用户名: 密码: 验证码:
中国6个民族群体HLA区域内TNF基因簇的核苷酸变异和单体型多态性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组(测序)计划的完成和测序技术的日臻成熟,许多研究组织对世界各地人群实施了大量的、有针对性的测序计划和分型计划。亚洲人群在世界人群中占有相当的比重,且中国不同民族群体的亲缘关系和疾病易感性的差异成为众多研究人员关注的焦点。在长期与环境相适应的进化过程中,种群动态、迁徙历史和选择压力等使中国人群形成了独特的亚群体。在核苷酸水平上研究群体的多态性,有助于了解中国民族群体的遗传结构,探测不同环境下群体所受的自然选择压力,以揭示不同民族群体对疾病易感性和药物反应的差异。我们选取了和人类免疫应答和免疫调控密切相关的HLA区域内TNF基因簇周围32kb片段,采用测序的方法检测了中国6个民族群体(1、山东汉族,2、黎族,3、广东汉族,4、彝族,5、藏族,6、蒙古族)在该区域内的SNP多态性,为中国人群和该区域相关疾病基因的定位、诊断、治疗和预防提供了基本的遗传信息。
     该32kb区域包含了5个重要的基因即:LTA、TNF、LTB、LST1和NCR3,其中LTA、TNF、LTB基因为TNF超家族成员。它们和许多人类免疫系统疾病相关,如心肌梗死、血脂症、远端结肠炎、麻疯病、强直性脊柱炎、银屑病关节炎、脑型疟、阿尔茨海默病等。另外,这5个基因,特别是TNF基因在调节免疫系统、抑制癌细胞、脂代谢、凝血、胰岛素抵抗等系统中发挥着重要功能。通过测序得到的多态位点中有8个SNP为上述某些疾病的致病突变位点,另外还有许多位点和上述疾病相关联。rs1041981与心肌梗死发病相关,在彝族中致病等位基因频率明显小于其它5个民族群体。rs2239704与麻风病的发病相关,我们所研究的北方群体(山东汉族、蒙古族)的致病等位基因频率略高于南方群体(广东汉族、黎族)。rs1800629与胰岛素抵抗相关,其致病等位基因在广东汉族和黎族代表的南方群体中频率较高。阿尔茨海默病的两个致病等位基因分别为TNF-850T和TNF-863A,前者在广东汉族中的频率较低,而后者在彝族和藏族群体中频率却较高。致病等位基因频率的差异反映了这6个群体疾病易感性的不同,清楚的了解中国不同民族群体的致病等位基因的频率差异将为疾病的研究提供帮助。
     我们一共找到了273个多态位点,包括242个碱基替换,3个STR和28个Indel。其中133个是新发现的多态位点,有13个为常见多态位点。在所有的多态位点中低频位点占73%,平均每117bp便存在一个多态位点,大量低频位点预示着种群扩展和自然选择的发生。依据总SNP位点、民族群体特有SNP位点的频率分布可以看出,来自北方的群体的遗传多态性要高于来自南方的群体。大量新的SNP位点表明中国人群中仍旧有较多的SNP位点未被检出,特别是那些能够反映群体差异的SNP位点和低频SNP位点。如果仅选用目前dbSNP数据库所提供的SNP来预测群体差异、种群动态和自然选择时势必存在较大偏差。在32kb区域内,基因间区、5'UTR的核苷酸多态性(π)较高,这些基因表达调控区域的高度多态性势必增加基因表达的差异性,有利于提高人群对环境的适应能力。编码区的核苷酸多态性较低,反映了这些基因具有重要功能,以及自然选择对编码区突变的严格控制。
     大量研究和证据表明中国人群经历了快速扩展的过程。歧点分布图近似钟形分布,Fs检验为显著的负值,Tajiama's D检验和Fu和Li的D以及F检验为负值提示:所研究的人群在历史上存在种群扩展过程。同样单体型进化树成放射状分布也证明人群扩展的发生。6个民族群体的种群扩展程度以来自北方群体的蒙古族和山东汉族较明显,而独居于海南岛上的黎族却未检测到种群扩展过程。
     该区域高度的核苷酸多态性提示了较高的染色体重组率和这5个基因在人群对环境适应过程中发挥的重要作用。HLA区域存在大量和免疫防御相关的基因,因此高度多态性是发挥防御功能的必要前提,染色体重组则有利于增加该区域多态性。在短短32kb区域内发现了大量单体型,单体型块被较多重组事件打断。相对于背景而言,某些区域的重组率较高,尽管6个群体的重组率变化的趋势相似但却各不相同。北方群体的染色体重组率要高于南方群体,但西南地区藏族的重组率最高,黎族的染色体重组率最低。在32kb区域内,所有群体在LTA基因和它前面的基因间区有一明显的单体型块,但其它区域的单体型块都被重组事件打断,重组事件打破了原有位点间的连锁不平衡,而使得关联分析难以用少量标签SNP覆盖大部分的多态位点。然而,染色体重组大大增加了基因组的多样性,从而增加了人群适应性。
     大量低频位点存在预示着自然选择的发生,多种检测方法均发现该区域受到了自然选择的作用。但是6个群体受到选择方式和强度并不相同,说明这6个群体在适应环境过程中逐渐产生了差异。LTA基因及前方基因间区可能受到了平衡选择作用,但只有黎族和彝族的显著,其它基因的基因区和启动子区可能受到了正或者负选择作用,但黎族和彝族却不明显。Fay和Wu的H检验发现所有群体在LTB、LSTl以及它们的启动子区都发生了选择扫荡,且广东汉族和蒙古族相对于其它4个群体要显著的多。染色体重组导致自然选择所产生的单体型模式快速的被破坏,而种群扩展、迁徙、亚群体、瓶颈效应同样也会使自然选择的检测出现显著的负值,因而检测的结果只能说明我们所研究的区域可能受到了自然选择的作用。
     HapMap为高精度高效率的全基因组关联分析提供基础,已经有众多的组织使用其数据进行疾病的关联研究。但由于HapMap样本代表性有限以及SNP的选择存在群体偏差,再加上亚洲群体结构的复杂性,而使得亚洲人群的疾病关联分析可能存在系统偏颇。染色体重组使得重组热点区成为关联分析的难点,而要覆盖重组高发区域的所有常见SNP,就必须增加标签SNP的量。HapMap在该区域检测了93个多态位点,并提供了关联分析时选用的标签SNP。但是,该区域较高的重组率和中国人群较多的常见SNP位点HapMap并未检测,而使得HapMap提供的标签SNP难以覆盖该区域中国人群的常见SNP,甚至丢失了约1/3的常见SNP。故在关联分析时需要更多的标签SNP来覆盖该区域的单体型信息,甚至需要全测序的方法才能准确探知与疾病关联的多态位点。我们的研究结果表明在使用SNP进行关联分析时,除考虑HapMap所提供的标签SNP外,应结合目标区域的染色体重组模式来调整标签SNP的分布。采用测序的方法,结合中国的人群结构,构建详尽的单体型图将为疾病基因的定位研究提供可靠的遗传基础。
After the release of the first draft of Human Genome,the advent of high throughput sequencing and genotyping methods push forward a various genomics projects and lead to portray the human genome in populations scale.Asian population takes a considerable proportion in the world's population,and lots of researchers are engaged in exploring the relationship and diseases susceptibility of different Chinese populations.Population dynamics,migration history and the pressure of natural selection has driven Chinese population into specific sub-groups on the long-term course of human evolution.To specifically investigate the genetic structure and polymorphism in major Chinese populations,we sequenced a 32-kb genomic region from the human Major Histocompatibility Complex with Shandong Han(SH), Guangdong Han(GH),Li(LI),Yi(YI),Tibetan(ZH),and Inner-Mongolian(MG). This will facilitate the researches not only disease mapping,but also in health care-related areas such as prevention,diagnosis,and treatment of disease.
