A. Clearfield, Inorg. Chem., 1996, 35, 5254.
    [36] L.-M. Zheng, S. Gao, P. Yin and X.-Q. Xin, Inorg. Chem., 2004, 43, 2151.
    [37] Yin, P., Gao, S., Zheng, L.-M. and Xin, X.-Q., Chem. Mater., 2003, 15, 3233.
    [38] Song, H.-H.; Zheng, L.-M.; Wang, Z.; Yan, C.-H. And Xin, X.-Q, Inorg. Chem. 2001, 40, 5024.
    [39] Clearfield, A., Sharma, C. V. K. and Zhang, B. P., Chem. Mater., 2001, 13, 3099.
    [40] Dattelbaum, A. M., Martin, J. D., Inorg. Chem., 1999; 38, 6200.
    [41] Zheng, L.-M., Song, H.-H., Duan, C.-Y. And Xin, X.-Q., Inorg. Chem., 1999, 38, 5061.
    [42] A. Choudhury, S. Natarajan, C. N. R. Rao, Chem. Commun., 1999, 14, 1305.
    [43] C. Lei, J. G. Mao, Y. Q. Sun and H.-Y. Zeng, Inorg. Chem., 2003, 42, 6157.
    [44] Z. Shi, S. Feng, S. Gao, L. Zhang, G. Yang and J. Hua, Angew. Chem., Int. Ed., 2000, 39, 2325.
    [45] M. I. Khan, L. M. Meyer, R. C. Haushalter, A. L. Schweitzer, J. Zubieta, J. L. Dye, Chem. Mater., 1996, 8, 43.
    [46] D. Riou, F. Fayon, D. Massiot, Chem. Mater., 2002, 14, 2416
    [47] U. Kortz, J. Vaissermann, R. Thouvenot, P. Gouzerh, Inorg. Chem., 2003, 42, 1135.
    [48] S. Maheswaran, G. Chastanet, S.?J. Teat, T. Mallah, R. Sessoli, W. Wernsdorfer, and R. E. P. Winpenny, Angew. Chem. Int. Ed., 2004, 43, 2117.
    [49] Y.?S. Ma, Y. Song, Y.?Z. Li, and L.?M. Zheng, Inorg. Chem., 2005, 44, 5044.
    [50] (a) A. Escuer and G. Aromí, Eur. J. Inorg. Chem., 2006, 4721; (b) J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. Cortés, L. Lezama and T. Rojo, Coord. Chem. Rev., 1999, 193.
    [51] E. Ruiz, J. Cano, S. Alvarez and P. Alemany, J. Am. Chem. Soc., 1998, 120, 11122.
    [52] (a) X.?Y. Wang, Z.?M. Wang and S. Gao, Chem. Commun., 2008, 281; (b) Y.?F. Zeng, X. Hu, F.?C. Liu and X.?H. Bu, Chem. Soc. Rev., 2009, 38, 469 (therein).
    [53] G. Aromi, E. K. Brechin, Structure and Bonding, 2006, 122, 1.
    [54] N. Ishikawa, M. Sugita, T.Ishikawa, S. Koshihara, Y. Kaizu, J. Am. Chem. Soc., 2003, 125, 8694.
    [55] S. Karasawa, G. Zhou, H. Morikawa , N. Koga, J. Am. Chem. Soc., 2003, 125, 13676.
    [56] H. Miyasaka, R. Cle`rac, W. Wersdorfer, L. Lecren, C. Bonhomme, K. Sugiura, M. Yamashita, Angew. Chem. Int. Ed., 2004, 43, 2801.
    [57] Z. Lu, M. Yuan, F. Pan, S. Gao, D. Zhang, D. Zhu, Inorg. Chem., 2006, 45, 3538.
    [58] M. Soler, W. Wernsdorfer, K. Folting, M. Pink, G. Christou, J. Am. Chem. Soc., 2004, 126, 2156.
