用户名: 密码: 验证码:
城市碳基能源代谢结构分异与演变机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市部门结构调整引发的碳基能源代谢时空异构性是城市地域系统中矛盾最尖锐的人地关系之一,城市碳基能源代谢结构分异与演变机理分析是因地制宜解决该问题的重要基奠。以“城市产业结构调整如何引发碳基能源代谢变化”这一问题为核心,将城市碳基能源流与人流、经济流耦合叠置,通过界定碳基能源代谢核算范畴与边界来阐释自然系统与社会经济系统的反馈耦合边界;通过分析城市部门碳基能源代谢结构分异来阐释社会经济子系统中人流、经济流与自然子系统中碳基能源流耦合叠置的相互联系特点;通过分析不同空间人流、经济流的碳基能源代谢结构与格局来阐释城市地域系统的人地耦合的空间相关性与分异性;通过分析结构、空间、时间维度碳基能源代谢的驱动机制来阐释城市地域系统人地相互作用的机理。总体上构建碳基能源代谢的结构-格局-过程(碳锥)三维分析框架,借鉴城市空间结构、产业结构、空间分析等方面的计量方法,建立城市碳锥分析模型,以北京市为典型案例,研究人口变化、产业调整引起的城市碳基能源代谢结构分异、空间变化及演变机理,得出以下结论:
     (1)基于空间要素流的城市碳基能源代谢分类有助于增加碳排放核算的规范性和可比性。基于地理边界、足迹区和地理边界+的碳基能源代谢核算既能描述生产过程的碳排放,又能刻画产业链过程的碳排放,可进一步增强产业与能源结构调整、消费模式转变所导致的碳排放核算的规范性和可比性,有助于制定更有操作性的碳减排约束政策。不同边界与范畴下的碳基能源代谢核算能描述了不同程度的人地关系紧张程度,三种核算方法从不同层面揭示了城市社会经济发展的碳基能源代谢特点。
     (2)城市碳基能源代谢结构-格局-过程分析框架(碳锥概念模型)多层面和多尺度揭示了城市碳基能源代谢的演变特点。通过城市碳基能源代谢结构的进一步分解,突破了仅从部门产值结构进行分析的局限性,突出了对外服务结构和关联网络结构以及空间结构在理解城市碳基能源代谢方面的开放性和复杂性,可在明确碳减排关键部门的基础上能够进一步阐释城市之间的碳减排关联和定位碳减排敏感部门,还能进一步呈现城市碳基能源代谢的地域网络、圈层模式以及空间集聚分散的分异过程,进而多尺度和多层面展示了城市碳基能源代谢的开放性、复杂性和动态性。
     (3)城市碳基能源代谢结构-格局-过程集成模型(碳锥分析模型)多维度测度了碳基能源代谢结构,综合阐释了碳基能源代谢演变规律。将人流、经济(产业)流与碳基能源流进行耦合叠置,以及与改进的EIO-LCA模型、空间分析模型进行综合集成而构建的城市碳锥分析模型,可有效整合基于产业的结构分异和基于人口集散的空间分异分析方法,并使其能够对城市碳基代谢进行多维测度,有助于从初始投入结构、最终需求结构、最终产出结构层面综合解释碳基能源代谢演变机制。
     (4)北京市部门、对外服务、产业关联的碳基能源代谢结构变化分别具有阶段性-部门性、交替演变性、生产过程与产业异位性的特点。北京市碳基能源代谢总量与强度呈现不同的部门特点,并依工业行业类型及碳排放量而存在位序-规模分布和倒U型分布等分布模式。对外服务碳基能源代谢潜力“退二进三”的产业变化趋向明显,对外服务碳基能源代谢能力呈现行业波动增长的状态,城市对外服务所带来的经济增长效益低于所带来的资源压力与环境影响。碳基能源代谢关联程度高的部门碳排放变化波动大,关联程度低的部门变化相对平稳;高直接碳排部门的隐含碳排放并不一定高,直接碳排放相对较低的部门隐含碳排放可能居高不下。
     (5)北京市碳基能源代谢存在明显的圈层结构。空间等级结构整体上表现为核心-外围模式,但网络结构的雏形已经显现,且碳排放中心与人口、经济中心错位,功能地域结构呈现为圈层结构上的斑块化,圈层之间受产业异质性冲击而形成新的代谢类型。各区县根据不同的代谢特点可分为4种碳基能源代谢区域,因地域分工变化而表现出不同的演变规律与地域组合。街区碳基能源代谢的空间增长模式属于人口规模驱动型发展(扩散式1型、集聚式2型),中心区与外围区交接地带可能存在高能耗产业驱动的代谢模式(极化式2型、扩散式2型)。
     (6)北京市碳基能源代谢与经济增长存在长期均衡关系,产业投入产出结构从多层面影响碳基能源代谢变化。城市、部门经济发展与其碳基能源代谢变化表现为总体上的直线型与农业、工业部门的倒U型演变态势,但工业分行业的扩张性负脱钩及扩张性耦合则进一步表明经济发展速度总体上要高于碳排放增长速度,进而说明初始要素投入结构、最终消费结构、最终需求结构变化对碳排放增加的比较突出。
     本研究的主要贡献为:(1)基于空间要素流视角提出地理边界、足迹区、地理边界+的碳基能源代谢核算方法体系,能够弥补已有研究中基于生产和消费碳排放核算方法中存在的重要缺陷,有助于揭示社会经济发展对资源耗竭与环境变化的影响。(2)城市碳基能源代谢结构的多维分解及其城市碳锥分析模型的构建,以及对城市碳基能源代谢产业结构、空间结构、关联网络结构和时间演变的有效测度,在很大程度上突破了单一产业碳排放结构分析的局限,不仅有助于揭示城市碳基能源代谢的开放性、复杂性和动态性,而且有助于进一步阐释城市、部门经济发展与碳基能源代谢变化的复杂关系,还能为制定因时因地的碳减排约束政策提供理论依据。
Face to the challenge of global climate change and the depletion of natural resources, the study ofcarbon emissions is an important breakthrough. And the industrial restructuring is becoming the key pointfor the low-carbon development in urban area. However, existing empirical results showed that theadjustment of industrial structure does not play an obviously contribution to the carbon emissions reduction.Therefore, there is a doubt on the proposition that whether there is an effect of adjustment of the industrialstructure to promote the development of low-carbon urban area. Urban area is as a high degree of opennessof the system, energy consumption and carbon emission show some new features during the process ofurban factor mobility. Based on the output value structure of the city's economic activities, the externalservice structure, industry association network structure, and the start point of city carbon emissioncalculation, this paper broadens the connotation of industrial structure, build a structure-pattern-process(carbon cone) model of carbon-based energy metabolism to analyze urban carbon emissions factorsconstitution,spatial evolution, and thus to answer which departments and geographical unit should beadjusted, and what means is effect in the low-carbon urban development process.
     Focus on the weaknesses research of urban scale carbon emissions accounting, as well as the urbanmetabolism of defects on the socio-economic subsystem of carbon-based energy transfer analysis, based onthe interpretation of the carbon footprint and urban metabolism, this paper interpreted the connotation ofcarbon emissions, defined the scope of its accounting boundary and divided urban complex ecosystemcarbon-based energy four kinds of areas of different metabolic processes accounting object. Studiessuggested that carbon emissions is a group of low-carbon eco-city index system for the measurement of theuse of resources and the environment in the urban social and economic development process. Threeaccounting type revealed the characteristics of carbon emissions. The three combinations cancomprehensively analysis the impact path and law on the development of low-carbon eco-city from theenergy structure adjustment, resident lifestyle changes.