     The 32-kb region comprises 5 important immune-related genes(LTA,TNF,LTB, LST1,and NCR3) which have relationship with a large number of human immune system diseases,such as myocardial infarction,dyslipidemia,distal colitis,leprosy, ankylosing spondylitis,rheumatoid arthritis,cerebral malaria and Alzheimer disease. In particular,tumor necrosis factor(TNF),a pre-inflammatory cytokine,plays important roles in lipid metabolism,blood coagulation,insulin resistance,and endothelial function.We also estimate the allele frequency of 8 polymorphic sites which are disease-causing mutations of some of those diseases.LTA,+804C-A (rs1041981) in the LTA gene that caused a threonine-to-asparagine substitution at codon 26 is significantly associated with increased risk for myocardial infarction.The LTA+804A allele's MAF of YI is much lower than that of other 5 populations.The low-producing LTA+80A allele is significantly associated with an increase in leprosy risk and LTA+80A's MAF is a little lower in southern Chinese population(GH,LI) than in northern Chinese population(SH,MG).TNF,-308G-A(rs1800629) genetic variants is associated with features of the insulin resistance syndrome and TNF-308A allele's MAF is higher in SH,LI than in GH,YI,ZH.TNF-850T and TNF-863A are associated with Alzheimer disease,TNF-850T allele's MAF is smaller in GH and TNF-863A allele is higher in YI,ZH which come from South-West of China.The different frequency of risk alleles in 6 Chinese populations indicates that various diseases susceptibility of them.
     From the 6 Chinese populations,273 polymorphic sites,including 242 SNPs,3 STRs,and 28 indels,are identified.133 sites among these are newly-discovered and not present in the dbSNP database(v.127),and 13 newly-discovered SNPs are common SNPs.Rare SNP take the proportion of 73%and there is one SNP per 117bp in the 32-kb region.The allele distributions of polymorphic site in 6 Chinese populations indicate that the northern Chinese are more polymorphic than southern Chinese in the studied region,population expansion in northern Chinese is more severely than that of southern Chinese.Lots of new SNPs was detected indicate that there in Chinese populations the human genome,especially for those rare SNPs and polymorphic sites which represent the differentiation between populations.Thus, using the SNPs from dbSNP to investigate population differentiation,population dynamics and natural selection,the results will lead to deviate from reality.High polymorphism in gene regulatory region,such as promoter,5'UTR and intron will increase the discrepancy of gene expression and improve the adaptation of human. Low polymorphism in coding region agree with the functional constrain of genes and high pressure of natural selection on mutation.
     Lots of evidences show that Chinese populations experience an expansion in history.A smooth,approximate bell-shaped mismatch distribution,significant negative value of Fs test and radial branches of minimum spanning network for haplotypes indicate expansion of 6 Chinese populations.Northern Chinese population represented by Inner-Mongolian and Shandong Han expand more severely than other
     4 populations.We don't detect population expansion of LI who lives alone on the Hainan Island.A large number of low-frequency SNPs also predict the occurrence of natural selection,high DNA polymorphism indicate not only that 5 genes play an important role in human adaptation to environment changes,but also high recombination rate of 32-kb region.
     Lots of genes in the HLA region participate in immune defense.High polymorphism of these genes will help for immune defense and high chromosome recombination will increase the gene polymorphism.The 32-kb region contains a rather loosely-formed linkage disequilibrium(LD) block and 2 to 3 genomic spots at elevated recombination rate.These lead to the observation of a high number of haplotypes.The recombination rate of some regions is higher relative to the background.Similar trend of recombination rate alone the 32-kb region in 6 Chinese populations,but there is a little different between them.Tibetan's recombination rate is highest and Li's recombination rate is lowest.Recombination rate of northern Chinese population is higher than southern Chinese population.There is only one distinct haplotype-block at LTA gene and intergenic region before it,but in the rest region no distinct haplotype-block exists because of recombination.Recombination events break the LD between loci and make it is difficult to predict the most of common SNPs by tag SNPs through the association study.
