用户名: 密码: 验证码:
高重力坝抗震措施及坝体—库水—地基系统动力相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是能源需求大国,加速水电能源等可再生资源的发展已经列入我国十二五能源规划。这也是保证我国能源供给、节能减排、保护环境的重要战略举措。一大批高混凝上坝已建、正建、拟建于我们西南水资源丰富地区——也是地震活跃地区。本文为了研究重力土坝强震下非线性动力反应、损伤机理、破坏模式以及抗震加固措施的效果,进行了一系列的坝体动力模型破坏试验,并数值重构重力坝动力模型试验验证其纬果的可靠性;从动水压力模型试验着手,研究了地震作用下重力坝与库水相互作用,并通过流固耦合模型分析了库水及淤积层对高重力坝动力反应的影响。本文各章具体研究内容如下:
     (1)进行了仿真混凝土材料长方体立柱试件地震破坏试验,研究该模型材料在动力作用下的损伤特性、机理及形态;从而为更好的应用仿真混凝土材料于动力模型破坏试验中再现混凝土原型坝体的动态特征提供可靠依据。根据仿真混凝土材料脆性过大的特性,进行了向仿真混凝土中添加软粘土或橡胶颗粒材料使其降脆增韧的两种方法的试验研究;
     (2)进行了非完全相似条件的理论推导,提出了通过追求断裂特性相似以解决模型材料应变比尺λc≠1时相似要求的处理技巧;通过数值重构地震动力模型试验可知,在试验设备及条件、模型材料不完全满足相似要求的情况下,根据非完全相似条件设计模型,并采取一定的相似技巧,模型试验是可以得到稳定可靠地试验结果的:
     (3)为了研究强震下坝体动力反应、破坏形态及抗震措施效果,进行了有、无抗震配筋措施的重力坝动力模型破坏对比试验。由试验结果可知,重力坝抗震的薄弱环节位于坝颈部位,对其配筋可以提高坝体抗震性能。采用混凝土塑性损伤模型与基于能量等效的钢筋混凝土模型进行了强震下有、无抗震配筋措施重力坝动力响应、坝体内部应力分布以及损伤分布的数值分析。采用流固耦合模型模拟上游库水作用,计算结果发现,与试验结果相同,对坝体抗震的薄弱部位配筋虽不能提高起裂加速度,但是对控制裂缝的张开度,阻止裂缝向把体内部延伸有明显作用。这对保持强震下混凝土坝的整体性是有积极作用的;
     (4)进行了振动台上重力坝-库水系统动力模型试验,测得大坝自振频率及上游面动水压力。将试验结果与模拟库水作用的流固耦合模型及附加质量模型计算结果相比较发现,流固耦合模型结果与试验测得结果十分一致,而附加质量模型夸大了库水对坝体结构动力作用的影响。因此,基于库水有限元的流固耦合模型应该是研究坝体-库水相互作用问题的首选方法。采用数值重构动水压力模型试验的方法研究了采用自来水模拟地震作用下库水对坝体作用效果引起误差的原因。模型试验的数值重构分析发现水体密度及可压缩性是产生上述误差的原因,并以此提出了修正误差的可行性方法。
     (5)对5种不同高度的重力坝分别采用流固耦合模型进行了坝体-库水系统相互作用的时域地震动分析。将算得动水压力结果与Westergaard公式解相比较可知,约70m高的低重力坝采用Westergaard公式计算动水压力就能满足工程实际的要求,对于160m以上的中高重力坝,采用流固耦合模型计算库水作用及坝体动力响应较为接近现实情况。地基性质对200m级高坝库水作用的影响非常明显,在计算坝体与库水相互作用时地基作用不可忽略;对于70m高的低坝,地基作用可以不用考虑;由于动水压力的影响因素较多,因此对Westergaard公式的修正考虑到多方面因素的影响,对原公式引入了坝体高度修正项、坝体弹性修正项、库底吸收修正项。修正的Westergaard公式解与流固耦合结果及以往文献的试验及计算结果吻合良好;为明确地震中重力坝-库水-淤积层-地基系统动力相互作用下坝体的反应,将泥沙淤积层作为粘性、可压缩及大密度流体,考虑柔性地基作用建立了二维的计算模型。本文提出的模型计算结果与以往报道结果相一致:柔性地基与淤积层都能够降低库坝系统的共振频率及反应幅值。该模型方法简单、编程方便及运算速度快等特点可以较方便的应用到混凝土坝体非线性动力响应计算中。
To meet the enormous energy demands, the development of hydropower sources of energy and other renewable sources have been included12th5-Year Plan in China. It is an important strategic move of energy supplies, energy saving, emission reduction, and protection of the environment many concrete dams have been built, being constructed and will be built in earthquake zone of Southwestern China. A series of tests were performed to investigate nonlinear response, damage mechanism and failure modes of concrete dams, and seismic measure effects under strong earthquake, and the numerical reconstruction of dynamic failure modal test is conducted to study reliability of the results of test. The hydrodynamic pressure model test and the reservoir FEM-based numerical method were applied to study gravity dam-reservoir system interaction, and analysis results of the fluid-solid model were compared with those of the added mass model for reservoir effects on dam body. The main contents in this paper are summarized as follow:
     (1) The cuboid specimens of5groups were tested to study damage properties, mechanism and modes of emulation concrete. It provides reliable basis for emulation concrete to be better applied to dynamic model rupture test in order to represent the corresponding behavior of its prototype accurately. Since emulation concrete is over brittle, the lab tests were carried out to provide two methods to improve the brittleness of the material. The test results found that emulation concrete mixed with clay or rubber particles can be improved in its brittleness and deformability.