     For the openness of the city as well as the complexity of urban carbon emissions, this paper built amodel of structure-pattern-process (carbon cone) for urban carbon-based energy metabolism study. Theindustry is as an important carrier of the Urban Elements stream of carbon-based energy metabolismstudies, not only to analyze the closed cities’ industrial carbon emissions structure, but also to study thepotential and capabilities of carbon-based energy metabolism under the different theories assume and urbanforeign Service, as well as carbon emissions interaction network structure in the different industrial chain.Based on the research of the spatial structure of the spatial distribution and combination, this paper studiedthe spatial structure, spatial differentiation and growth characteristics of carbon emissions from the level,function, growth, structure. Carbon emissions from different departments/space with the improvement ofthe level of economic development showed regularity type or oscillatory dynamic transformation. And thenit analyzed and verified of carbon emissions and economic development relationship from the inverted U-shaped, inverted N-type, inverted L-shaped. Combination of economic growth, industrial restructuring,the geographical division of labor theory, the paper studied the dynamic mechanism of the evolution ofcarbon-based energy metabolism causal contact mechanisms, gathering diffusion mechanism, from thedriving force of economic growth, structural adjustment bonus level of industrial agglomerationadvantages.A case study for Beijing was taken to explore the structural differentiation, spatial variation andevolution mechanism of urban carbon-based energy metabolism. The conclusions are following:
     (1) Carbon-based energy metabolism accountings in different border and scope could describedifferent levels of tension for the relationship between human and earth. Three accounting methods revealthe metabolic characteristics for urban social and economic development from different point of view,including accounting in geographic boundaries, accounting in geographic boundaries+and accounting infootprint area. Each accounting method has its own characteristics, of which to be chosen depending on theavailable data and the targeted research objectives, in order to fortify criteria and raise comparabilitybetween research results.
     (2) The human flow, economic flow and carbon-based energy flow are important parameters tocharacterize structural differentiation and spatial pattern evolution for urban terrain systems. Thestructure-pattern-process analysis for urban carbon-based energy metabolism is proved to be a newperspective to study the response of carbon-based energy metabolism to sector restructuring. Carbon-basedenergy metabolism structure includes not only the static departments’ metabolism, also include the dynamicexternal services and network metabolism. Structure-pattern-process analysis for urban carbon-basedenergy metabolism was comprehensively integrated from structural dimension, space and time dimension.
     (3)Urban carbon-cone analysis model is an integrated model, composing of urban flow intensitymodel, EIO-LCA model and spatial analysis methods. There are some assumptions on carbon-based energymetabolism accounting of population and industry. Learning from the diversification index of industrialstructure, urban primacy than urban rank-size rule, this paper built urban sector structure of carbon-basedenergy metabolism model. Based on location, the remaining employees (output value) index, drawing onurban flows intensity calculation formula, this paper designed the city outward service carbon-based energymetabolism potential measurable indicators. Based on the data of input-output table, this paper measuredthe city outward service ability of carbon-based energy metabolism using the net export of carbonemissions. By use of EIO-LCA model, this paper measured completely carbon emission intensity of theurban industrial sector, the influence of the carbon-based energy metabolism and induction force,calculated the household consumption, investment and net exports combination of carbon emissionsrelationship, analysis of a completely carbon emissions industrial chain network structure, so as to explorethe structure of the carbon emissions associated network.
     (4)Sector changes in the structure of carbon-based energy metabolism in Beijing presented adifferent stage, sectoral and regional characteristics. Carbon-based energy metabolism of external servicesrendered the structure alternately evolution trend. The industrial carbon-based energy metabolism in associated network has different feature between production process and industrial chains. The totalcarbon-based energy metabolism and the carbon-based energy metabolism intensity in Beijing present thedifferent characteristics. The potential and capabilities of carbon-based energy metabolism of externalservices has different variation, with a high degree of fluctuations for highly associated sectors.
     (5)The carbon-based energy metabolism in Beijing has significant characteristics of regional layerstructure. Spatial hierarchical structure showed network structure based on the core-peripheral mode. Thecarbon emission center is not consistent with the population and economic center. The functiongeographical structure presents the patchiness on the circle structure, and new metabolic types existbetween the layers by industry heterogeneity. Carbon-based energy metabolic circle structure in Beijingincludes metabolic flux circle, metabolic gathering circle, and producer services metabolism circle.
     (6)There is a long-run equilibrium relationship between carbon-based energy metabolism andeconomic growth in Beijing City. The changes from carbon emissions are in the interaction of factors suchintensity (technical) effects, structural effects and economies of scale effects. The main reasons for carbonemissions increase are the rapid growth for economies of scale and the exogenous pattern for economicdevelopment by factors inputting. The residential sector has less contribution than production sectors oncarbon emissions, while gaps are gradually narrowing. The decoupling state between carbon emissions andeconomic development determines the direction and the degree of industrial restructuring and upgrading.(4)Industrial structure adjustment's contribution of carbon emissions and the degree of decoupling needfurther studying.
     (7)The border and scope definition of carbon-based energy metabolic accounting is contributed toincrease the comparability. Carbon-cone analysis model has advantages in the analysis on carbon-basedenergy metabolism of structural differentiation. However, the city is an open complex giant system, and theman-land relationship in urban terrain system exhibits holistic, structured, hierarchical, functional, dynamiccharacteristics. Multi-source data access and verify is the basis for deep study of carbon-cone model.Further explanation of the model assumptions will improved the model. The consideration on energystructure conduce to further analysis the man-land relationship in urban terrain system.
引文
[1] Albrecht J, Francois D, Schoors K.2002. A Shapley decomposition of carbon emissions withoutresiduals. Energy Policy,30(9):727-736
    [2] Ang B W, Huang H C, Mu A R.2009. Properties and linkages of some index decomposition analysismethods. Energy Policy,37(11):4624-4632.
    [3] Ang B W, Lee S Y.1994. Decomposition of industrial energy consumption: Some methodological andapplication issues. Energy Economics,16(2):83-92.
    [4] Ang B W, Liu F L, Chew E P.2003. Perfect decomposition techniques in energy and environmentalanalysis. Energy Policy,31(14):1561-1566.
    [5] Ang B W, Liu Na.2007a. Handling zero values in the logarithmic mean Divisia index decompositionapproach. Energy Policy,35(1):238-246.
    [6] Ang B W, Liu Na.2007b. Negative-value problems of the logarithmic mean Divisia indexdecomposition approach. Energy Policy,35(1):739-742.
    [7] Ang B W.2004. Decomposition analysis for policymaking in energy: which is the preferred method?Energy Policy,32(9):1131-1139.
    [8] Ang B W.2005. The LMDI approach to decomposition analysis: A practical guide. Energy Policy,33(7):867-871.
    [9] Apergis N, Payne J E.2009. CO2emissions, energy usage, and ouput in Central America. EnergyPolicy,37:271-278.
    [10] Arrow K, Bolin B, Costanza R, et al.1995. Economic growth, carrying capacity, and the environment.Science,268(5210):520-521.
    [11] Ayres RU, Simonis UE, eds.1994. Industrial metabolism: restructuring for sustainable development.Tokyo: UN University Press.
    [12] Baccini P.1996. Understanding regional metabolism for a sustainable development of urban systems.Environmental Science and Pollution Research,3(2):108-111.
    [13] Bai X M, McAllister R, Beaty R M, et al.2010. Urban policy and governance in a global environment:complex systems, scale mismatches and public participation. Current Opinion in EnvironmentalSustainability,2(3):129-135.
    [14] Bai X M.2007. Industrial ecology and the global impacts of cities. Journal of Industrial Ecology,11(2):1-5.
    [15] Bailey R, Allen J K, Bras B.2004a. Applying ecological input-output flow analysis to material flowsin industrial systems part I: Tracing Flows. Journal of Industrial Ecology,8(1-2):45-68.
    [16] Bailey R, Bras B, Allen J K.2004b. Applying ecological input-output flow analysis to material flowsin industrial systems part II: Flow Metrics. Journal of Industrial Ecology,8(1-2):69-91.
    [17] Baiocchi G, Minx J, Hubacek K.2010. The impact of social factors and consumer behavior on carbondioxide emissions in the United Kingdom, a regression based on input output and geodemographicconsumer segmentation data. Journal of Industrial Ecology,14(1):50-72.