    [59] R. T. W. Scott, S. Parsons, M. Murugesu, W. Wernsdorfer, G. Christou, E. K. Brechin, Angew. Chem. Int. Ed., 2005, 44, 6540.
    [60] A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud, G. Christou, Angew. Chem. Int. Ed., 2004, 43, 2117.
    [61] E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Am. Chem. Soc., 1998, 120, 11122 .
    [62] A. Bell, G. Aromi, S. J. Teat, W. Wernsdorfer, R. E. P. Winpenny, Chem. Comm., 2005, 2808.
    [63] T. C. Stamatatos, K. A. Abboud, W. Wernsdorfer, G. Christou, Angew. Chem. Int. Ed., 2006, 45, 4134.
    [64] (a) M. Murugesu, M. Habrych, W. Wernsdorfer, K. A. Abboud, G. Christou, J. Am. Chem. Soc., 2004, 126, 4766; (b) D. E. Freedman, M. V. Bennett, J. R. Long,Dalton. Trans., 2006, 2829.
    [65] A. M. Ako, I. J. Hewitt, V. Mereacre, R. Clerac, W. Wernsdorfer, C. E. Anson, A. K. Powell, Angew. Chem. Int. Ed., 2006, 45, 4926.
    [1] (a) R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature 1993, 365, 141; (b) E. Coronado, A. Forment-Aliaga, A. Gaita-Arino, C. Gimenez-Saiz, F. M. Romero, W. Wernsdorfer, Angew. Chem., Int. Ed. 2004, 43, 6152; (c) A. M. Ako, I. J. Hewitt, V. Mereacre, R. Clérac, W. Wernsdorfer, C. E. Anson, A. K. Powell, Angew. Chem., Int. Ed. 2006, 118, 5048; (d) T. C. Stamatatos, K. A. Abboud, W. Wernsdorfer, G. Christou, Angew. Chem., Int. Ed. 2008, 47, 6694.
    [2](a) I. Mirebeau, M. Hennion, H. Casalta, H. Andres, H. U. Güdel, A. V. Irodova, A. Caneschi, Phys. Rev. Lett. 1999, 83, 628; (b) D. Gatteschi, R. Sessoli, Angew. Chem., Int. Ed. 2003, 42, 268.
    [3](a) C. J. Milios, I. A. Gass, A. Vinslava, L. Budd, S. Parsons, W. Wernsdorfer, S. P. Perlepes, G. Christou, E. K. Brechin, Inorg. Chem. 2007, 46, 6215; (b) C.-I. Yang, W. Wernsdorfer, G.-H. Lee, H.-L. Tsai, J. Am. Chem. Soc. 2007, 129, 456; (c) T. C. Stamatatos, D. Foguet-Albiol, S. C. Lee, C. C. Stoumpos, C. P. Raptopoulou, A. Terzis, W. Wernsdorfer, S. Hill, S. P. Perlepes, G. Christou, J. Am. Chem. Soc. 2007, 129, 9484; (d) G. Rajaraman, M. Murugesu, C. Sanńudo, M. Soler, W. Wernsdorfer, M. Helliwell, C. Muryn, J. Raftery, S. J. Teat, G. Christou, E. K. Brechin, J. Am. Chem. Soc. 2004, 126, 15445; (e) A. Prescimone, C. J. Milio, S. Moggach, J. E. Warren, A. R. Lennie, J. Sanchez-Benitez, K. Kamenev, R. Bircher, M. Murrie, S. Parsons, E. K. Brechin, Angew. Chem., Int. Ed. 2008, 47, 2828; (f) R. Bagai, K. A. Abboud, G. Christou, Inorg. Chem. 2008, 47, 621.