     Many tests have used for detecting natural selection on the 32-kb region,and we found that the pattern and intensity of selection are different in 6 Chinese populations. Balancing selection maybe has acted on LTA gene and intergenic region before it,but only significant in Li and Yi.Negative/positive selection maybe has acted on almost all of other genes and their promoter region,the value is significant in all populations except Li and Yi.Selective sweep has acted on LTB,LST1 and their promoter region in 6 Chinese populations,the Fay and Wu' H statistic is more significant in Guangdong Han,Inner-Mongolian than in other 4 populations.Recombination will decay the pattern constructed by natural selection and population expansion, migration,subpopulation,bottleneck can also cause many selection statistics to be significant negative,thus the natural selection maybe act on the region under study.
     The International HapMap Project has been instrumental in making well-powered, large-scale,genome-wide association studies a reality.It is now clear that the HapMap can be a useful resource for the design and analysis of disease association studies in populations across the world.The Asian population structure is complex and many populations specific common SNPs are still not identified.Disease association studies in Asian population will deviate from the reality when using tag SNPs from HapMap, because of inherent and intentional bias in sampling and rules used for SNP selection in HapMap project.It's also difficult for association studies to detect common SNPs in the region of recombination hotspot.One must increase the number of tag SNPs if he wants to cover the common SNPs in high recombination rate region when doing association study.In the 32-kb region,HapMap project select 93 SNPs and give 15 tag SNPs for association study.It would loss 1/3 common SNPs information when use these 15 tag SNPs because of high recombination rate of this region and lots of Chinese population specific common SNPs are not identified.A comprehensive search for genetic influences on disease would involve examining all genetic differences in a large number of affected individuals and controls.It may eventually become possible to accomplish this by complete genome resequencing.Finally, comparing to the data of the latest HapMap release in the 32-kb region,our resequencing effort captures more rare and Chinese-specific polymorphic sites.This shows that the Han data from HapMap database is not without problems of ascertainment bias.Extending the resequencing effort in larger genomic regions with Chinese populations will facilitate the researches not only in disease mapping,but also in health care-related areas such as prevention,diagnosis,and treatment of disease.
引文
1.Nickerson,D.A.,Taylor,S.L.,Weiss,K.M.,Clark,A.G,Hutchinson,R.G.,Stengard,J.,Salomaa,V.,Vartiainen,E.,Boerwinkle,E.& Sing,C.F.DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene.Nat Genet 19,233-40 (1998).
    2.Zhou,G,Zhai,Y.,Dong,X.,Zhang,X.,He,F.,Zhou,K.,Zhu,Y.,Wei,H.,Yao,Z.,Zhong,S.,Shen,Y,Qiang,B.& He,F.Haplotype structure and evidence for positive selection at the human IL13 locus.Mol Biol Evol 21,29-35 (2004).
    3.Beaty,T.H.,Fallin,M.D.,Hetmanski,J.B.,Mcintosh,I.,Chong,S.S.,Ingersoll,R.,Sheng,X.,Chakraborty,R.& Scott,A.F.Haplotype diversity in 11 candidate genes across four populations.Genetics 171,259-67 (2005).
    4.Soejima,M.,Tachida,H.,Ishida,T.,Sano,A.& Koda,Y Evidence for recent positive selection at the human AIM1 locus in a European population.Mol Biol Evol 23,179-88(2006).
    5.Baysal,B.E.,Lawrence,E.C.& Ferrell,R.E.Sequence variation in human succinate dehydrogenase genes:evidence for long-term balancing selection on SDHA.BMC Biol 5,12 (2007).
    6.Makova,K.D.,Ramsay,M.,Jenkins,T.& Li,W.H.Human DNA sequence variation in a 6.6-kb region containing the melanocortin 1 receptor promoter.Genetics 158,1253-68 (2001).
    7.Nakajima,T,Jorde,L.B.,Ishigami,T.,Umemura,S.,Emi,M.,Lalouel,J.M.& Inoue,I.Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations.Am J Hum Genet 70,108-23 (2002).
    8.Wooding,S.P.,Watkins,W.S.,Bamshad,M.J.,Dunn,D.M.,Weiss,R.B.& Jorde,L.B.DNA sequence variation in a 3.7-kb noncoding sequence 5' of the CYP1A2 gene:implications for human population history and natural selection.Am J Hum Genet 71,528-42 (2002).
    9.Zhao,Z.,Jin,L.,Fu,Y.X.,Ramsay,M.,Jenkins,T,Leskinen,E.,Pamilo,R,Trexler,M.,Patthy,L.,Jorde,L.B.,Ramos-Onsins,S.,Yu,N.& Li,W.H.Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22.Proc Natl Acad Sci USA 97,11354-8(2000).
    10.Zhao,Z.,Yu,N.,Fu,Y.X.& Li,W.H.Nucleotide variation and haplotype diversity in a 10-kb noncoding region in three continental human populations.Genetics 174,399-409 (2006).
    11.Yu,N.,Zhao,Z.,Fu,Y.X.,Sambuughin,N.,Ramsay,M.,Jenkins,T.,Leskinen,E.,Patthy,L.,Jorde,L.B.,Kuromori,T.& Li,W.H.Global patterns of human DNA sequence variation in a 10-kb region on chromosome 1.Mol Biol Evol 18,214-22 (2001).
    12.Kaessmann,H.,Heissig,F.,von Haeseler,A.& Paabo,S.DNA sequence variation in a non-coding region of low recombination on the human X chromosome.Nat Genet 22,78-81 (1999).
    13.The-International-HapMap-Consortium.A haplotype map of the human genome.Nature 437,1299-320 (2005).
    14.Strittmatter,W.J.& Roses,A.D.Apolipoprotein E and Alzheimer's disease.Annu Rev Neurosci 19,53-77 (1996).
    15.Altshuler,D.,Hirschhorn,J.N.,Klannemark,M.,Lindgren,CM.,Vohl,M.C.,Nemesh,J.,Lane,C.R.,Schaffher,S.F.,Bolk,S.,Brewer,C,Tuomi,T,Gaudet,D.,Hudson,T.J.,Daly,M.,Groop,L.& Lander,E.S.The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes.Nat Genet 26,76-80 (2000).