    [18] Baker L A, Hartzheim P M, Hobbie S E, et al.2007. Effect of consumption choices on fluxes ofcarbon, nitrogen and phosphorus through households. Urban Ecosystems,10(2):97-117.
    [19] Baldasano J, Soriano C, Boada L.1999. Emission inventory for greenhouse gases in the city ofBarcelona,1987–1996. Atmospheric Environment,33(23):3765-3775.
    [20] Baranzini A, Goldemberg J, Speck S.2000. A future for carbon taxes. Ecological Economics,32(3):395-412.
    [21] Barker T, Bashmakov I, Bernstein L, et al.2007.“Technical summary”, in: Metz B, Davidson O R,Bosch P R, et al(editors), Climate Change2007: Mitigation–Contribution of Working Group III tothe Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge:Cambridge University Press.
    [22] Barles S.2009. Urban Metabolism of Paris and Its Region. Journal of Industrial Ecology,13(6):898-913.
    [23] Barthelmie R J, Morris S D, Schechter E P.2008. Carbon neutral Biggar: calculating the communitycarbon footprint and renewable energy options for footprint reduction. Sustainability Science,3(2):267-282.
    [24] Batten D F. Network cities: Creative urban agglomeration for21st century. Urban Studies,1995,32(2):313-327.
    [25] Bi J, Zhang R R, Wang H K, et al.2011. The benchmarks of carbon emissions and policy implicationsfor China’s cities: Case of Nanjing. Energy Policy,39(9):4785-4794.
    [26] Bin S, Dowlatabadi H.2005. Consumer lifestyle approach to us energy use and the related CO2emissions. Energy Policy,33(2):197-208.
    [27] Boguski T K.2010. Life cycle carbon footprint of the National Geographic magazine. TheInternational Journal of Life Cycle Assessment,15(7):635-643.
    [28] Bohringer C, Rutherford T F,2009. Integrated assessment of energy policies: decomposing top-downand bottom-up. Journal of Economic Dynamics and Control,33(9):1648-1661.
    [29] Bourne L S.1982. Urban spatial structure: An introductory essay on concepts and criteria. In: BourneL S(Ed.). Internal structure of the city: Reading on urban form, growth, and policy (2nd edition).New York: Oxford University Press.
    [30] Boyd G A, Hanson D A, Sterner T.1988. Decomposition of changes in energy intensity: A comparisonof the Divisia index and other methods. Energy Economics,10(4):309-312.
    [31] Bristowa A L, Tight M, Pridmore A, et al.2008. Developing pathways to low carbon land-basedpassenger transport in Great Britain by2050. Energy Policy,36(9):3427-3435.
    [32] Brown M A, Southworth F, Sarzynski, A.2009. The geography of metropolitan carbon footprints.Policy and Society,27(4):285-304.
    [33] Browne D, O’Regan B, Molesc R.2009. Use of carbon footprinting to explore alternative householdwaste policy scenarios in an Irish city-region. Resources, Conservation and Recycling,54(2):113-122.
    [34] Browne D, O'Regan B, Moles R.2011. Material flow accounting in an Irish City-Region1992-2002.Journal of Cleaner Production,19(9-10):967-976.
    [35] BSI.2008. Specification for the assessment of the life cycle greenhouse gas emissions of goods andservices (PAS2050). London: British Standards Institution.
    [36] Burgess E W.1925. The growth of the city. In: Park R E, Burgess E W, McKenzie R D(eds). The City,Chicago: University of Chicago Press.
    [37] Carney S, Shackley S.2009. The Greenhouse Gas Regional Inventory Project (GRIP): Designing andemploying a regional greenhouse gas measurement tool for stakeholder use. Energy Policy,37(11):4293-4302.
    [38] Castells M.1992. The space of flows: A theory of space in the informational society. Conference ofthe New Urbanism, Princeton: Princeton University Press.
    [39] Chang C C.2010. A multivariatecausality test of carbon dioxide emissions, energy consumption andeconomic growth in China.87(11):3533-3537.
    [40] Charnes A, Cooper W W, Rhodes E.1978. Measuring the efficiency of decision making units.European Journal of Operational Research,2(6):429-444.
    [41] Chenery H, Robinson S, Syquin M.1986. Industrialization and Growth: AComparative Study. Oxford:Oxford University Press.
    [42] Christaller W.1966. Central places in southern Germany. Englewood Cliffs, N J: Prentice-Hall.
    [43] Christen A, Coops N, Kellett R.2010. A LiDAR-based urban metabolism approach to neighbourhoodscale energy and carbon emissions modelling. Canada: University of British Columbia.
    [44] Churkina G.2008. Modeling the carbon cycle of urban systems. Ecological Modeling,216(2):107-113.
    [45] Clark D. Urban geography: An introductory guide. Lodon: Croom Helm,1982.
    [46] Contaldi M, Gracceva F, Tosato G.2007. Evaluation of green-certificates policies using theMARKAL-MACRO-Italy model. Energy Policy,35(2):797-808.
    [47] Courchene T J, Allan J R.2008. Climate change: The case of carbon tariff/tax. Policy Options,3:59-64.
    [48] Dhakal S, Betsill M M.2007. Challenges of urban and regional carbon management and the scientificresponse. Local Environment,12(5):549-555.
    [49] Dhakal S, Shrestha R M.2010. Bridging the research gaps for carbon emissions and their managementin cities. Energy Policy,38(9):4753-4755.
    [50] Dhakal, S.2006. Urban energy use and greenhouse gas emissions in Asian mega-cities. Hayama:Institute for Global Environmental Strategies.
    [51] Dodman D.2009. Blaming cities for climate change? An analysis of urban greenhouse gas emissionsinventories. Environment&Urbanization,21(1):185-201.
    [52] Druckman A, Jackson T.2009. The carbon footprint of U.K. households1990–2004: A socio-economically disaggregated, quasi-multi-regional input–output model. Ecological Economics,68(7):2066-2077.
    [53] EEA.2007. Annual European Community greenhouse gas inventory1990-2005and inventory report2007. Submission to the UNFCCC Secretariat. Brussels: European Environment Agency.
    [54] Ehrlich P R, Holdrens J P.1971. The impact of population growth. Science,3997(171):1212-1217.
    [55] Engle R F, Granger C W J.1987. Co-integration and error correction: representation, estimation andtesting. Econometrica,55(2):251-276.
    [56] Erb K H, Krausmann F, Gaube V, et al.2009. Analyzing the global human appropriation of netprimary production-processes, trajectories, implications: an introduction. Ecological Economics,69(2):250-259.
    [57] Espinoza-Orias N, Stichnothe H, Azapagic A.2011. The carbon footprint of bread. The InternationalJournal of Life Cycle Assessment,16(4):351-364.
    [58] Eswaran M, Kotwal A.2002. The role of service in the process of industrialization. Journal ofDevelopment Economics,68(2):401-420.
    [59] Filimonau V, Dickinson J, Robbins D et al.2011. Reviewing the carbon footprint analysis of hotels:Life Cycle Energy Analysis (LCEA) as a holistic method for carbon impact appraisal of touristaccommodation. Journal of Cleaner Production,19(17-18):1917-1930.
    [60] Finkbeiner M.2009. Carbon footprinting—Opportunities and threats. International journal of LifeCycle Assessment,14(2):91-94.
    [61] Galeotti M, Lanza A, Pauli F.2006. Reassessing the environmental Kuznets curve for CO2emission: arobustness exercise. Ecological Economics,57(1):152-163.
    [62] Garg A, Bhattachary S, Shukla P R, et al.2001. Regional and sectoral assessment of greenhouse gasemissions in India. Atmospheric Environment,35(15):2679-2695.
    [63] Giampietro M, Mayumi K, Ramos-Martin J.2009. Multi-scale integrated analysis of societal andecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy,34(3):313-322.
    [64] Glu G S K.2003. Environmental taxation and economic effects: a computable general equilibriumanalysis for Turkey. Journal of Policy Modeling,25(8):795-810.
    [65] Gomi K, Shimada K, Matsuoka Y.2009. A low-carbon scenario creation method for a local-scaleeconomy and its application in Kyoto city. Energy Policy,7(26):1-14.