    [4] (a) Y. Song, C. Massera, O. Roubeau, P. Gamez, A. M. M. Lanfredi, J. Reedijk, Inorg. Chem. 2004, 43, 6842; (b) S. Koner, S. Saha, T. Mallah, K.-I. Okamoto, Inorg. Chem. 2004, 43, 840; (c) D. De Munno, T. Poerio, G. Viau, M. Julve, F. Lloret, Angew. Chem., Int. Ed. 1997, 36, 1459.
    [5] (a) A. Escuer, R. Vicente, M. A. S. Goher, A. Mautner, Inorg. Chem. 1995, 34, 5707; (b) J. Ribas, M. Monfort, B. K. Ghosh, R. Cortes, X. Solans, M. Font- Bardia, Inorg. Chem. 1996, 35, 864; (c) M. Monfort, I. Resino, J. Ribas, X. Solans, M. Font-Bardia, H. Stoeckli-Evans, New J. Chem. 2002, 26, 1601; (d) M.Murugesu, M. Habrych, W. Wernsdorfer, K. A. Abboud, G. Christou, J. Am. Chem. Soc. 2004, 126, 4766; (e) J. M. Domínguez-Vera, J. Suaírez-Varela, I. B. Maimoun, E. Colacio, Eur. J. Inorg. Chem. 2005, 1907.
    [6] (a) J. M. Domínguez-Vera, J. Suaírez-Varela, I. B. Maimoun, E. Colacio, Eur. J. Inorg. Chem. 2005, 1907; (b) P. Mialane, A. Dolbecq, J. Marrot, E. Rivieńre, F. Seícheresse, Chem. Eur. J. 2005, 11, 1771; (c) S. Demeshko, G. Leibeling, W. Maringgele, F. Meyer, C. Mennerich, H.-H. Klauss, H. Pritzkow, Inorg. Chem. 2005, 44, 519; (d) A. Escuer, G. Aromí, Eur. J. Inorg. Chem. 2006, 4721; (e) P.-P. Liu, A.-L. Cheng, N. Liu, W.-W. Sun, E.-Q. Gao, Chem. Mater. 2007, 19, 2724; (f) X.-Y. Wang, Z.-M. Wang, S. Gao, Chem. Commun. 2008, 281.
    [7] (a) P. D. Beer, M. G. B. Drew, P. B. Leeson, K. Lyssenko, M. Ogden, Chem. Commun. 1995, 925; (b) P. Chaudhuri, T. Weyhermuller, E. Bill, K. Wieghardt, Inorg. Chim. Acta. 1996, 252, 195; (c) E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Am. Chem. Soc. 1998, 120, 11122.
    [8] See for examples: (a) G. Rajaraman, M. Murugesu, E. C. Sanudo, M. Soler, W. Wernsdorfer, M. Helliwell, C. Muryn, J. Raftery, S. J. Teat, G. Christosu, E. K. Brechin, J. Am. Chem. Soc. 2004, 126, 15445; (b) R. T. W. Scott, S. Parsons, M. Murugesu, W. Wernsdorfer, G. Christou, E. K. Brechin, Angew. Chem., Int. Ed. 2005, 44, 6540; (c) M. Murugesu, W. Wernsdorfer, K. A. Abboud, G. Christou, Angew. Chem., Int. Ed. 2005, 44, 892.
    [9] (a) M. W. Wemple, H.-L. Tsai, S. Wang, J. P. Claude, W. E. Streib, J. C. Huffman, D. N. Hendrickson, G. Christou, Inorg. Chem. 1996, 35, 6437; (b) E. K. Brechin, G. Christou, M. Soler, M. Helliwell, S. J. Teat, Dalton Trans. 2003, 513; (c) C. J. Milios, R. Inglis, A. Vinslava, A. Prescimone, S. Parsons, S. P. Perlepes, G. Christou, E. K. Brechin, Chem. Commun. 2007, 2738; (d) P. King, W. Wernsdorfer, K. A. Abboud, G. Christou, Inorg. Chem. 2004, 43, 7315; (e) S. J. Shah, C. M. Ramsey, K. J. Heroux, J. R. O’Brien, A. G. DiPasquale, A. L. Rheingold, D. N. Hendrickson, Inorg. Chem. 2008, 47, 6245; (f) M. Manoli, A. Prescimone, R. Bagai, A. Mishra, M. Murugesu, S. Parsons, W. Wernsdorfer, G. Christou, E. K.Brechin, Inorg. Chem. 2007, 46, 6968; (g) D. J. Price, S. R. Batten, B. Moubaraki, K. S. Murray, Chem. Commun. 2002, 762.