     (2) The non-full similarity laws are deducted on the basis of the existing similar theory. The disposal skill of fracture characteristics similarity between prototype and model materials is proposed to meet non-full similitude (λε≠1) requirements. The analysis of numerical reconstruction of model test implicates that model test results are reliable when the model is designed according to non-full similarity laws and the treatment skills and the experiment equipment and condition, model material don't meet all for the similitude requirements.
     (3) To study the dynamic failure mechanism and seismic measure effects for high concrete gravity dam under strong earthquake, the comparative model experiments on the shaking table were conducted with concrete gravity dam with and without strengthening reinforcement. For the two model dams with and without strengthening reinforcement tested, vulnerable parts of them are the necks near the crests. The results also indicate that the reinforcement is beneficial for improving the seismic-resistant capacity of the gravity dam. To investigate nonlinear responses, stress and damage distributions, the gravity dams with and without strengthening reinforcement under strong earthquake are analyzed with nonlinear numerical model based on concrete plastic damage model and reinforced concrete energy equivalent model. The fluid-solid coupling model is applied to model dam-reservoir interaction in the analysis. It is found that the reinforcing bars can't improve cracking acceleration of dam, but the cracks opening can be controlled effectively, and the cracks propagations arc restrained in dam surface which is similar with results of dynamic model test. It has a positive impact to maintain integrity of dam.
     (4) Dynamic model test of gravity dam-reservoir system for gravity dam was carried out on a shaking table. The natural frequency and hydrodynamic pressure on upstream were got from the test. The results of finite element model based on fluid-solid coupling arc well consistent with those of the test, while the Added mass model amplifies the dynamic influence of water on dam. According to the analyses above, finite element method based on fluid-solid coupling should be the first choice to analysis the dam-reservoir interaction. The error analysis was performed by numerical reconstruction of hydrodynamic pressure model test. It is found that water compressibility and its low density is the reason for the error. The feasible methods to reduce the error arc proposed by numerical analysis.
     (5) Earthquake analysis of gravity dams with five different heights in time domains was performed with the fluid-structure coupling model. The hydrodynamic pressure obtained from the model was compared with Westergaard solutions, and it shows that hydrodynamic pressure can be calculated well with Westergaard formula for the dams with a height of about70m.But when the height of dams is more than160m, it is more reasonable to calculate the dynamic responses of dam-reservoir system with the fluid-structure coupling model. As for the dams with a height of about200m, the influence of foundation on dam-reservoir interaction is significant and must be considered. As for the dams with a height of about70m, the influence of foundation can be neglcctd. Because of many influence factors on hydrodynamic pressure, the Westergaard equation was modified considering the influence of dam height, elasticity, reservoir bottom condition. The results of Westcrgaard formula modified arc coincident with those of fluid-structure coupling models and previous reports. To investigate dynamic responses of gravity dam under dam-water-sediment-foundation interaction system, a2D model was created in which sediment deposition layer is taken as a kind of viscous, compressible and great density fluid and the influence of flexible foundation is also considered. The results obtained from the model are in agreement with those of previous reports:both of flexible foundation and sediment can reduce resonance peaks of dam-reservoir system. In addition, the computational method of the model is simple, and the procedure is finished easily and fast in speed of operation. So it can also be used to study nonlinear dynamic response of dam-reservoir-sediment-foundation systems.
引文
[1]陈棋福主编.中国震例(1992-1994),(1995-1996),(1997-1999),(2000-2002)[M].北京:地震出版社,2002,2003,2004,2008.
    [2]Wieland M. Earthquake safety of concrete dams and seismic design criteria for major dam projects[A]. Proc. Conference on Hydropower Stations, Tehran, Iran, May 27 and 28,2003.
    [3]Hansen K. D., Roehm L. H. The response of concrete dams to earthquakes[J]. International Water Power and Dam Construction,1979,31(4):27-31.
    [4]陈兴华.脆性材料结构模型试验[M].北京:水利水电出版社,1984.
    [5]Jing Zhou, Gao I.in. Seismic fracture analysis and model testing of concrete gravity dams[J]. Dam Engineering,1992,3(1):35-46.