    [66] Grimm N B, Faeth SH, Golubiewski N E, et al.2008. Global change and the ecology of cities. Science,319(5864):756-760.
    [67] Guo R, Cao X J, Yang X Y, et al.2010. The strategy of energy-related carbon emission reduction inShanghai. Energy Policy,38(1):633-638.
    [68] Guo X D, Zhu L, Fan Y, et al.2011. Evaluation of potential reductions in carbon emissions in Chineseprovinces based on environmental DEA. Energy Policy,39(5):2352-2360.
    [69] Haberl H, Fischer-Kowalski M, Krausmann F, et al.2004. Progress towards sustainability? What theconceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy,21(3):199-213.
    [70] Haberl H.2001. The energetic metabolism of societies part I accounting concept. Journal of IndustrialEcology,5(2):11-33.
    [71] Haberl H.2002. The Energetic Metabolism of Societies Part II: Empirical Examples. Journal ofIndustrial Ecology,5(2):71-88.
    [72] Hashimoto S, Moriguchi Y.2004. Proposal of six indicators of material cycles for describing society’smetabolism: from the viewpoint of material flow analysis. Resources, Conservation and Recycling,40(3):185-200.
    [73] He J, Richard P.2009. Environmental Kuznets curve for CO2in Canada. Ecological Economics,11(3):1-11.
    [74] Heijungs R, Suh S.2006. Reformulation of matrix-based LCI: from product balance to processbalance. Journal of Cleaner Production,14(1):47-51.
    [75] Heinonen J, Junnila S.2011. A carbon consumption comparison of rural and urban lifestyles.Sustainability,3(8):1234-1249.
    [76] Henriques M F, Dantas F, Schaeffer R.2010. Potential for reduction of CO2emissions and alow-carbon scenario for the Brazilian industrial sector. Energy Policy,38(4):1946-1961.
    [77] Hertwich E G, Peters G P.2009. Carbon footprint of nations: a global, trade-linked analysis.Environmental Science&Technology,43(16):6414-6420.
    [78] Hillman T, Ramaswami A.2010. GHG emission footprints and energy use benchmarks for eight UScities. Environment Science&Technology,44(6):1902-1910.
    [79] Huang S L, Chen C W.2005. Theory of urban energetics and mechanisms of urban development.Ecological Modelling,189(1-2):49-71.
    [80] Huang S L, Kao W C, Lee C L.2007. Energetic mechanisms and development of an urban landscapesystem. Ecological Modelling,201(3-4):495-506.
    [81] Huang S L, Yeh C T, Chang L F.2010. The transition to an urbanizing world and the demand fornatural resources. Current Opinion in Environmental Sustainability,2(3):136-143.
    [82] Illeris S.1996. The service economy: A geography approach. Chichester: JohnWiley&Sons.
    [83] International energy agency(IEA).2006. Energy Technology Perspectives2006: Scenarios andstrategies to2050. Paris: International Energy Agency.
    [84] International energy agency(IEA).2009, Energy outlook. Paris.
    [85] International Standards Organization (ISO).2006. Environmental management-life cycle assessment:principles and framework (ISO14044). Geneva: International Organization for Standardization.
    [86] IPCC.2006. Guidelines for National Greenhouse Gas Inventories. Cambridge: Cambridge UniversityPress.
    [87] IPCC.2007. Summary for Policy makers of the Synthesis Report of the IPCC Fourth AssessmentReport. Cambridge, UK: Cambridge University Press.
    [88] Janssen M A, van den Bergh J, van Beukering P.2001. Changing Industrial Metabolism: Methods forAnalysis. Population and Environment,23(2):139-156.
    [89] Jarvis P.2007. Never mind the footprints, get the mass right. Nature,446(7131):24.
    [90] Johnson E.2008. Disagreement over carbon footprints: A comparison of electric and LPG forklifts.Energy Policy,36(4):1569-1573.
    [91] Johnston D, Lowe R, Bell M.2005. An exploration of the technical feasibility of achieving CO2emission reductions in excess of60%within the UK housing stock by the year2050. Energy Policy,33(13):1643-1659.
    [92] Jorgenson D W, Stiroth K J. U.S. Economic grow that industrial level. American Economic Review,2000,90(2):161-167.
    [93] Joshi S.2000. Product environmental life-cycle assessment using input-output techniques. Journal ofIndustrial Ecology,3(2-3):95-120.
    [94] Kahn M E.2009. Urban growth and climate change. Annual Review of Resource Economics,1(1):330-350.
    [95] Karl-Heinz E, Gingrich S, Krausmann F, et al.2008. Industrialization, Fossil Fuels and theTransformation of Land Use: An Integrated Analysis of Carbon Flows in Austria1830-2000. Journalof Industrial Ecology,12(5-6):686-703.
    [96] Kaya Y.1990. Impact of Carbon Dioxide Emission on GNP Growth: Interpretation of ProposedScenarios. In IPCC Energy and Industry Subgroup, Response Strategies Working Group. Paris.
    [97] Kennedy C, Cuddihy J, Engel-Yan J.2007. The changing metabolism of cities. Journal of IndustrialEcology,11(2):43-59.
    [98] Kennedy C, Pincetl S, Bunje P.2011. The study of urban metabolism and its applications to urbanplanning and design. Environmental Pollution,159(8-9):1965-1973.
    [99] Kennedy C, Steinberger J, Gasson B, et al.2009. GHG emissions from global cities. EnvironmentScience&Technology,43(19):7297–7302.
    [100] Kennedy C, Steinberger J, Gasson B, et al.2010. Methodology for inventorying greenhouse gasemissions from global cities. Energy Policy,38(9):4828-4837.
    [101] Kennedy S, Sgouridis S. Rigorous classification and carbon accounting principles for low and ZeroCarbon Cities. Energy Policy,2011,39(9):5259-5268.
    [102] Krugman P.1991. Increasing returns and economic geography. Journal of Political Economy,99(3):483-499.
    [103] Kuskova P, Gingrich S, Krausmann F,2008. Long term changes in social metabolism and land use inCzechoslovakia,1830-2000: An energy transition under changing political regimes. EcologicalEconomics,68(1-2):394-407.
    [104] Lankao P R.2007. Are we missing the point? Particularities of urbanization, sustainability and carbonemissions in Latin American cities. Environment&Urbanization,19(1):1-17.
    [105] Larsen H N, Hertwich E G.2010. Implementing carbon-footprint-based calculation tools in municipalgreenhouse gas inventories: The case of Norway. Journal of Industrial Ecology,14(6):965-977.
    [106] Lebel l, Garden P, Banaticla M, et al.2007. Integrating carbon management into the developmentstrategies of urbanizing regions in Asia: implications of urban function, form, and role. Journal ofIndustrial Ecology,11(2):61-81.
    [107] Lebel L, Lasco D R, Contreras A, et al.2005. Emission inventories, carbon management and cleanair: the opportunities in urbanization to link research, policy and practice in South and East Asia.Chiang Mai: Unit for Social and Environmental Research.
    [108] Lenzen M, Murray J, Sack F, Wiedmann T.2007. Shared producer and consumer responsibility–theory and practice. Ecological Economics,61(1):27–42.
    [109] Leontief W, Ford D.1970. Environmental repercussions and the economic structure: an input–outputapproach. The Review of Economics and Statistics,52(3):262-271.
    [110] Li J.2008. Towards a low-carbon future in China’s building sector—A review of energy and climatemodels forecast. Energy Policy,36(5):1736-1747.
    [111] Li L, Chen C H, Xie S C, et al.2010. Energy demand and carbon emissions under differentdevelopment scenarios for Shanghai, China. Energy Policy,38(9):4797-4807.
    [112] Liang S, Wang C, Zhang Ti Z.2010. An improved input–output model for energy analysis: A casestudy of Suzhou. Ecological Economics,69(9):1805–1813.
    [113] Liang S, Zhang T Z.2011. Managing urban energy system: A case of Suzhou in China. Energy Policy,39(5):2910-2918.