    [10] Sreenivasulu, R.; Sreeramulu, J. Acta Cienc. Indica, Chem. 2004, 30, 181.
    [11] G. M. Sheldrick, SADABS, the Siemens Area Detector Absorption Correction; University of G?ttingen: G?ttingen, Germany, 2005.
    [12] (a) P. L. Feng, C. Koo, J. J. Henderson, M. Nakano, S. Hill, D. N. Hendrickson, Inorg. Chem. 2008, 47, 8610; (b) J. Cano, T. Cauchy, E. Ruiz, C. J. Milios, C. C. Stoumpos, T. C. Stamatatos, S. P. Perlepes, G. Christou, E. K. Brechin, Dalton Trans. 2008, 234; (c) M. Viciano-Chumillas, S. Tanase, I. Mutikainen, U. Turpeinen, L. J. de Jongh, J. Reedijk, Inorg. Chem. 2008, 47, 5919; (d) C.-I. Yang, W. Wernsdorfer, K.-H. Cheng, M. Nakano, G.-H. Lee, H.-L. Tsai, Inorg. Chem. 2008, 47, 10184; (e) C. Lampropoulos, K. A. Abboud, T. C. Stamatatos, G. Christou, Inorg. Chem. 2009, 48, 813.
    [13](a) W. Liu, H. H. Thorp, Inorg. Chem. 1993, 32, 4102; (b) G. Donnay, R. Allman, Am. Mineral. 1970, 55, 1003.
    [14] (a) J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsukerblat, Inorg. Chem. 1999, 38, 6081; (b) J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsukerblat, Comput. Chem. 2001, 22, 985.
    [15] P. King, W. Wernsdorfer, K. A. Abboud, G. Christou, Inorg. Chem. 2004, 43, 7315.
    [16] N. E. Chakov, W. Wernsdorfer, K. A. Abboud, G. Christou, Inorg. Chem. 2004, 43, 5919.
    [17] K. Kambe, Phys. Soc. Jpn. 1950, 5, 48.
    [18] G. Karotsis, L. F. Jones, G. S. Papaefstathiou, A. Collins, S. Parsons, T. D. Nguyen, M. Evangelistic and E. K. Brechin, Dalton Trans., 2008, 491.(reference therein)
    [1] (a) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276; (b) Yaghi, O. M.; Li, G. Nature 1995, 378, 923; (c) Chen, B. L.; Eddaoudi, M.; Hyde, S. T.; O’Keeffe, M.; Yaghi, O. M. Science 2001, 291, 1021.
    [2] (a) Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319; (b) Eddaoudi, M.; Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 1391;(c) Matouzenko, G. S.; Molnar, G.; Brefuel, N.; Perrin, M.; Bousseksou, A.; Borshch, S. A. Chem. Mater. 2003, 15, 550; (d) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1128.