    [6]Gao Lin, Jing Zhou, Chuiyi Fan. Dyanamic model rupture test and safety evaluation of concrete gravity dams[J]. Dam Engineering,1993,4(2):173-186.
    [7]Yoshida T,Baba K. Dynamic response of dams [A]. Proc.,3rd World Conference, on Earthquake Engineering. Ⅱ, International Association of Earthquake Engineering, Tokyo,1965.748-764.
    [8]Oberti G., Lauletta E. Structural models for the study of dam earthquake resistance[A]. Proc.,9th Conference on Large Dams, Turkey, Istanbul,1967.431-442.
    [9]Balasara J. P., Walker R. E., Fowler J., Vibration characteristics of the North Fork Dam Model[R]. Technical Report N-74-2, U.S. Army Waterways Experiment Station, Vicksburg, Mississippi,1974.
    [10]Balasara J. P., Norman C. D. Vibration tests and analysis of a model arch dam[J]. Earthquake Engineering and Structural Dynamics,1975,4(2):163-178.
    [11]Norman C. D., Crowson R D, Balasara J. P. Dynamic response characteristics of a model arch dam[A]. Proceedings of the 8th Joint U. S.-Japan Panel Conference on Wind and Seismic Effects, National Bureau of Standards, Washington,1976.
    [12]Bakhtin B. M., Dumenko V. I, Seismic stability of concrete gravity dam having a lightweight profile[J]. Power Technology and Engineering (formerly Hydrotechnical Construction),1979,13(5):445-450.
    [13]Niwa A., Clough R. W. Shaking table research on concrete dam models[R]. Report No: UCB/EERC-80/05, Earthquake Engineering Research Center, University of California, Berkeley,1980.
    [14]Niwa A., Clough R. W. Non-linear seismic response of arch dams[J]. Earthquake Engineering and Structural Dynamics,1982,10(2):267-281.
    [15]Gutidze P A. Model investigations of seismic action on the concrete arch dam of the Inguri Hydro-electrical Station. Power Technology and Engineering (formerly Hydrotechnical Construction),1985,19(11):26-30.
    [16]Norman C. D. Dynamic failure tests and analysis of a model dam[R]. Tech. Rep. SL-86-33, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss 1986.
    [17]Donlon W. P. Experimental investigation of the nonlinear seismic response of concrete gravity dams[R]. Report No:EERL-89/01, Earthquake Engineering Research Laboratory, California Institute of Technology, California,1989.
    [18]Donlon W. P, Hall J. F. Shaking table study of concrete gravity dam monolith[J]. Earthquake Engineering and Structural Dynamics,1991,20(8):769-786.
    [19]Mir R. Z., Taylor C. A. An experimental investigation into earthquake-induced failure of medium to low height concrete gravity dams[J]. Earthquake Engineering and Structural Dynamics,1995,24(3):373-393.
    [20]Mir R. Z., Taylor C. A. An experimental investigation into the base sliding response of rigid concrete gravity dams to dynamic loading[J]. Earthquake Engineering and Structural Dynamics,1996,25(1):79-98.
    [21]Ghobarah A., Ghaemian M. Experimental study of small scale dam models[J]. Journal of Engineering Mechanics, ASCE,1998,124(11):1241-1248.
    [22]Harris D. W., Snorteland N., Dolen T.,等. Shaking table 2-D models of a concrete Gravity dam [J]. Earthquake Engineering and Structural Dynamics,2000,29(6):769-787.
    [23]Rene T., Leger P. Martin L.,等. Seismic safety of gravity dams:from shake table experiments to numerical analysis[J]. Journal of Structural Engineering, ASCE,2000, 126(4):518-529.
    [24]Li Q. S., Li Z. N., Li G. Q.,等. Experimental and numerical seismic investigation of Three George dam[J]. Engineering Structures,2004,27(4):501-513.
    [25]Farrokh J., Leger P., Rene T. Seismic water pressure in crack concrete gravity dams: experimental study and theoretical modeling[J]. Journal of Structural Engineering, 2005,131(1):139-150.
    [26]Ghaemmaghami A. R., Ghaemian M. Experimental seismic investigation of Sefid-rud concrete buttress dam model on shaking table[J]. Earthquake Engineering and Structural Dynamics,2008,37(5):809-823.
    [27]Ghaemmaghami A. R., Ghaemian M. Shaking table test on small-scale retrofitted model of Sefid-rud concrete buttress dam[J]. Earthquake Engineering and Structural Dynamics, 2010,39(1):109-118.
    [28]Lyatkher A. D., Kaptsan A. D., Semenov I. V. Seismic stability of the Toktogul dam[J]. Power Technology and Engineering (formerly Hydrotechnical Construction),1977,11(2): 116-126.
    [29]Waggoner F., Plizzari G., Saouma V. E. Centrifuge tests of concrete gravity dams[J]. Dam Engineering,1993,4(3):144-171.