    [114] Lieb C M.2004. The Environmental Kuznets Curve and flow versus stock pollution: The neglect offuture damages. Environmental and Resource Economics,29(4):483-506.
    [115] Lin J Y, Cao B, Cui S H, et al.2010. Evaluating the effectiveness of urban energy conservation andGHG mitigation measures: The case of Xiamen city, China. Energy Policy,38(9):5123-5132.
    [116] Lin Q G, Huang G H.2009. Planning of energy system management and GHG-emission control inthe municipality of Beijing—an inexact-dynamic stochastic programming model. Energy Policy,37(11):4463-4473.
    [117] Liu L C, Fan Y, Wu G, et al.2007. Using LMDI method to analyze the change of China's industrialCO2emissions from final fuel use: an empirical analysis. Energy Policy,35(11):5892-5900.
    [118] Liu X Q, Ang B W, Ong H L.1992. The application of Divisia index to the decomposition of changesin industrial energy consumption. The Energy Journal,13(4):161-177.
    [119] MacPherson A.1997. The role of producer service outsourcing in the innovation performance of NewYork State manufacturing firms. Annals of the Association of American Geographers,87(1):52-71.
    [120] Martinez Z I, Bengochea M A.2004. Pooled mean group estimation for an environmental Kuznetscurve for CO2. Economic Letters,82(1):121-126.
    [121] Matthews H S, Hendrickson C T, Weber C L.2008. The importance of carbon footprint estimationboundaries. Environment Science Technology,42(16):5839-5842.
    [122] McGraw J, Haas P, Young L, et al.2010. GHG emissions in Chicago: emissions inventories andreduction strategies for Chicago and its metropolitan region. Journal of Great Lakes Research,36(S2):106-114.
    [123] Minx J C, Wiedmann T, Wood R, et al.2009. Input–output analysis and carbon footprinting anoverview of applications. Economic Systems Research,21(3):187-216.
    [124] Moll H C, Noorman K J, Kok R, et al.2005. Pursuing more sustainable consumption by analyzinghousehold metabolism in European countries and cities. Journal of Industrial Ecology,9(1-2):259-275.
    [125] Munich Re Group.2004. Megacities-Megarisks: Trends and challenges for insurance and risk.Management, Munich: Munich Reinsurance.
    [126] Munksgaard J, Pedersen KA.2001. CO2accounts for open economies: Producer or consumerresponsibility? Energy Policy29(4),327-334.
    [127] Ngo N S, Pataki D E.2008. The energy and mass balance of Los Angeles County. Urban Ecosystems,11(2):121-139.
    [128] Niza S, Rosado L, Ferr ao P.2009. Urban metabolism methodological advances in urban materialflow accounting based on the Lisbon case study. Journal of Industrial Ecology,13(3):384-405.
    [129] Noorman K J, Benders R, Falkena H J, et al.2002. Household energy budgets in4European cities.Groningen: University of Groningen.
    [130] Odum E O.1983. Basic Ecology. New York: Saunders.
    [131] OECD.2002. Indicators to measure decoupling of environmental pressures for economic growth.Paris: OECD.
    [132] OPSI (Office of Public Sector Information).2008. The Climate Change Act2008, London.www.opsi.gov.uk/acts/acts2008/pdf/ukpga_20080027_en.pdf. Accessed17January2010.
    [133] Panayotou T.1993. Empirical tests and policy analysis of environmental degradation at differentstages of economic development. Technology and Employment Programme, Working Paper WP238,International Labor Office, Geneva.
    [134] Pandey D, Agrawal M, Pandey J S.2011. Carbon footprint: current methods of estimation.Environmental Monitoring and Assessment,178(1-4):135-160.
    [135] Pao H T, Tsai C M.2011. Multivariate Granger causality between CO2emissions, energyconsumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from apanel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy,36(1):685-693.
    [136] Park S H.1992. Decomposition of industrial energy consumption: An alternative method. EnergyEconomics,14(4):265-270.
    [137] Parshall L, Gurney K, Hammer SA, et al.2009. Modeling energy consumption and CO2emissions atthe urban scale: methodological challenges and insights from the United States. Energy Policy,38(9):4765-4782.
    [138] Pataki D E, Alig R J, Fung A S, et al.2006. Urban ecosystems and the North American carbon cycle.Global Change Biology,12(11):1-11
    [139] Pataki D E, Emmi P C, Forster C B, et al.2009. An integrated approach to improving fossil fuelemissions scenarios with urban ecosystem studies. Ecological complexity,6(1):1-14.
    [140] Peters G P.2008. From production-based to consumption-based national emission inventories.Ecological Economics,65(1):13-23.
    [141] Peters G P.2010. Carbon footprints and embodied carbon at multiple scales. Current Opinion inEnvironmental Sustainability,2(4):245-250.
    [142] Phdungsilp A.2009. Integrated energy and carbon modeling with a decision support system: Policyscenarios for low-carbon city development in Bangkok. Energy Policy,38(9):4808-4817.
    [143] Pradhan S, Ale B B, Amatya V B.2006. Mitigation potential of greenhouse gas emission andimplications on fuel consumption due to clean energy vehicles as public passenger transport inKathmandu Valley of Nepal: a case study of trolley buses in Ring Road. Energy,31(12):1748-1760.
    [144] Quéré C L, Raupach M R, Canadell J G, et al.2009. Trends in the sources and sinks of carbondioxide. Nature Geoscience,2:831-836.
    [145] Ramaswami A, Hillman T, Janson B, et al.2008. A demand-centered, hybrid lifecycle methodologyfor city-scale GHG inventories. Environment Science&Technology,42(17):6455-6461.
    [146] Rashmi K, Dahiya R P, Garg H P.2007. Energy-related emissions and mitigation opportunities fromthe household sector in Delhi. Energy Policy,35(12):6195-6211.
    [147] Romero P, Lopez H, Rosas, A, et al.2005. Urban development and the carbon cycle in Latin America.IAI Final Report.
    [148] Rose A, Liao Shu-Yi.2005. Modeling regional economic resilience to disasters: a computablegeneral equilibrium analysis of water service disruptions. Journal of Regional Science,45(1):75-112.
    [149] Salon D, Sperling D, Meier A, et al.2010. City carbon budgets: A proposal to align incentives forclimate-friendly communities. Energy Policy,38(4):2032-2041.
    [150] Satterthwaite D.2008. Cities’ contribution to global warming: notes on the allocation of greenhousegas emissions. Environment&Urbanization,20(2):539-549.
    [151] Schulz N B.2010. Delving into the carbon footprints of Singapore—comparing direct and indirectgreenhouse gas emissions of a small and open economic system. Energy Policy,38(9):4848-4855.
    [152] Sheehan M O.1999. Reinventing cities for people and the planet. Washington DC: WorldwatchInstitute.
    [153] Shin H C, Park J W, Kim H S, et al.2005. Environmental and Economic Assessment of landfill gaselectricity generation in Korea using LEAP model. Energy Policy,33(10):1261-1270.
    [154] Shrestha E, Ahmad S, Johnson W, et al.2012. The carbon footprint of water management policyoptions.42(3):201-212.
    [155] Shrestha R M, Rajbhandari S.2010. Energy and environmental implications of carbon emissionreduction targets: Case of Kathmandu Valley, Nepal. Energy Policy,38(9):4818-4827.
    [156] Socolow RH, Andrews C, Berkhout F, Thomas V, eds.1994. Industrial Ecology and Global Change.Cambridge, UK: Cambridge University Press.
    [157] Sovacool B K, Brown M A.2010. Twelve metropolitan carbon footprints: A preliminary comparativeglobal assessment. Energy policy,38(9):4856-4869.
    [158] Stern, Nicholas.2007. The economics of climate change: the Stern review. Cambridge: CambridgeUniversity Press.
    [159] Steven S, Sijm J.2003. Carbon trading in the policy mix. Oxford Review of Economic Policy,19(3):420-437.