    [3] See some examples: (a) Li, D.; Wu, T.; Zhou, X. P.; Zhou, R.; Huang, X. C. Angew. Chem., Int. Ed. 2005, 44, 4175; (b) Cheng, J. W.; Zhang, J.; Zheng, S. T.; Yang, G. Y. Chem. Eur. J. 2008, 14, 88; (c) Pan, L.; Liu, H. M.; Lei, X. G.; Huang, X. Y.; Olson, D. H.; Turro, N. J.; Li, J. Angew. Chem., Int. Ed. 2003, 42, 542; (d) Chun, H.; Kim, D.; Dybtsev, D. N.; Kim, K. Angew. Chem., Int. Ed. 2004, 43, 971; (e) Turner, D. R.; Pek, S. N.; Cashion, J. D.; Moubaraki, B.; Murraya, K. S.; Batten, S. R. Dalton Trans. 2008, 6877; (f) Zhang, Q. F.; Jiang, F. L.; Huang, Y. G.; Wu, M. Y.; Hong, M. C. Cryst. Growth Des. 2009, 9, 28; (g) Chen, P. K.; Batten, S. R.; Qi, Y.; Zheng, J. M. Cryst. Growth Des. 2009, 9, 2756.
    [4] (a) Wang, X. W.; Dong, Y. R.; Zheng, Y. Q.; Chen, J. Z. Cryst. Growth Des. 2007, 7, 613; (b) Shaikh, N.; Panja, A.; Goswami, S.; Banerjee, P.; Vojtisek, P.; Zhang, Y. Z.; Su, G.; Gao, S. Inorg. Chem. 2004, 43, 849; (c) Yoo, J.; Wernsdorfer, W.; Yang, E. C.; Nakano, M.; Rheingold, A. L.; Hendrickson, D. N. Inorg. Chem. 2005, 44, 3377.
    [1] (a) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276; (b) Yaghi, O. M.; Li, G. Nature 1995, 378, 923; (c) Chen, B. L.; Eddaoudi, M.; Hyde, S. T.; O’Keeffe, M.; Yaghi, O. M. Science 2001, 291, 1021.
    [2] (a) Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319; (b) Eddaoudi, M.; Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 1391;(c) Matouzenko, G. S.; Molnar, G.; Brefuel, N.; Perrin, M.; Bousseksou, A.; Borshch, S. A. Chem. Mater. 2003, 15, 550; (d) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1128.
    [3] See some examples: (a) Li, D.; Wu, T.; Zhou, X. P.; Zhou, R.; Huang, X. C. Angew. Chem., Int. Ed. 2005, 44, 4175; (b) Cheng, J. W.; Zhang, J.; Zheng, S. T.; Yang, G. Y. Chem. Eur. J. 2008, 14, 88; (c) Pan, L.; Liu, H. M.; Lei, X. G.; Huang, X. Y.; Olson, D. H.; Turro, N. J.; Li, J. Angew. Chem., Int. Ed. 2003, 42, 542; (d) Chun, H.; Kim, D.; Dybtsev, D. N.; Kim, K. Angew. Chem., Int. Ed. 2004, 43, 971; (e) Turner, D. R.; Pek, S. N.; Cashion, J. D.; Moubaraki, B.; Murraya, K. S.; Batten, S. R. Dalton Trans. 2008, 6877; (f) Zhang, Q. F.; Jiang, F. L.; Huang, Y. G.; Wu, M. Y.; Hong, M. C. Cryst. Growth Des. 2009, 9, 28; (g) Chen, P. K.; Batten, S. R.; Qi, Y.; Zheng, J. M. Cryst. Growth Des. 2009, 9, 2756.
    [4] (a) Wang, X. W.; Dong, Y. R.; Zheng, Y. Q.; Chen, J. Z. Cryst. Growth Des. 2007, 7, 613; (b) Shaikh, N.; Panja, A.; Goswami, S.; Banerjee, P.; Vojtisek, P.; Zhang, Y. Z.; Su, G.; Gao, S. Inorg. Chem. 2004, 43, 849; (c) Yoo, J.; Wernsdorfer, W.; Yang, E. C.; Nakano, M.; Rheingold, A. L.; Hendrickson, D. N. Inorg. Chem. 2005, 44, 3377.Angew. Chem., Int. Ed. 2005, 44, 892; (e) Manoli, M.; Collins, A.; Parsons, S.; Candini, A.; Evangelisti, M.; Brechin, E. K. J. Am. Chem. Soc. 2008, 130, 11129; (f) Karotsis, G.; Jones, L. F.; Papaefstathiou, G. S.; Collins, A.; Parsons, S.; Nguyen, T. D.; Evangelistic, M.; Brechin, E. K. Dalton Trans. 2008, 4917.