    16.Florez,J.C.,Hirschhorn,J.& Altshuler,D.The inherited basis of diabetes mellitus:implications for the genetic analysis of complex traits.Annu Rev Genomics Hum Genet 4,257-91 (2003).
    17.Begovich,A.B.,Carlton,V.E.,Honigberg,L.A.,Schrodi,S.J.,Chokkalingam,A.P.,Alexander,H.C.,Ardlie,K.G,Huang,Q.,Smith,A.M.,Spoerke,J.M.et al.A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22)is associated with rheumatoid arthritis.Am J Hum Genet 75,330-7 (2004).
    18.Ueda,H.,Howson,J.M.,Esposito,L.,Heward,J.,Snook,H.,Chamberlain,G,Rainbow,D.B.,Hunter,K.M.,Smith,A.N.,Di Genova,G et al.Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease.Nature 423,506-11 (2003).
    19.Hugot,J.P.,Chamaillard,M.,Zouali,H.,Lesage,S.,Cezard,J.P.,Belaiche,J.,Aimer,S.,Tysk,C,O'Morain,C.A.,Gassull,M.et al.Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.Nature 411,599-603 (2001).
    20.Edwards,A.O.,Ritter,R.,3rd,Abel,K.J.,Manning,A.,Panhuysen,C.& Fairer,L.A.Complement factor H polymorphism and age-related macular degeneration.Science 308,421-4(2005).
    21.Kerem,B.,Rommens,J.M.,Buchanan,J.A.,Markiewicz,D.,Cox,T.K.,Chakravarti,A.,Buchwald,M.& Tsui,L.C.Identification of the cystic fibrosis gene:genetic analysis.Science 245,1073-80 (1989).
    22.Bowcock,A.M.Genomics:guilt by association.Nature Ail,645-6 (2007).
    23.Frazer,K.A.,Ballinger,D.G.,Cox,D.R.,Hinds,D.A.,Stuve,L.L.,Gibbs,R.A.,Belmont,J.W.,Boudreau,A.,Hardenbol,P.,Leal,S.M.et al.A second generation human haplotype map of over 3.1 million SNPs.Nature 449,851-61 (2007).
    24.Altshuler,D.& Daly,M.Guilt beyond a reasonable doubt.Nat Genet 39,813-5 (2007).
    25.Myers,S.,Bottolo,L.,Freeman,C,McVean,G & Donnelly,P.A fine-scale map of recombination rates and hotspots across the human genome.Science 310,321-4 (2005).
    26.McCarroll,S.A.,Hadnott,T.N.,Perry,GH.,Sabeti,P.C.,Zody,M.C.,Barrett,J.C.,Dallaire,S.,Gabriel,S.B.,Lee,C,Daly,M.J.& Altshuler,D.M.Common deletion polymorphisms in the human genome.Nat Genet 38,86-92 (2006).
    27.Voight,B.F.,Kudaravalli,S.,Wen,X.& Pritchard,J.K.Amap of recent positive selection in the human genome.PLoS Biol 4,e72 (2006).
    28.Sabeti,P.C.,Reich,D.E.,Higgins,J.M.,Levine,H.Z.,Richter,D.J.,Schaffner,S.F.,Gabriel,S.B.,Platko,J.V.,Patterson,N.J.,McDonald,GJ.,Ackerman,H.C.,Campbell,S.J.,Altshuler,D.,Cooper,R.,Kwiatkowski,D.,Ward,R.& Lander,E.S.Detecting recent positive selection in the human genome from haplotype structure.Nature 419,832-7 (2002).
    29.Han,Y.,Gu,S.,Oota,H.,Osier,M.V.,Pakstis,A.J.,Speed,W.C.,Kidd,J.R.& Kidd,K.K.Evidence of positive selection on a class I ADH locus.Am J Hum Genet 80,441-56 (2007).
    30.Carlson,C.S.,Thomas,D.J.,Eberle,M.A.,Swanson,J.E.,Livingston,R.J.,Rieder,M.J.& Nickerson,D.A.Genomic regions exhibiting positive selection identified from dense genotype data.Genome Res 15,1553-65 (2005).
    31.Williamson,S.H.,Hubisz,M.J.,Clark,A.G,Payseur,B.A.,Bustamante,CD.& Nielsen,R.Localizing recent adaptive evolution in the human genome.PLoS Genet 3,e90 (2007).
    32.Barreiro,L.B.,Laval,G,Quach,H.,Patin,E.& Quintana-Murci,L.Nature selection hasdrivent population differentiation in modern humans.Nat Genet advance online publication(2008).
    33.Watterson,GA.On the number of segregating sites in genetical models without recombination.Theor Popul Biol 7,256-76 (1975).
    34.Rannala,B.& Mountain,J.L.Detecting immigration by using multilocus genotypes.Proc Natl Acad Sci USA 94,9197-201 (1997).
    35.Davies,N.,Villablanca,F.X.& Roderick,GK.Determining the source of individuals:multilocus genotyping in nonequilibrium population genetics.Trends Ecol Evol 14,17-21 (1999).
    36.Wright,S.The genetical structure of populations.Annals Eugenics 15,323-354 (1951).
    37.Nei,M.Molecular evolutionary genetics,(Columbia University Press,New York.,1987).
    38.Hudson,R.R.,Boos,D.D.& Kaplan,N.L.A statistical test for detecting geographic subdivision.Mol Biol Evol 9,138-51 (1992).
    39.Nei,M.Evolution of human races at the gene level 167-181 (New York:Alan R.Liss,1982).
    40.Lynch,M.& Crease,T.J.The analysis of population survey data on DNA sequence variation.Mol Biol Evol 7,377-94 (1990).
    41.Takahata,N.& Nei,M.F and G Statistics in the Finite Island Model.Genetics 107,501-504(1984).
    42.Stephens,M.,Smith,N.J.& Donnelly,P.A new statistical method for haplotype reconstruction from population data.Am J Hum Genet 68,978-89 (2001).