    [160] Stigliani W, Jaffe P, Anderberg S.1994. Metals loading of the environment: cadmium in the RhineBasin, In: Socolow R H, Andrews C, Berkhout F, Thomas V eds. Industrial Ecology and GlobalChange. Cambridge: Cambridge University Press.
    [161] Strachan, N, Pye S, Kannan R.2009. The iterative contribution and relevance of modeling to UKenergy policy. Energy Policy,37(3):850-860.
    [162] Streck C.2004. New partnerships in global environmental policy: the clean development mechanism.Journal of Environment&Development13(3):295-322.
    [163] Tapio P.2005. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of roadtraffic in Finland between1970and2001. Transport Policy,12(2):137-151.
    [164] Tarancón M, del Río Gonzáleza P.2007. A combined input–output and sensitivity analysis approachto analyse sector linkages and CO2emissions. Energy Economics,29(3):578-597.
    [165] Taylor P J.2009. Urban economics inthrallto christaller: A misguided search for city hierarchiesinexternal urban relations. Environment and Planning A,41(11):2550-2555.
    [166] Tukker A.2000. Life cycle assessment as a tool in environmental impact assessment. EnvironmentalImpact Assessment Review,20(4):435-456.
    [167] Tunc G I, Türüt-Asik S, Akbostanci E.2009. A decomposition analysis of CO2emissions fromenergy use: Turkish case. Energy Policy,37(11):4689-4699.
    [168] Turton, H.,2008. ECLIPSE: an integrated energy-economy model for climate policy and scenarioanalysis. Energy,33(12):1754-1769.
    [169] UN.2008. World urbanization Prospects: The2007Revision. New York: United Nations, Departmentof Economic and Social Affairs, Population Division.
    [170] UNFCC.2006. Kyoto Protocol; United Nations Framework Convention on Climate Change;available online: http://unfccc.int/kyoto_protocol/items/2830.php (accessed September9,2007).
    [171] VandeWeghe J R, Kennedy C.2007. A Spatial Analysis of Residential Greenhouse Gas Emissions inthe Toronto Census Metropolitan Area. Journal of Industrial Ecology,11(2):133-144.
    [172] Wackernagel M, Kitzes J, Moran D, et al.2006. The Ecological Footprint of cities and regions:comparing resource availability with resource demand. Environment&Urbanization,18(1):103-112.
    [173] Wee K F, Matsumoto H H, Chin S, etal.2008. Energy consumption and carbon dioxide emissionconsiderations in the urban planning process in Malaysia. Journal of the Malaysian Institute ofPlanners, Ⅵ,99-128.
    [174] Weisz H, Steinberger J K.2010. Reducing energy and material flows in cities. Current Opinion inEnvironmental Sustainability,2(3):185-192.
    [175] WEO.2008. World Energy Outlook2008. Paris: International Energy Agency.
    [176] While A, Jonas A E G, Gibbs D.2009. From sustainable development to carbon control: eco-staterestructuring and the politics of urban and regional development. Transactions of the Institute ofBritish Geographers,35(1):76-93.
    [177] Wiedmann T, Minx J, Barrett J, et al.2006. Allocating ecological footprints to final consumptioncategories with input-output analysis. Ecological Economics,56(1):28-48.
    [178] Wiedmann T, Minx J.2007. A definition of “Carbon Footprint”. In: C. C. Pertsova, Ecologicaleconomics research trends. Hauppauge NY: Nova science publishers.
    [179] Wiedmann T, Wood R, Minx J, et al.2010. A carbon footprint time series of the UK–results from amulti-regional input–output model. Economic Systems Research,22(1):19-42.
    [180] Wilson C, Dowlatabadi H.2007. Models of Decision Making and Residential Energy Use. AnnualReview of Environment and Resources,32:169-302.
    [181] Wolman A.1965. The metabolism of the city. Scientific American,213(6):179-190.
    [182] Wood F R, Burgan M, Dorling S, et al.2007. Opportunities for air pollutant and greenhouse gasemission reduction through local transport planning. Local Economy: The Journal of the LocalEconomy Policy Unit,22(1):40-61.
    [183] Worrell E, Bernstein L, Roy J, et al.2009. Industrial energy efficiency and climate change mitigation.Energy Efficiency,2(2):109-123.
    [184] Wright L A, Coello J, Kemp S, et al.2011. Carbon footprinting for climate change managementin cities. Carbon Management,2(1):49-60.
    [185] Wright L A, Kemp S, Williams I.2011.‘Carbon footprinting’: towards a universally accepteddefinition. Carbon Management,2(1):61-72.
    [186] Ye H, Wang K, Zhao X F, etal.2011. Relationship between construction characteristics and carbonemissions from urban household operational energy usage. Energy and Buildings,43(1):147-152.
    [187] York R, Rosa E A, Dietz T.2003. STIRPAT, IPAT and ImPACT: analytic tools for unpacking thedriving forces of environmental impacts. Ecological Economics,46(3):351-365.
    [188] Yuttithama M, Gheewalaa S H, Chidthaisong A.2011. Carbon footprint of sugar produced fromsugarcane in eastern Thailand. Journal of Cleaner Production,19(17–18):2119-2127.
    [189] Zhang M, Mu H L, Ning Y D, et al.2009. Decomposition of energy-related CO2emission over1991–2006in China. Ecological Economics.68(7):2122-2128.
    [190] Zhang Y, Yang Z F, Fath B D, et al.2010. Ecological network analysis of an urban energy metabolicsystem: Model development, and a case study of four Chinese cities. Ecological Modelling,221(16):1865-1879.
    [191] Zhang Y, Yang Z F, Liu G Y, et al.2011. Emergy analysis of the urban metabolism of Beijing.Ecological Modelling,222(14):2377-2384.
    [192] Zhang Y, Yang Z F, Yu X Y.2009. Evaluation of urban metabolism based on emergy synthesis: A casestudy for Beijing (China). Ecological Modelling,220(13-14):1690-1696.
    [193] Zhou P, Ang B W, Han J Y.2010. Total factor carbon emission performance: a Malmquist indexanalysis. Energy Economics,32(1):194-201.
    [194] Zhou P, Ang B W.2008. Decomposition of aggregate CO2emissions: A production-theoreticalapproach. Energy Economics,30(3):1054-1067.
    [195]毕秀晶,汪明峰,李健,等.2011.上海大都市区软件产业空间集聚与郊区化.地理学报,66(12):1682-1694.
    [196]蔡昉,都阳,王美艳.2008.经济发展方式转变与节能减排内在动力.经济研究,(6):4-11.
    [197]曹淑艳,谢高地.2010.中国产业部门碳足迹流追踪分析.资源科学,32(11):2046-2052.
    [198]柴彦威,肖作鹏,刘志林.2011.基于空间行为约束的北京市居民家庭日常出行碳排放的比较分析.地理科学,31(7):843-849.
    [199]陈操操,张妍,刘春兰,等.2012.北京市能源消费与经济增长关系的协整检验分析.环境科学,33(6):2139-2144.
    [200]陈飞,诸大建,许琨.2009.城市低碳交通发展模型、现状问题及目标策略——以上海市实证分析为例.城市规划学刊,(6):39-46.
    [201]陈红敏.2009.我国对外贸易的能源环境影响——基于隐含流的研究.复旦大学博士论文.
    [202]陈明生,康琪雪,刘蜜蜜.节能环保视角下大都市产业空间结构的形成——以北京市为例.经济问题探索,2011,(4):39-44.
    [203]陈睿.2007.都市圈空间结构的经济绩效研究.北京大学博士论文.
    [204]陈诗一,严法善,吴若沉.2010.资本深化、生产率提高与中国二氧化碳排放变化——产业、区域、能源三维结构调整视角的因素分解分析.财贸经济,(12):111-119.
    [205]陈诗一.2009.能源消耗、二氧化碳排放与中国工业的可持续发展.经济研究,(4):41-55.
    [206]陈诗一.2009.中国的绿色工业革命:基于环境全要素生产率视角的解释(1980——2008).经济研究,(11):21-34.