    [30]Plizzar G. A., Saouma V. C., Waggoner F. A. Experimental study of concrete gravity dams in a centrifuge[A]. Dam fracture and damage Dam Fracture and Damage:Proceedings of the International Workshop, Bourdarot E., Mazars J., Saouma V. C., Chambery, France, 16-18 March 1994.
    [31]Renz R., Ferrara G., Mazza G. Cracking in a concrete gravity dam:A centrifugal investigation[A]. Dam fracture and damage Dam Fracture and Damage:Proceedings of the International Workshop, Bourdarot E., Mazars J., Saouma V. C., Chambery, France,16-18 March 1994.
    [32]Plizzari G., Waggoner F., Saouma V. E. Centrifuge modeling and analysis of concrete gravity dams[J]. Joumal of Structural Engineering, ASCE,1995,121(10):1471-1479.
    [33]Uchita Y., Shimpo T., Saouma V. E. Dynamic centrifuge tests of concrete dam[J]. Earthquake Engineering and Structural Dynamics,2005,34(12):1467-1487.
    [34]Saouma V. E., Uchita Y., Gillan C.,等. Centrifuge Tests of Concrete Gravity Dams Subjected to Hydrostatic and Uplift Forces[J]. International Water Power & Dam Construction,2005, (7):38-41.
    [35]Uruchida S., Shimpo T., Uchita Y.,等. Dynamic Centrifuge Analysi s of Concrete Gravity Dam[A].73rd Annual Meeting of ICOLD, Teheran, IRAN, paper No.085-04,2005.
    [36]李干荣.流溪河小车水电站拱坝结构模型试验与应力分析[J].水力发电,1958, (15):24-29.
    [37]曹增延,祁建华.结构振动及破坏试验中材料动力性能相似问题的研究[R].水利水电科学研究院研究报告,北京,1986.
    [38]祁建华,曹增延,唐继儒,等.二滩拱坝地震响应的动力模型试验研究[J].水电站设计,1993,9(1):63-70.
    [39]祁建华,胡晓.漫湾重力坝抗震试验研究[J].水电站设计,1994,10(3):32-38.
    [40]周晶,林皋,王承伦.双曲拱坝的地震破坏模刑试验[J].大连理工大学学报,1992,32(2):218-233.
    [41]杨国平,陈安元,李普安,等.三峡重力坝下游面压力管道抗震试验研究[J].武汉水利电力大学学报,1994,27(6):670-677.
    [42]陈厚群,侯顺载,张力飞,等.拱坝多点输入动力反应的试验研究[J].水利学报,1995,(8):12-20.
    [43]李朝国, 张林,胡成秋.普定碾压混凝土拱坝破坏试验研究[J].水力发电,1996,(1):63-66.
    [44]江泉,杜成斌,马良箔.分缝拱坝模型动力试验研究和分析[J].河海大学学报,1998,26(3):95-99.
    [45]林皋,周晶,胡志强.丰满大坝抗震安全性评价[J].大坝与安全,1999,(3):31-35.
    [46]朱彤,周晶.有构造峰的高拱坝强震破坏模型试验研究[A].第五届全国地震工程会议论文集,1998.
    [47]Zhou J., Lin G., Zhu T.,等. Experimental investigation into seismic fracture of high arch dams. Journal of Structural Engineering, ASCE,2000,126(8):926-935.
    [48]倪汉根,周晶,王炳乾.双曲拱坝动力特性的初步研究[J].大连理工大学学报,1983,22(3):23-29.
    [49]范书立,陈健云,周晶,等.龙开口水电站溢流坝段动力模型破坏试验研究[J].水利学报,2007,(增).
    [50]胡晓,侯顺载,王济,等.小湾高拱坝整体及有缝模型的动力试验研究[J].水力发电,2001,(2):48-50.
    [51]盛志刚,张楚汉,王光纶,等.拱坝横缝非线性动力响应的模型试验和计算分析[J].水力发电学报,2003,(1):34-43.
    [52]Liu J., Feng X., Ding X.,等. Stabil ity assessment of the Three-Gorges Dam foundation, China, using physical and numerical modeling-Part Ⅰ:physical model tests[J]. International Journal of Rock Mechanics & Mining Sciences,2003,40(5):609-631.
    [53]Haibo Wang, Deyu Li. Experimental study of seismic overloading of large arch dam[J]. Earthquake Engineering and Structural Dynamics,2006,35(2):199-216.
    [54]王海波,李德玉,陈厚群.拱坝振动台动力破坏试验研究[J].土木工程学报,2006,39(5):109-118.
    [55]李德玉,王海波,涂劲.拱坝坝体-地基动力相互作用的振动台动力模型试验研究[J].水利学报,2003,(7):30-35.
    [56]王海波,涂劲,李德玉.室内动力模型试验中辐射阻尼效应的模拟[J].水利学报,2004,(2):39-45.
    [57]HaiboWang, Deyu Li. Experimental Study of dynamic damage of an arch dam [J]. Earthquake Engineering and Structural Dynamics,2007,36(3):347-366.