    43.KRUSKAL,J.B.On the shortest spanning subtree of the graph and the travelling salesman problem.Proc.Amer.Math.Soc 7,48-57 (1956).
    44.Bandelt,H.J.,Forster,P.,Sykes,B.C.& Richards,M.B.Mitochondrial portraits of human populations using median networks.Genetics 141,743-53 (1995).
    45.Bandelt,H.J.,Forster,P.& Rohl,A.Median-joining networks for inferring intraspecific phytogenies.Mol Biol Evol 16,37-48 (1999).
    46.Barrett,J.C,Fry,B.,Mailer,J.& Daly,M.J.Haploview:analysis and visualization of LD and haplotype maps.Bioinformatics 21,263-5 (2005).
    47.Mueller,J.C.Linkage disequilibrium for different scales and applications.Brief Bioinform 5,355-64 (2004).
    48.Hudson,R.R.Two-locus sampling distributions and their application.Genetics 159,1805-17(2001).
    49.McVean,G,Awadalla,P.& Fearnhead,P.A coalescent-based method for detecting and estimating recombination from gene sequences.Genetics 160,1231-41 (2002).
    50.McVean,GA.,Myers,S.R.,Hunt,S.,Deloukas,P.,Bentley,D.R.& Donnelly,P.The fine-scale structure of recombination rate variation in the human genome.Science 304,581-4(2004).
    51.Auton,A.& McVean,G Recombination rate estimation in the presence of hotspots.Genome Res 17,1219-27 (2007).
    52.Rogers,A.R.& Harpending,H.Population growth makes waves in the distribution of pairwise genetic differences.Mol Biol Evol 9,552-69 (1992).
    53.Ray,N.,Currat,M.& Excoffier,L.Intra-deme molecular diversity in spatially expanding populations.Mol Biol Evol 20,76-86 (2003).
    54.Excoffier,L.Patterns of DNA sequence diversity and genetic structure after a range expansion:lessons from the infinite-island model.Mol Ecol 13,853-64 (2004).
    55.Fu,Y.X.Statistical tests of neutrality of mutations against population growth,hitchhiking and background selection.Genetics 147,915-25 (1997).
    56.Ramos-Onsins,S.E.& Rozas,J.Statistical properties of new neutrality tests against population growth.Mol Biol Evol 19,2092-100 (2002).
    57.Jobling,M.A.,Hurles,M.E.& Tyler-Smith,C.Human evolutionary genetics:Origins, peoples and disease,(2004).
    58.Zeng,K.,Fu,Y.X.,Shi,S.& Wu,C.I.Statistical tests for detecting positive selection by utilizing high-frequency variants.Genetics 174,1431-9 (2006).
    59.Tajima,F.Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics 123,585-95 (1989).
    60.Fu,Y.X.& Li,W.H.Statistical tests of neutrality of mutations.Genetics 133,693-709 (1993).
    61.Fay,J.C.& Wu,C.I.Hitchhiking under positive Darwinian selection.Genetics 155,1405-13 (2000).
    62.Zeng,K.,Shi,S.& Wu,C.I.Compound tests for the detection of hitchhiking under positive selection.Mol Biol Evol 24,1898-908 (2007).
    63.Bamshad,M.& Wooding,S.P.Signatures of natural selection in the human genome.Nat Rev Genet 4,99-111 (2003).
    64.The-International-HapMap-Consortium.The International HapMap Project.Nature 426,789-96 (2003).
    65.Chu,J.Y.,Huang,W.,Kuang,S.Q.,Wang,J.M.,Xu,J.J.,Chu,Z.T.,Yang,Z.Q.,Lin,K.Q.,Li,P.,Wu,M.,Geng,Z.C.,Tan,C.C.,Du,R.F.& Jin,L.Genetic relationship of populations in China.Proc Natl AcadSci USA 95,11763-8 (1998).
    66.Jakobsson,M.,Scholz,S.W.,Scheet,P.,Gibbs,J.R.,VanLiere,J.M.,Fung,H.C.,Szpiech,Z.A.,Degnan,J.H.,Wang,K.,Guerreiro,R.et al.Genotype,haplotype and copy-number variation in worldwide human populations.Nature 451,998-1003 (2008).
    67.Li,J.Z.,Absher,D.M.,Tang,H.,Southwick,A.M.,Casto,A.M.,Ramachandran,S.,Cann,H.M.,Barsh,GS.,Feldman,M.,Cavalli-Sforza,L.L.& Myers,R.M.Worldwide human relationships inferred from genome-wide patterns of variation.Science 319,1100-4(2008).
    68.Rosenberg,N.A.,Pritchard,J.K.,Weber,J.L.,Cann,H.M.,Kidd,K.K.,Zhivotovsky,L.A.& Feldman,M.W.Genetic structure of human populations.Science 298,2381-5 (2002).
    69.Jin,L.& Su,B.Natives or immigrants:modern human origin in east Asia.Nat Rev Genet 1,126-33(2000).
    70.Xue,F,Wang,Y,Xu,S.,Zhang,F.,Wen,B.,Wu,X.,Lu,M.,Deka,R.,Qian,J.& Jin,L.A spatial analysis of genetic structure of human populations in China reveals distinct difference between maternal and paternal lineages.Eur J Hum Genet (2008).
    71.Lo,J.C,Wang,Y,Tumanov,A.V.,Bamji,M.,Yao,Z.,Reardon,C.A.,Getz,GS.& Fu,Y.X.Lymphotoxin beta receptor-dependent control of lipid homeostasis.Science 316,285-8 (2007).
    72.Koss,K.,Satsangi,J.,Fanning,GC,Welsh,K.I.& Jewell,D.P.Cytokine (TNF alpha,LT alpha and IL-10)polymorphisms in inflammatory bowel diseases and normal controls:differential effects on production and allele frequencies.Genes Immun 1,185-90 (2000).