    [207]陈锡康,杨翠红.2011.投入产出技术.北京,科学出版社.
    [208]陈彦光.2010.中国人口转变、城市化和产业结构演变的对应关系研究.地理研究,29(12):2109-2120.
    [209]程大中.2008.中国生产性服务业的水平、结构及影响——基于投入-产出法的国际比较研究.经济研究,(1):76-88.
    [210]程大中.2008.中国生产性服务业的水平、结构及影响——基于投入-产出法的国际比较研究.经济研究,(1):76-88.
    [211]仇保兴.2009a.中国特色的城镇化模式之辨——C模式:超越模A模式的诱惑和B模式的泥淖.城市发展研究,16(1):1-7.
    [212]仇保兴.2009b.我国城市发展模式转型趋势——低碳生态城市.城市发展研究,16(8):1-6.
    [213]戴亦欣.2009.中国低碳城市发展的必要性和治理模式分析.中国人口·资源与环境.19(3):12-17.
    [214]董冠鹏,张文忠,武文杰,等.2011.北京城市住宅土地市场空间异质性模拟与预测.地理学报,66(6):750-760.
    [215]段志刚,李善同,王其文.2006.中国投入产出表中投入系数变化的分析.中国软科学,(8):58-64.
    [216]樊杰,李平星,梁育填.2010.个人终端消费导向的碳足迹研究框架——支撑我国环境外交的碳排放研究新思路.地球科学进展,25(1):61-68.
    [217]方恺,董德明,沈万斌.2010a.生态足迹理论在能源消费评价中的缺陷与改进探讨.自然资源学报,25(6):1013-1021.
    [218]方恺,董德明,沈万斌.2010b.能源足迹改进方法及其在区域能源利用效益分析评价中的应用.地理科学,30(5):686-692.
    [219]方恺,董德明,沈万斌.2011.能源足迹核算的改进与预测——以吉林省为例.地理研究,30(10):1835-1846.
    [220]冯建,周一星.2003.近20年来北京都市区人口增长与分布.地理学报,58(6):903-916.
    [221]付磊.2008.全球化和市场化进程中大都市的空间结构及其演化——改革开放以来上海城市空间结构演变的研究.同济大学博士论文.
    [222]葛莹,姚士谋,蒲英霞,等.2005.运用空间自相关分析集聚经济类型的地理格局.人文地理,20(3):21-25.
    [223]郭辉,董晔.碳排放和能源消费约束下的中国绿色全要素生产率和经济增长研究——基于扩展的索洛模型分析.经济经纬,2012,(6):77-81.
    [224]郭运功,汪冬冬,林逢春.2010.上海市能源利用碳排放足迹研究.中国人口·资源与环境,20(2):103-108.
    [225]国涓,王玲,孙平.2009.中国区域能源消费强度的影响因素分析.资源科学,31(2):205-213.
    [226]韩智勇,魏一鸣,范英.2004.中国能源强度与经济结构变化特征研究.数理统计与管理,23(1):1-6.
    [227]贺灿飞,王俊松.2009.经济转型与中国省区能源强度研究.地理科学,29(4):461-469.
    [228]胡俊.1995.中国城市:模式与演进.北京:中国建筑工业出版社.
    [229]计军平,刘磊,马晓明.2011.基于EIO-LCA模型的中国部门温室气体排放结构研究.北京大学学报(自然科学版),47(4):741-749.
    [230]姜磊,季民河.2011.基于STRPAT模型的中国能源压力分析——基于空间计量经济学模型的视角.地理科学,31(9):1072-1077.
    [231]焦文献,陈兴鹏,贾卓.2012.甘肃省能源消费碳足迹变化及影响因素分析.资源科学,34(3):559-565.
    [232]匡文慧,杜国明.2011.北京城市人口空间分布特征的GIS分析.地球信息科学学报,13(4):506-512.人口密度大于1000
    [233]冷炳荣,杨永春,李英杰,等.2011.中国城市经济网络结构空间特征及其复杂性分析.地理学报,66(2):199-211.
    [234]李迅,曹广忠,徐文珍.2010.中国低碳生态城市发展战略.城市发展研究,17(1):32-39.
    [235]李艳梅,张雷.2008.中国居民间接生活能源消费的结构分解分析.资源科学,30(6):890-895.
    [236]李智,鞠美庭,刘伟,等.2007.中国1996年~2005年能源生态足迹与效率动态测度与分析.资源科学,2007,29(6):54-60.
    [237]林伯强,蒋竺均.2009.中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析.管理世界,(4):27-36.
    [238]刘春兰,陈操操,陈群,等.2010.1997年至2007年北京市二氧化碳排放变化机理研究.资源科学,32(2):235-241.
    [239]刘凤朝,刘源远,潘雄锋.2007.中国经济增长和能源消费的动态特征.资源科学,29(5):63-68.
    [240]刘红光,范晓梅,刘卫东.2012.城市活动碳足迹计量及其对城市规划的启示——以北京市为例.城市规划,36(10):45-50.
    [241]刘红光,刘卫东,唐志鹏,等.2010.中国区域产业结构调整的CO2减排效果分析——基于区域间投入产出表的分析.地域研究与开发,29(3):129-135.
    [242]刘红光,刘卫东.2009.中国工业燃烧能源导致碳排放的因素分解.地理科学进展,28(2):285-292.
    [243]刘佳骏,董锁成,李宇.2011.产业结构对区域能源效率贡献的空间分析——以中国大陆省(市、自治区)为例.自然资源学报,26(12):1999-2011.
    [244]刘卫东,张雷,王礼茂,等.2010.我国低碳经济发展框架初步研究.地理研究,29(5):778-788.
    [245]刘卫东,张雷,王礼茂,等.2010.我国低碳经济发展框架初步研究.地理研究,29(5):778-788.
    [246]刘霄泉,孙铁山,李国平.2011.北京市就业密度分布的空间特征.地理学报,30(7):1262-1270.
    [247]刘琰.2010.低碳生态城市——全球气候变化影响下未来城市可持续发展的战略选择.城市发展研究,17(5):35-41.
    [248]刘扬,陈邵锋(2009)基于IPAT方程,分析了我国经济增长与碳排放间的关系,发现无论是碳排放强度,还是人均碳排放量,抑或是碳排放总量均呈现出倒U型的变化规律。
    [249]卢明华,李国平,孙铁山.北京都市区城市功能格局及其变化——基于经济普查数据的分析.地理研究,2011,30(11):1970-1982.
    [250]卢娜,曲福田,冯淑怡,等.2011.基于STIRPAT模型的能源消费碳足迹变化及影响因素——以江苏省苏锡常地区为例.自然资源学报,26(5):814-824.
    [251]罗芬,钟永德,王怀採.2010.碳足迹研究进展及其对低碳旅游研究的启示.世界地理研究,19(3):105-113.
    [252]马国霞,田玉军,石勇.京津冀都市圈经济增长的空间极化及其模拟研究.经济地理,2010,30(2):177-182.
    [253]孟斌.2009.北京城市居民职住分离的空间组织特征.地理学报,64(12):1457-1466.
    [254]木聂锐,张涛,王迪.2010.基于IPAT模型的江苏省能源消费与碳排放情景研究.自然资源学报,25(9):1557-1564.
    [255]彭建,吴健生,蒋依依,等.2006.生态足迹分析应用于区域可持续发展生态评估的缺陷.生态学报,26(8):2716-2722.
    [256]齐绍洲,李锴.2010.区域部门经济增长与能源强度差异收敛分析.经济研究,(2):109-122.
    [257]齐玉春,董云社.2004.中国能源领域温室气体排放现状及减排对策研究.地理科学,24(5):528-534.
    [258]齐志新,陈文颖.2006.结构调整还是技术进步?改革开放后我国能源效率提高的因素分析.上海经济研究,(6):8-16.
    [259]秦波.2011.上海市产业空间分别的密度梯度及影响因素研究.人文地理,26(1):39-43.
    [260]秦耀辰,张丽君,鲁丰先,等.2010.国外低碳城市研究进展.地理科学进展,29(12):1459-1469.