    [11] (a) Wernsdorfer, W.; Aliaga-Alcalde, N.; Hendrickson, D. N.; Christou, G.; Nature 2002, 416, 406; (b) Tiron, R.; Wernsdorfer, W.; Aliaga-Alcalde, N.; Christou, G. Phys. Rev. B 2003, 68, 140407; (c) Wernsdorfer, W.; Bhaduri, S.; Vinslava, A.; Christou, G. Phys. Rev. B 2005, 72, 214429.
    [12] Miyasaka, H.; Nakata, K.; Sugiura, K.; Yamashita, M.; Clérac, R. Angew. Chem. Int. Ed. 2004, 43, 707.
    [13] (a) Brechin, E. K.; Yoo, J.; Nakano, M.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. Chem. Commun. 1999, 783; (b) Yoo, J.; Brechin, E. K.; Yamaguchi, A.; Nakano, M.; Huffman, J. C.; Maniero, A. L.; Brunel, L. C.; Awaga, K.; Ishimoto, H.; Christou, G.; Hendrickson, D. N. Inorg. Chem. 2000, 39, 3615.
    [14] Vincent, J. B.; Chang, H.; Folting, K.; Huffman, J. C.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1987, 109, 5703.
    [15] R. Wu, M. Poyraz, F. E. Sowrey, C. E. Anson, S. Wocadlo, A. K. Powell, U. A. Jayasooriya, R. D. Cannon, T. Nakamoto, M. Katada, H. Sano, Inorg. Chem., 1998, 37, 1913.
    [16] Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution, University of G?ttingen, Germany, 1997.
    [17] Mondal, K. C.; Drew, M. G. B.; Mukherjee, P. S. Inorg. Chem. 2007, 46, 5625;
    [18] Moushi, E. E.; Stamatatos, T. C.; Wernsdorfer, W.; Nastopoulos, V.; Christou, G.; Tasiopoulos, A. J. Angew. Chem., Int. Ed. 2006, 45, 7722.
    [19] (a) Ramón, J.; Mascarós, G.; Dunbar, K. Angew. Chem., Int. Ed. 2003, 42, 2289; (b) Liu, C. W.; Liaw, B. J.; Liou, L. S.; Wang, J. C. Chem. Commun. 2005, 1983.
    [20] Murugesu, M.; Wernsdorfer, W.; Abboud, K. A.; Brechin, E. K.; Christou, G. Dalton Trans. 2006, 2285.
    [21] (a) Liu, W.; Thorp, H. H. Inorg. Chem. 1993, 32, 4102; (b) Donnay, G.; Allman, R. Am. Mineral. 1970, 55, 1003.
    [22] Moushi, E. E.; Stamatatos, T. C.; Wernsdorfer, W.; Nastopoulos, V.; Christou, G. Inorg. Chem. 2009, 48, 5049.
    [23] (a) Borras-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Tsukerblat, B. S.; Inorg. Chem. 1999, 38, 6081; (b) Borras-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Tsukerblat, B. S. Comput. Chem. 2001, 22, 985.
    [24] Kambe, K. Phys. Soc. Jpn. 1950, 5, 48.
    [25] Shores, M. P.; Sokol, J. J.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 2279.
    [26] Moushi, E. E.; Lampropoulos, C.; Wernsdorfer, W.; Nastopoulos, V.; Christou, G.; Tasiopoulos, A. J. Inorg. Chem. 2007, 46, 3795.
    [1] Manganese redox enzymes (Ed.: V. L. Pecoraro), VCH, Weinheim, 1992.