    73.Ozaki,K.,Ohnishi,Y,Iida,A.,Sekine,A.,Yamada,R.,Tsunoda,T.,Sato,H.,Sato,H.,Hori,M.,Nakamura,Y & Tanaka,T.Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction.Nat Genet 32,650-4(2002).
    74.Knight,J.C,Keating,B.J.& Kwiatkowski,D.P.Allele-specific repression of lymphotoxin-alpha by activated B cell factor-1.Nat Genet 36,394-9 (2004).
    75.Alcais,A.,Alter,A.,Antoni,G,Orlova,M.,Nguyen,V.T.,Singh,M.,Vanderborght,PR.,Katoch,K.,Mira,M.T.,Vu,H.T.,Ngyuen,T.H.,Nguyen,N.B.,Moraes,M.,Mehra,N.,Schurr,E.& Abel,L.Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy.Nat Genet 39,517-22 (2007).
    76.Aggarwal,B.B.,Eessalu,T.E.& Hass,RE.Characterization of receptors for human tumour necrosis factor and their regulation by gamma-interferon.Nature 318,665-7 (1985).
    77.Brenner,D.A.,O'Hara,M.,Angel,P.,Chojkier,M.& Karin,M.Prolonged activation of jun and collagenase genes by tumour necrosis factor-alpha.Nature 337,661-3 (1989).
    78.Obeid,L.M.,Linardic,CM.,Karolak,L.A.& Hannun,Y.A.Programmed cell death induced by ceramide.Science 259,1769-71 (1993).
    79.Boyman,O.,Hefti,H.P.,Conrad,C,Nickoloff,B.J.,Suter,M.& Nestle,F.O.Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha.J Exp Med 199,731-6 (2004).
    80.Gorman,J.D.,Sack,K.E.& Davis,J.C.,Jr.Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor alpha.N Engl J Med 346,1349-56 (2002).
    81.Nadkarni,S.,Mauri,C.& Ehrenstein,M.R.Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta.J Exp Med 204,33-9 (2007).
    82.Keane,J.,Gershon,S.,Wise,R.P.,Mirabile-Levens,E.,Kasznica,J.,Schwieterman,W.D.,Siegel,J.N.& Braun,M.M.Tuberculosis associated with infliximab,a tumor necrosis factor alpha-neutralizing agent.N Engl J Med 345,1098-104 (2001).
    83.Rasmussen,S.K.,Urhammer,S.A.,Jensen,J.N.,Hansen,T.,Borch-Johnsen,K.& Pedersen,O.The-238 and-308 G~>A polymorphisms of the tumor necrosis factor alpha gene promoter are not associated with features of the insulin resistance syndrome or altered birth weight in Danish Caucasians.J Clin Endocrinol Metab 85,1731-4 (2000).
    84.Knight,J.C.,Udalova,I.,Hill,A.V.,Greenwood,B.M.,Peshu,N.,Marsh,K.& Kwiatkowski,D.A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria.Nat Genet 22,145-50 (1999).
    85.Nakamura,T,Tashiro,K.,Nazarea,M.,Nakano,T.,Sasayama,S.& Honjo,T.The murine lymphotoxin-beta receptor cDNA:isolation by the signal sequence trap and chromosomal mapping.Genomics 30,312-9 (1995).
    86.Browning,J.L.,Ngam-ek,A.,Lawton,P.,DeMarinis,J.,Tizard,R.,Chow,E.P.,Hession,C,O'Brine-Greco,B.,Foley,S.F.& Ware,C.F.Lymphotoxin beta,a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface.Cell 72,847-56(1993).
    87.Holzinger,I.,de Baey,A.,Messer,G,Kick,G,Zwierzina,H.& Weiss,E.H.Cloning and genomic characterization of LST1:a new gene in the human TNF region.Immunogenetics 42,315-22 (1995).
    88.Rollinger-Holzinger,I.,Eibl,B.,Pauly,M.,Griesser,U.,Hentges,F.,Auer,B.,Pall,G,Schratzberger,P.,Niederwieser,D.,Weiss,E.H.& Zwierzina,H.LST1:a gene with extensive alternative splicing and immunomodulatory function.J Immunol 164,3169-76(2000).
    89.Mulcahy,H.,O'Rourke,K.P.,Adams,C,Molloy,M.G & O'Gara,F.LST1 and NCR3 expression in autoimmune inflammation and in response to IFN-gamma,LPS and microbial infection.Immunogenetics 57,893-903 (2006).
    90.Sato,M.,Ohashi,J.,Tsuchiya,N.,Tadokoro,K.,Juji,T.,Hanaoka,K.,Tokunaga,K.& Yabe,T.Identification of novel single nucleotide substitutions in the NKp30 gene expressed in human natural killer cells.Tissue Antigens 58,255-8 (2001).
    91.Pende,D.,Parolini,S.,Pessino,A.,Sivori,S.,Augugliaro,R.,Morelli,L.,Marcenaro,E.,Accame,L.,Malaspina,A.,Biassoni,R.,Bottino,C,Moretta,L.& Moretta,A.Identification and molecular characterization of NKp30,a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells.J Exp Med 190,1505-16(1999).
    92.Delahaye,N.F.,Barbier,M.,Fumoux,F.& Rihet,R Association analyses of NCR3 polymorphisms with P.falciparum mild malaria.Microbes Infect 9,160-6 (2007).
    93.Botstein,D.& Risch,N.Discovering genotypes underlying human phenotypes:past successes for mendelian disease,future approaches for complex disease.Nat Genet 33 Suppl,228-37 (2003).
    94.Kruglyak,L.& Nickerson,D.A.Variation is the spice of life.Nat Genet 27,234-6 (2001).
    95.Reich,D.E.,Gabriel,S.B.& Altshuler,D.Quality and completeness of SNP databases.Nat Genet 33,457-8 (2003).
    96.Gabriel,S.B.,Schaffher,S.F.,Nguyen,H.,Moore,J.M.,Roy,J.,Blumenstiel,B.,Higgins,J.,DeFelice,M.,Lochner,A.,Faggart,M.,Liu-Cordero,S.N.,Rotimi,C,Adeyemo,A.,Cooper,R.,Ward,R.,Lander,E.S.,Daly,M.J.& Altshuler,D.The structure of haplotype blocks in the human genome.Science 296,2225-9 (2002).