    [58]隆文非,张帆,舒仲英,等.重力坝坝体-库水-气幕相互作用的振动台试验[J].水利水电科技进展,2006,26(5):10-13.
    [59]杨宝全,冯镜洁,崔华丽,等.重力坝结构模型试验研究[J].四川水利,2007,(1):40-43.
    [60]Chopra A. K., Tan H. Modeling dam-foundation interaction in analysis of arch dams [A]. Proc.10th World Conference Earthquake Engineering, Madrid, Spain,1992,8.4623-4626.
    [61]Dominguez J., Maeso 0. Model for the seismic analysis of arch dams including interaction effects[A]. Proc.10th World Conference Earthquake Engineering, Madrid, Spain,1992,8.4601-4606.
    [62]Zienkievicz 0 C, Bettess P. Infinite element in study of fluid-structure interaction problems[C]. Second International Symposium Computing Methods in Applied Science Engineering. IRIA, Versailles, France,1975,133-172.
    [63]Zhang Boyan. The calculation of the free field response of a canyon[J] Japan Society of Civil Engineers,1993,10(3):129-137.
    [64]Zhang Chuhan, Jin Feng, Pekau 0. A. Time Domain procedure of FE-BE-IBE coupling for seismic interaction of arch dams and canyon[J]. Earthquake Engineering and Structural Dynamic,1995,24(12):1651-1666.
    [65]阎俊义,金峰,张楚汉.基于线性系统理论的FE-SBFE付域耦合方法[J].清华大学学报(自然科学版),2003,43(11):1554-1557.
    [66]Vargas-Loli L. M., Fenves G. L. Effects of concrete cracking on the earthquake response of gravity dams[J]. Earthquake Engineering Structural Dynamics,1989,18(4):575-92.
    [67]Hall J. F. Study of the earthquake response of Pine Flat dam[J]. Earthquake Engineering Structural Dynamics,1986,14(2):281-95.
    [68]Chopra A. K., Chakrabarti P. The earthquake experience at Koyna dam and stresses in concrete gravity dams[J]. Earthquake Engineering and Structural Dynamics,1972,1(2): 151-164.
    [69]Ayari M. L, Saouma V. E. Fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks[J]. Engineering Fracture Mechanics,1990,35(1-3):587-98.
    [70]Javanmardi F., Leger P., Tinawi R. Seismic structural stability of concrete gravity dams considering transient uplift pressures in cracks[J]. Engineering Structures, 2005,27(4):616-628.
    [71]Arabshahi H., Lotfi V. Earthquake response of concrete gravity dams including dam-foundation interface nonlinearities[J]. Engineering Structures,2008, 30(11):3065-3073.
    |72] Bazant Z. P., Cedolin L Blunt crack band propagation in finite element analysis[J]. Journal of the Engineering Mechanics Division, ASCE,1979,105(2):297-315.
    [73]Bazant Z. P., Oh B. H. Crack band theory for fracture of concrete[J]. Material and Structures,1983,16(93):155-177.
    [741 Vargas-Loli L. M., Fenves G. L Effects of concrete cracking on earthquake response of dams[J]. Earthquake Engineering Structural Dynamics,1989,18(4):575-592.
    [751 Bhattacharjee S. S., Leger P. Seismic cracking and energy dissipation in concrete gravity dams[J]. Earthquake Engineering Structural Dynamics,1993,22(11):991-1007.
    [76]Ghaemian M., Ghobarah A. Nonlinear seismic response of concrete gravity dams with dam-reservoir interaction[J]. Engineering Structures,1999,21(4):306-315.
    [77]Lotfi V., Espandar R. Seismic analysis of concrete arch dams by combined discrete crack and non-orthogonal smeared crack technique[J]. Engineering Structures,2004,26(1): 27-37.
    [78]Bicanic N., De Borst R., Gerstle W. Computational aspects[G]. In:Ⅰsenberg J, editor. Finite element analysis of reinforced concrete structures, vol.Ⅱ. New York:ASCE; 1993. p.367_489.
    [79]Cervera M., Oliver J., Faria R. Seismic evaluation of concrete dams via continuum damage models[J]. Earthquake Engineering Structural Dynamics,1995,24(9):1225-1245.
    [80]Cervera M., Oliver J., Manzoli 0. A rate-dependent isotropic damage model for the seismic analysis of concrete dams[J]. Earthquake Engineering Structural Dynamics, 1996,25(9):987-1010.
    [81]Lee J., Fenves G. L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal Engineering Mechanics, ASCE,1998,124(8):892-900.
    [82]Lee J., Fenves G. L. A plastic-damage concrete model for earthquake analysis of dams[J]. Earthquake Engineering Structural Dynamics,1996,27(9):937-956.
    [83]Niwa A., Clough R. W. Non-linear seismic response of arch dams[J]. Earthquake Engineering Structural Dynamics,1982,10(2):267-281.