    [2] (a) K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science, 2004, 303, 1831; (b) A. Mishra, W. Wernsdorfer, K. A. Abboud, G. Christou, Chem. Comm., 2005, 1? 54.
    [3] (a) E. K. Brechin, M. Soler, G. Christou, J. Davidson, D. N. Hendrickson, S. Parsons, W. Wernsdorfer, Polyhedron, 2003, 22, 1771; (b) E. K. Brechin, M. Soler, G. Christou, M. Helliwell, S. J. Teat, W. Wernsdorfer, Chem. Comm., 2003, 11, 1276.
    [4] R. Sessoli, D. Gatteschi, D. N. Hendrickson, G. Christou, MRS Bull., 2000, 25, 66.
    [5] (a) J. R. Friedman, M. P. Sarachik, J. Tejada, R. Ziolo, Phys. Rev. Lett., 1996, 76, 3830; (b) L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara, Nature, 1996, 383, 145.
    [6] W. Wernsdorfer, N. Aliaga-Acaldse, D. N. Hendrickson, G. Christou, Nature, 2002, 416, 406.
    [7] (a) R. Sessoli, H. -L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, D. N. Hendrickson, J. Am. Chem.Soc., 1993, 115, 1804; (b) R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature, 1993, 365, 141.
    [8] (a) M. Soler, W. Wernsdorfer, K. Folting, M. Pink, G. Christou, J. Am. Chem. Soc., 2004, 126, 2156 and references therein; (b) A. J. Tasiopolous, A. Vinslava, W. Wernsdorfer, K. A. Abboud, G. Christou, Angew. Chem. Int. Ed., 2004, 43, 2117.
    [9] D. N. Hendrickson, G. Christou, H. Ishimoto, J. Yoo, E. K. Brechin, A. Yamaguchi, E. M. Rumberger, S. M. J. Aubin, Z. Sun, G. Aromi, Polyhedron, 2001, 20, 1479.
    [10] S. Maheswaran, G. Chastenet, S. J. Teat, T. Mallah, R. Sessoli, W. Wernsdorfer and R. E. P. Winpenny, Angew. Chem. Int. Ed., 2005, 44, 5044.
    [11] J. Rojo, F. J. Romero-Salguero, J. M. Lehn, G. Baum, D. Fenske, Eur. J. Inorg. Chem., 1999, 1421.
    [12] E. Breuning, U. Ziener, J. M. Lehn, E. Wegelius, K. Rissanen, Eur. J. Inorg. Chem., 2001, 1515.
    [13] R. W. Saalfrank, U. Reimann, M. Goritz, F. Hampel, A. Scheurer, F. W. Heinemann, M. Buschel, J. Daub, V. Schunemann, A. X. Trautwein, , Chem. Eur. J., 2002, 8, 3614.
    [14] R. W. Saalfrank, H. Glaser, B. Demleitner, F. Hampel, M. M. Chowdhry, V. Schunemann, A. X. Trautwein, G. B. M. Vaughan, R. Yeh, A. V. Davis, K. N. Raymond, Chem. Eur. J., 2002, 8, 493.
    [15] M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa, K. Biradha, Chem. Comm., 2001, 509.
    [16] A. Müller, P. K?gerler, Coord. Chem. Rev., 1999, 182, 3.
    [17] A. Müller, P. K?gerler, A. W. M. Dress, Coord. Chem. Rev., 2001, 222, 193.
    [18] (a) W. Liu, H. H. Thorp, Inorg. Chem. 1993, 32, 4102; (b) G. Donnay, R. Allman, Am. Mineral. 1970, 55, 1003.
    [19] (a) C-M. Liu, D-Q Zhang, D-B Zhu, Inorg. Chem. 2009, 48, 792; (b) A. Ferguson, A. Parkin, J. Sanchez-Benitez, K. Kamenev, W. Wernsdorferc, M. Murrie, Chem. Comm., 2007, 3473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700