    [261]邵晖.从分工视角解读城市产业空间结构的演变机理.城市问题,2011,(8):50-54.
    [262]申玉铭,邱灵,王茂军,等.2007.中国生产性服务业产业关联效应分析.地理学报,62(8):821-830.
    [263]史丹.2002.我国经济增长过程中能源利用效率的改进.经济研究,(9):49-56.
    [264]帅通,袁雯.2009.上海市产业结构和能源结构的变动对碳排放的影响及应对策略.长江流域资源与环境,18(10):885-889.
    [265]宋佩珊,计军平,马晓明.广东省能源消费碳排放增长的结构分解分析.资源科学,2012,34(3):551-558.
    [266]宋涛,郑挺国,佟连军.2007.环境污染与经济增长之间关联性的理论分析和计量检验.地理科学,27(2):156-162.
    [267]孙建卫,陈志刚,赵荣钦,等.2010.基于投入产出分析的中国碳排放足迹研究.中国人口·资源与环境,20(5):28-34.
    [268]孙建卫,赵荣钦,黄贤金,等.2010.1995-2005年中国碳排放核算及其因素分解研究.自然资源学报,25(8):1284-1295.
    [269]孙铁山,王兰兰,李国平.2012.北京都市区人口—就业分布与空间结构演化.地理学报,67(6):829-840.
    [270]童抗抗,马克明.2012.基于投入产出法的北京能源消耗温室气体排放清单分析.环境科学学报,32(9):2228-2235.
    [271]王法辉,金凤君,曾光.2004.区域人口密度函数与增长模式:兼论城市吸引范围划分的GIS方法.地理研究,23(1):97-103.
    [272]王锋,吴丽华,杨超.2010.中国经济发展中碳排放增长的驱动因素研究.经济研究,(3):123-136.
    [273]王会娟,陈锡康,杨翠红.2010.三种能源投入产出模型的比较与分析.系统工程理论与实践,30(6):987-992.
    [274]王茂军,杨雪春.2011.四川省制造产业关联网络的结构特征分析.地理学报,66(2):212-222.
    [275]王茂军,张学霞,齐元静.2005.近50年来山东城市体系的演化过程——基于城市中心性的分析.地理研究,24(3):432-442.
    [276]王强,伍世代,李婷婷.2011.中国工业经济转型过程中能源消费与碳排放时空特征研究.地理科学,31(1):36-41.
    [277]王强,郑颖,伍世代等.2011.能源效率对产业结构及能源消费结构演变的响应.地理学报,66(6):741-749.
    [278]王如松.2003.循环经济建设的产业生态学方法.产业与环境,49(s):48-52.
    [279]王贤,谷立霞,王俊岭.2010.低碳经济范式下能源消费结构的优化研究.科技进步与对策,27(22):26-29.
    [280]王晓辉.2010.中国产业结构的动态投入产出模型分析.哈尔滨工程大学博士学位论文.
    [281]王妍,石敏俊.2009.中国城镇居民生活消费诱发的完全能源消耗.资源科学,31(12):2093-2100.
    [282]王岳平,葛岳静.2007.我国产业结构的投入产出关联特征分析.管理世界,(2):61-68.
    [283]王铮,邓悦,宋秀坤,等.2001.上海城市空间结构的复杂性分析.地理科学进展,20(4):331-340.
    [284]韦亚平,赵民.2006.都市区空间结构与绩效——多中心网络结构的解释与应用分析.城市规划,30(4):9-16.
    [285]魏一鸣,刘兰翠,范英,等.2008.中国能源报告(2008).北京:科学出版社.
    [286]魏子清,周德群,王群伟,等.2009.中国三次产业经济增长与能源消费相互作用的动态特征.资源科学,31(7):1211-1218.
    [287]吴彼爱,高建华,徐冲.2010.基于产业结构和能源结构的河南省碳排放分解分析.经济地理,30(11):1902-1907.
    [288]吴巧生,成金华.2006.中国工业化中的能源消耗强度变动及因素分析——基于分解模型的实证分析.财经研究,32(6):75-85.
    [289]吴玉鸣.广西生态足迹与能源消费的库兹涅茨曲线分析.中国人口·资源与环境,2010,20(11):30-35.
    [290]夏炎,杨翠红,陈锡康.2009.基于可比价投入产出表分解我国能源强度影响因素.系统工程理论与实践,29(10):21-27.
    [291]薛领,罗柏宇,翁瑾.2010.基于agent的商业中心地空间结构动态模拟.地理研究,29(9):1659-1669.
    [292]阎小培,许学强.1999.广州城市基本-非基本经济活动的变化分析——兼释城市发展的经济基础理论.地理学报,54(4):299-308.
    [293]杨玉含,刘峰贵,陈琼,等.2011.2000-2008年青海省居民生活能源消费与碳排放分析.中国人口·资源与环境,21(3):307-310.
    [294]杨振山,蔡建明,高晓路.利用探索式空间数据解析北京城市空间经济发展模式.地理研究,2009,64(8):945-955.
    [295]杨振山,蔡建明.2010.空间统计学进展及其在经济地理研究中的应用.地理科学进展,29(6):757-768.
    [296]杨足膺,赵媛,付伍明.2010.基于弹性系数的江苏省能源生态足迹影响因素分析.生态学报,30(24):6741-6748.
    [297]余慧超,王礼茂.2009.中美商品贸易的碳排放转移研究.自然资源学报,24(10):1837-1846.
    [298]张景秋,贾磊,孟斌.2010北京城市办公活动空间集聚区研究.地理研究,29(4):675-682.
    [299]张雷.2006.中国一次能源消费的碳排放区域格局变化.地理研究,25(1):1-9.
    [300]张丽君,秦耀辰,张金萍,等.基于学习型区位论的县域产业集聚格局研究——以中原城市群为例.经济地理,2011,31(8):1301-1307.
    [301]张丽君,秦耀辰,张金萍,等.2012.郑汴都市区产业CO2排放演变机理及脱钩分析.地理科学进展,31(4):395-403.
    [302]张晓平,孙磊.2012.北京市制造业空间格局演化及影响因子分析.地理学报,67(10):1308-1316.
    [303]张妍,杨志峰,李巍.2005.城市复合生态系统中互动关系的测度与评价.生态学报,25(7):1734-1740.
    [304]张燕,陈漓高.2007.从对外贸易角度看中国产业升级的路径——基于投入产出法的实证分析.世界经济研究,(12):43-48.
    [305]张意翔,刘捷,成金华.2009.我国能源效率变化趋势及调整政策——基于产业结构重型化视角的实证分析.管理学报,6(6):818-822.
    [306]张友国.2010.经济发展方式变化对中国碳排放强度的影响.经济研究,(4):120-133.
    [307]张志斌,潘晶,李小虎.2013.近30年来兰州市人口密度空间演变及其形成机制.地理科学,33(1):36-44.
    [308]张志强,曲建升,曾静静.2008.温室气体排放评价指标及其定量分析.地理学报,63(7):693-702.
    [309]赵敏,张卫国,俞立中.2009.上海市居民出行方式与城市交通CO2排放及减排对策.环境科学研究,22(6):747-752.
    [310]赵荣钦,黄贤金,钟太洋.2010b.中国不同产业空间的碳排放强度与碳足迹分析.地理学报,65(9):1048-1057.
    [311]赵荣钦,黄贤金.2010a.基于能源消费的江苏省土地利用碳排放与碳足迹.地理研究,29(9):1639-1649.
    [312]赵映慧,修春亮,姜博,等.1990年代以来空间极化研究综述.经济地理,2010,30(3):383-387.
    [313]钟韵,闫小培,林彰平.2010.高等级中心城市生产性服务输出空间特征——基于广州商务服务企业行为的探讨.地理研究,29(12):2166-2178.
    [314]朱玮,王德.2011.基于多代理人的零售业空间结构模拟.地理学报,66(6):796-804.
    [315]朱喜钢著.2002.城市空间集中于分散论.北京:中国建筑工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700