    [84]Wang Guanglun, Pekau 0. A., Zhang C.,等. Seismic fracture analysis of concrete gravi ty dams based on nonlinear fracture mechanics [J]. Engineering Fracture Mechanics,2000, 65(1):67-87.
    [85]Zhang Chuhan, Jin Feng. Seismic Safety Evaluation of High Concrete Dams Part Ⅰ:State of the Art Design and Research[C]. Proceeding The 14th World Conference on Earthquake Engineering, Beijing, China, October 12-17,2008.1-9.
    [86]Hinks J. L., Gosschalk E. M. Dam and earthquake [J]. Dam Engineering,1993,4(1):9-24.
    [87]Zhang Chuhan, Xu Yanjie, Wang Guanglun,等. Nonlinear seismic response of arch dams with contraction joint opening and joint reinforcements[J]. Earthquake Engineering and Structural Dynamics,2000,29(10):1547-1566.
    [88]Zhang Chuhan. Numerical Model of Concrete Dam2Foundation2Reservior systems[M]. Beijing:Tsinghua University Press,2001.
    [89]郭永刚,涂劲,陈厚群.高拱坝伸缩横缝间布设阻尼器对坝体地震反应影响的研究[J].世界地震工程,2003,19(3):44-49.
    [90]郭永刚,涂劲,陈厚群.抗震钢筋对高拱坝抗震性能的影响[J].水利学报,2004,35(3):1-6.
    [91]刘新佳.拱坝地震响应非线性分析与抗震措施的数值模型研究[D].北京:清华大学博士论文,2003.
    [92]Long Yuchuan, Zhang Chuhan, Jin Feng. Numerical simulation of reinforcement strengthening for high-arch dams to resist strong earthquakes[J]. Earthquake Engineering Structural Dynamics,2008,37(15):1739-1761.
    [93]Gilbert R. I., Warner R. F. Tension stiffening in reinforced concrete slabs[J]. Journal of the Structural Division, ASCE,1978,104(ST12):1885-1901.
    [94]An X., Maekawa K., Okamura H. Numerical simulation of size effect in shear strength of RC beams[J]. Journal Material Concrete Structural Pavement, JSCE,1997,35(564): 297-316.
    [95]Kwak H. G., Filippou F. C. Finite element analysis of reinforced concrete structures under monotonic loads[R]. Report no:UCB/SEMM-90/14, Berkeley, Department of Civil Engineering, University of California,1990.
    [96]Kwak H. G., Filippou F. C. New reinforcing steel model with bond-slip[J]. Structural Engineering Mechanics,1995,3(4):299-312.
    [97]陈厚群.大坝抗震[A].中国大坝50年[C].北京:中国水利水电出版社,2000.675-733.
    [98]The UNESCO committee. Koyna Earthquake of December 1967[R]. Report of the UNESCO Committee of Experts, New Delhi,1968.
    [99]沈怀至,潘坚文,金峰.混凝土坝坝体配筋抗震措施研究[J].水力学报,2007,38(1)39-46.
    [100]Maekawa K., Pimanmas A., Okamura H. Nonlinear Mechanics of Reinforced Concrete [M]. SPON Press,11 New Fetter Lane, London,2003.
    [101]Xuehui An, Maekawa K., Okamura H. Numerical simulation of size effect in shear strength of RC beams[J]. Concrete Library of JSCE,1998,31:323-346.
    [102]龙渝川,张楚汉,迟福东,等.混凝土重力坝抗震配筋加固措施的效果研究[J].水力发电学报,2008,27(4):77-82.
    [103]Lee J., Fenves G. L. Plastic-damage concrete model for earthquake analysis of dams[J]. Earthquake Engineering and Structural Dynamics,1998,27(9):937-956.
    [104]龙渝川,周元德,张楚汉.模拟钢筋-混凝土相互作用效应的钢筋刚化方法[J].清华大学学报(自然科学版),2007,47(6):793-796.
    [105]龙渝川,张楚汉,周元德.钢筋混凝土嵌入式滑移模型[J]. 工程力学,2007,24(增刊1):41-45.
    [106]Long Y., Zhang C., Xu Y. Nonlinear seismic analyses of a high gravity dam with and without the presence of reinforcement[J]. Engineering Structures,2009,31(10): 2486-2494,
    [107]曲卓杰,吴胜兴,刘龙强等.小湾拱坝抗震钢筋粘结滑移试验研究[J].河海大学学报,2004,32(3):308-312.
    [108]Philippe B. Morin, Pierre Leger, Rene Tinawi. Seismic behavior of Post-tensioned gravity dams:shake table experiment Sand numerical simulations[J]. Journal of Structural Engineering,2002,128(1):140-152.
    [109]何天福.碾压混凝土坝钢纤维混凝土抗震加固措施研究[D].大连:大连理工大学,2007.