    97.Daly,M.J.,Rioux,J.D.,Schaffher,S.F.,Hudson,T.J.& Lander,E.S.High-resolution haplotype structure in the human genome.Nat Genet 29,229-32 (2001).
    98.Chakravarti,A.Population genetics-making sense out of sequence.Nat Genet 21,56-60(1999).
    99.Muller,H.J.The Relation of Recombination to Mutational Advance.Mutat Res 106,2-9 (1964).
    100.Schierup,M.H.& Hein,J.Consequences of recombination on traditional phylogenetic analysis.Genetics 156,879-91 (2000).
    1.Lander,E.S.The new genomics:global views of biology.Science 274,536-9(1996).
    2.Xing,C.,Schumacher,F.R.,Xing,G.,Lu,Q.,Wang,T.& Elston,R.C.Comparison of microsatellites,single-nucleotide polymorphisms(SNPs)and composite markers derived from SNPs in linkage analysis.BMC Genet 6 Suppl 1,S29(2005).
    3.Birney,E.,Stamatoyannopoulos,J.A.,Dutta,A.,Guigo,R.,Gingeras,T.R.,Margulies,E.H.,Weng,Z.,Snyder,M.,Dermitzakis,E.T.,Thurman,R.E.et al.Identification and analysis of functional elements in 1%of the human genome by the ENCODE pilot project.Nature 447,799-816(2007).
    4.Bustamante,C.D.,Fledel-Alon,A.,Williamson,S.,Nielsen,R.,Hubisz,M.T.,Glanowski,S.,Tanenbaum,D.M.,White,T.J.,Sninsky,J.J.,Hernandez,R.D.,Civello,D.,Adams,M.D.,Cargill,M.& Clark,A.G.Natural selection on protein-coding genes in the human genome.Nature 437,1153-7(2005).
    5.Guthery,S.L.,Salisbury,B.A.,Pungliya,M.S.,Stephens,J.C.& Bamshad,M.The structure of common genetic variation in United States populations.Am J Hum Genet 81,1221-31(2007).
    6.Livak,K.J.,Marmaro,J.& Todd,J.A.Towards fully automated genome-wide polymorphism screening.Nat Genet 9,341-2(1995).
    7.Ji,M.,Hou,P.,Li,S.,He,N.& Lu,Z.Microarray-based method for genotyping of functional single nucleotide polymorphisms using dual-color fluorescence hybridization.Mutat Res 548,97-105(2004).
    8.Di Giusto,D.& King,G.C.Single base extension(SBE) with proofreading polymerases and phosphorothioate primers:improved fidelity in single-substrate assays.Nucleic Acids Res 31,e7(2003).
    9.Lindroos,K.,Sigurdsson,S.,Johansson,K.,Ronnblom,L.& Syvanen,A.C.Multiplex SNP genotyping in pooled DNA samples by a four-colour microarray system.Nucleic Acids Res 30,e70(2002).
    1O.Watson,R.M.,Griaznova,O.I.,Long,C.M.& Holland,M.J.Increased sample capacity for genotyping and expression profiling by kinetic polymerase chain reaction.Anal Biochem 329,58-67(2004).
    11.Lareu,M.,Sobrino,B.& Phillips,C.Typing Y-chromosome single nucleotide polymorphisms with DNA microarray technology.Internationl Congress Series,21-25(2003).
    12.Fang,N.Y.,Greiner,T.C.,Weisenburger,D.D.,Chan,W.C.,Vose,J.M.,Smith,L.M.,Armitage,J.O.,Mayer,R.A.,Pike,B.L.,Collins,F.S.& Hacia,J.G.Oligonucleotide microarrays demonstrate the highest frequency of ATM mutations in the mantle cell subtype of lymphoma.Proc Natl Acad Sci U S A 100,5372-7(2003).
    13.O'Meara,D.,Ahmadian,A.,Odeberg,J.& Lundeberg,J.SNP typing by apyrase- mediated allele-specific primer extension on DNA microarrays.Nucleic Acids Res 30,e75 (2002).
    14.Landegren,U.,Kaiser,R.,Sanders,J.& Hood,L.A ligase-mediated gene detection technique.Science 241,1077-80 (1988).
    15.Huber,M.,Losert,D.,Hiller,R.,Harwanegg,C,Mueller,M.W.& Schmidt,W.M.Detection of single base alterations in genomic DNA by solid phase polymerase chain reaction on oligonucleotide microarrays.Anal Biochem 299,24-30 (2001).
    16.Shapero,M.H.,Leuther,K.K.,Nguyen,A.,Scott,M.& Jones,K.W.SNP genotyping by multiplexed solid-phase amplification and fluorescent minisequencing.Genome Res 11,1926-34(2001).
    17.Sanger,F.,Nicklen,S.& Coulson,A.R.DNA sequencing with chain-terminating inhibitors.Proc Natl Acad Sci USA 74,5463-7 (1977).
    18.Hall,N.Advanced sequencing technologies and their wider impact in microbiology.J Exp Biol 210,1518-25 (2007).
    19.Ronaghi,M.,Karamohamed,S.,Pettersson,B.,Uhlen,M.& Nyren,P.Real-time DNA sequencing using detection of pyrophosphate release.Anal Biochem 242,84-9 (1996).
    20.Wicker,T.,Schlagenhauf,E.,Graner,A.,Close,T.J.,Keller,B.& Stein,N.454 sequencing put to the test using the complex genome of barley.BMC Genomics 7,275(2006).
    21.Bennett,S.Solexa Ltd.Pharmacogenomics 5,433-8 (2004).
    22.Bennett,S.T.,Barnes,C,Cox,A.,Davies,L.& Brown,C.Toward the 1,000 dollars human genome.Pharmacogenomics 6,373-82 (2005).