    [110]赵瑞东.碾压混凝土坝配筋抗震措施的试验及数值研究[D].大连:大连理工大学,2007.
    [111]姜淑梅,王丹,金峤,等.高混凝土重力坝抗震配筋效果的模型试验研究[J].水电能源科学,2009,27(4):97-99.
    [112]Westergaard H. M. Water pressures on earthquakes[J]. Transactions of ASCE,1933,98: 418-433.
    [113]Francesco Parrinello, and Guido Borino. Lagrangian finite element modelling of dam-fluid interaction:Accurate absorbing boundary conditions[J]. Computers and Structures,2007,85(6):11-14.
    [114]Akkose Mehmet, Adanur Suleyman, Bayraktar Alemdar. Elasto-plastic Earthquake Response of Arch Dams Including Fluid-structure Interaction by the Lagrangian Approach[J]. Applied Mathematical Modelling,2008,32:2396-2412.
    [115]Zienkiewicz 0. C., Bettess P. Fluid-structure Dynamic Interaction and Wave Forces. An Introduction to Numerical Treatment[J]. Internationa] Journal for Numerical Methods in Engineering,1978,13(1):1-16.
    [116]Chakrabarti P., Chopra A. K. Earthquake analysis of gravity dams including hydrodynamic interaction[J]. Earthquake Engineering and Structural Dynamics,1973, 2(2):143-160.
    [117]Porter G. S., Chopra A. K. Dynamic effects of simple arch dams including hydrodynamic interaction[J]. Earthquake Engineering and Structural Dynamics,1981,11 (6):573-597.
    [118]Saini S. S., Bettess P., Zienkiewicz 0. C. Coupled hydrodynamic response of concrete gravity dams using finite and infinite elements[J]. Earthquake Engineering and Structural Dynamics,1978,6(4):363-374.
    [119]吴一红,谢省宗.水工结构流固耦合动力特性分析[J].水利学报,1995,26(1):27-34.
    [120]王冰,叶天麒.刚体撞水非线性响应的边界元分析[J].固体力学学报,1999,20(2):182-186.
    [121]Aznarez J.J., Maeso O., Dominguez J. BE Analysis of Bottom Sediments in Dynamic Fluid-Structure Interaction Problems [J]. Engineering Analysis with Boundary Elements, 2006,30:124-136.
    [122]Millan M. A., Young Y. L., Prevost J. H. The effects of reservoir geometry on the sei smic response of gravity dams[J]. Earthquake Engineering and Structural Dynamics,2007, 36(11):1441-1459.
    [123]纪刚,张纬康,周其斗.有限元/边界元法求解多连通域声辐射问题[J].水动力学研究与进展,2003,18(4):408-413.
    [124]张丹才,章艺,童宗鹏,等.舵翼结构对水下航行器尾部振动声辐射的影响[J].振动与冲击,2006,25(5):102-106.
    [125]楚锡华,李锡夔.含液颗粒材料液固耦合分析的离散颗粒模型及特征线SPH法[J].计算力学学报,2007,24(6):719-726.
    [126]Selby A., Severn R. T. An experimental assessment of add mass of some plates vibration in water [J]. Earthquake Engineering and Structural Dynamics,1972,1(2):189-200.
    [127]Chopra A. K. Hydrodynamic pressures on dams during earthquake[J]. Journal of the Engineering Mechanics, ASCE,1967,93(EM6):205-223.
    [128]Nath B. Natural frequencies of arch dam reservoir systems-by a mapping finite element method[J]. Earthquake Engineering and Structural Dynamics,1982,10(5):719-734.
    [129]Chakrabarti P., Chopra A. K. Hydrodynamic effects in earthquake response of gravity dams[J]. Journal of the Structural Division, ASCE,1974,100(6):1211-1224.
    [130]Porter C. S., Chopra A. K. Hydrodynamic effect in dynamic response of simple arch dams[J]. Earthquake Engineering and Structural Dynamics,1982,10(3):417-431.
    [131]Hall J. F., Chopra A. K. Dynamic analysis of arch dams including hydrodynamic effects[J]. Journal of the Engineering Mechanics Division, ASCE,1983,109(1): 149-167.
    [132]Fok K. L, Chopra A. K. Earthquake analysis of arch dams including dam water interaction, reservoir boundary absorption and foundation flexibility[J]. Earthquake Engineering and Structural Dynamics,1986,14(2):155-184.
    [133]Fok K. L., Chopra A. K. Hydrodynamic and foundation flexibility effects in earthquake response of arch dams[J]. Journal of Structural Engineering, ASCE,1986,112(8): 1810-1828.
    [134]王进廷.高混凝土坝-可压缩库水-淤砂-地基系统地震反应分析研究[D].中国水利水电科学研究院,2001.
    [135]张慧星.基于ADINA的阿海重力坝抗震分析研究[D].南京:河海大学,2008.