    23.Shendure,J.,Porreca,G.J.,Reppas,N.B.,Lin,X.,McCutcheon,J.P.,Rosenbaum,A.M.,Wang,M.D.,Zhang,K.,Mitra,R.D.& Church,G.M.Accurate multiplex polony sequencing of an evolved bacterial genome.Science 309,1728-32 (2005).
    24.Kasianowicz,J.J.,Brandin,E.,Branton,D.& Deamer,D.W.Characterization of individual polynucleotide molecules using a membrane channel.Proc Natl Acad Sci U S A 93,13770-3(1996).
    25.Ryan,D.,Rahimi,M.,Lund,J.,Mehta,R.& Parviz,B.A.Toward nanoscale genome sequencing.Trends Biotechnol 25,385-9 (2007).
    26.Margulies,M.,Egholm,M.,Altman,W.E.,Attiya,S.,Bader,J.S.,Bemben,L.A.,Berka,J.,Braverman,M.S.,Chen,Y.J.,Chen,Z.et al.Genome sequencing in microfabricated high-density picolitre reactors.Nature 437,376-80 (2005).
    27.Shendure,J.,Mitra,R.D.,Varma,C.& Church,G.M.Advanced sequencing technologies:methods and goals.Nat Rev Genet 5,335-44 (2004).
    28.Redon,R.,Ishikawa,S.,Fitch,K.R.,Feuk,L.,Perry,G.H.,Andrews,T.D.,Fiegler,H.,Shapero,M.H.,Carson,A.R.,Chen,W.et al Global variation in copy number in the human genome.Nature 444,444-54 (2006).
    29.Wong,K.K.,deLeeuw,R.J.,Dosanjh,N.S.,Kimm,L.R.,Cheng,Z.,Horsman,D.E.,MacAulay,C,Ng,R.T.,Brown,C.J.,Eichler,E.E.& Lam,W.L.A comprehensive analysis of common copy-number variations in the human genome.Am J Hum Genet 80,91-104(2007).
    30.Feuk,L.,Carson,A.R.& Scherer,S.W.Structural variation in the human genome.Nat Rev Genet 7,85-97 (2006).
    31.McCarroll,S.A.,Hadnott,T.N.,Perry,G.H.,Sabeti,P.C.,Zody,M.C.,Barrett,J.C.,Dallaire,S.,Gabriel,S.B.,Lee,C,Daly,M.J.& Altshuler,D.M.Common deletion polymorphisms in the human genome.Nat Genet 38,86-92 (2006).
    32.Buckland,P.R.Polymorphically duplicated genes:their relevance to phenotypic variation in humans.Ann Med35,308-15 (2003).
    33.Nguyen,D.Q.,Webber,C.& Ponting,C.P.Bias of selection on human copy-number variants.PLoS Genet 2,e20 (2006).
    34.Repping,S.,van Daalen,S.K.,Brown,L.G.,Korver,CM.,Lange,J.,Marszalek,J.D.,Pyntikova,T.,van der Veen,F.,Skaletsky,H.,Page,D.C.& Rozen,S.High mutation rates have driven extensive structural polymorphism among human Y chromosomes.Nat Genet 38,463-7 (2006).
    35.Shao,W.,Tang,J.,Song,W.,Wang,C,Li,Y.,Wilson,CM.& Kaslow,R.A.CCL3L1 and CCL4L1:variable gene copy number in adolescents with and without human immunodeficiency virus type 1 (HIV-1)infection.Genes Immun 8,224-31 (2007).
    36.Sebat,J.,Lakshmi,B.,Troge,J.,Alexander,J.,Young,J.,Lundin,P.,Maner,S.,Massa,H.,Walker,M.,Chi,M.et al.Large-scale copy number polymorphism in the human genome.Science 305,525-8 (2004).
    37.Stranger,B.E.,Forrest,M.S.,Dunning,M.,Ingle,C.E.,Beazley,C,Thorne,N.,Redon,R.,Bird,C.P.,de Grassi,A.,Lee,C,Tyler-Smith,C,Carter,N.,Scherer,S.W.,Tavare,S.,Deloukas,P.,Hurles,M.E.& Dermitzakis,E.T.Relative impact of nucleotide and copy number variation on gene expression phenotypes.Science 315,848-53 (2007).
    38.Solinas-Toldo,S.,Lampel,S.,Stilgenbauer,S.,Nickolenko,J.,Benner,A.,Dohner,H.,Cremer,T.& Lichter,P.Matrix-based comparative genomic hybridization:biochips to screen for genomic imbalances.Genes Chromosomes Cancer 20,399-407 (1997).
    39.Pinkel,D.,Segraves,R.,Sudar,D.,Clark,S.,Poole,I.,Kowbel,D.,Collins,C,Kuo,W.L.,Chen,C,Zhai,Y.,Dairkee,S.H.,Ljung,B.M.,Gray,J.W.& Albertson,D.G.High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays.Nat Genet 20,207-11 (1998).
    40.Lucito,R.,Healy,J.,Alexander,J.,Reiner,A.,Esposito,D.,Chi,M.,Rodgers,L.,Brady,A.,Sebat,J.,Troge,J.,West,J.A.,Rostan,S.,Nguyen,K.C.,Powers,S.,Ye,K.Q.,Olshen,A.,Venkatraman,E.,Norton,L.& Wigler,M.Representational oligonucleotide microarray analysis:a high-resolution method to detect genome copy number variation.Genome Res 13,2291-305 (2003).
    41.Hollox,E.J.,Akrami,S.M.& Armour,J.A.DNA copy number analysis by MAPH:molecular diagnostic applications.Expert Rev Mol Diagn 2,370-8 (2002).
    42.Armour,J.A.,Sismani,C,Patsalis,P.C.& Cross,G.Measurement of locus copy number by hybridisation with amplifiable probes.Nucleic Acids Res 28,605-9 (2000).
    43.Schouten,J.P.,McElgunn,C.J.,Waaijer,R.,Zwijnenburg,D.,Diepvens,F.& Pals,G.Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification.Nucleic Acids Res 30,e57 (2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700