    [136]Clough R. W. Chang K. T., Chen H. Q., 等. Dynamic Interaction Effects in Arch Dams[R]. Report No:UCB/EERC-85/11, Earthquake Engineering Research Center, University California, Berkeley,1985.1-52.
    [137]Dominnuez J., Maeso 0. Earthquake analysis of arch dams Ⅱ:Dam water foundation Interaction[J]. Journal Engineering Mechanics, ASCE,1992,119(3):513-530.
    [138]杜建国.基于SBFEM的大坝-库水-地基动力相互作用分析[D].大连理工大学,2007.
    [139]Wolf J. P., Song C. Finite-Element Modelling of Unbounded Media[M]. New York:Wiley, 1996.
    [140]Hall J. F., Chopra A. K. Dynamic response of embankment, concrete gravity and arch dams including hydrodynamic interaction[J]. Report No:UCB/EERC-80/x9, University of California, Berkeley, CA,1980.
    [14]jFenves G., Chopra A. K. Effects of reservoir bottom absorption on earthquake response of gravity dams[J]. Earthquake Engineering and Structural Dynamics,1983,11(6): 809-829.
    [142]Fcnves G., Chopra A. K. Effects of reservoir bottom absorption and dam-water-foundation rock interaction on frequency response functions for concrete gravity dams[J]. Earthquake Engineering and Structural Dynamics,1985,13(1):13-31.
    [143]Medina F., Dominguez J., Tassoulas J. L. Response of arch dams to earthquakes including effects of sediments[J]. Journal of Structural Engineering, ASCE,1990,116(11): 3108-3121.
    [144]Maeso 0., Dominguez J. Earthquake analysis of arch dam. I:Dam-foundation interactional Journal of Engineering Mechanics, ASCE,1993,119(3):496-512.
    [145]Tan H. C., Chopra A. K. Earthquake Analysis of arch dams including dam-water-foundation rock interaction[J]. Earthquake Engineering and Structural Dynamics,1995,24(11): 1453-1474.
    [146]Tan H. C., Chopra A. K. Dam foundation rock interaction effects in frequency response function of arch dams [J]. Earthquake Engineering and Structural Dynamics,1995,24(11): 1475-1489.
    [147]傅作新,陆瑞明.水库的库底条件和挡水结构的动水压力[J].水利学报,1987,18(5):28-34.
    [148]Cheng A. H. D. Effect of sediment on earthquake induced reservoir hydrodynamic response [J]. Journal of Engineering Mechanics, ASCE,1986,111(7):654-665.
    [149]Bougacha S., Tassoulas J. L. Seismic response of gravity dams Ⅰ:Modeling of sediments[J]. Journal of Engineering Mechanics, ASCE,1991,117(8):1826-1837
    [150]Bougacha S., Tassoulas J. L. Seismic response of gravity dams Ⅱ:Effects of sediments[J]. Journal of Engineering Mechanics, ASCE,1991,117(8):1839-1850
    [151]Chen B. F, Hung T. K. Hydrodynamic pressure of water and sediment on rigid dam[J]. Journal of Engineering Mechanics, ASCE,1993,119(7):1411-1433.
    [152]Dominguez J., Gallego R., Japon B. R. Effects of porous sediments on seismic response of concrete gravity dams[J]. Journal of Engineering Mechanics, ASCE,1997, 123(4):302-311.
    [153]Du X., Wang J., Hung T. K. Effects of sediment on the dynamic pressure of water and sediment on dams[J]. Chinese Science Bulletin,2001,46(7):521-524.
    [154]杜修力,王进廷,张楚汉.淤积泥砂对水平地运动作用时刚性坝面动压力的影响[J].地震工程与工程振动,2002,22(5):8-13.
    [155]杜修力,王进廷,张楚汉.淤积泥砂对垂直地运动作用时刚性坝面动压力的影响研究[J].水利学报,2003,34(02):66-72.
    [156]王进廷,唐庆,杜修力.库底饱和淤积砂层对高拱坝地震反应的影响研究[J].水力发电学报,2006,(02):11-15.
    [157]牛志伟,李同春,赵兰浩.库底淤沙对混凝土重力坝地震响应的影响[J].水力发电学报,2009,28(05):187-192.
    [158]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [159]陈建云,李健波,林皋,等.结构-地基动力相互作用时域数值分析的显-隐式分区异步长递归算法[J].岩石力学与工程学报,2007,26(12):2481-2487.
    [160]Li J., Yang J., Lin G. A stepwise damping-solvent extraction method for large-scale dynamic soil-structure interaction analysis in time domain[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2008,32(4):415-436.
    [161]Lyamer J., Kuhlemeyer R. L. Finite dynamic model for infinite media[J]. Journal Engineering Methods,1969,95(EM4):859-877.
    [162]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社,2002.
    [163]Du Xiuli, Wang Jinting. Seismic response analysis of arch dam-water-rock foundation systems[J]. Earthquake engineering and engineering vibration,2004,3(2):283-231.
    [164]杜修力,王进廷.拱坝-可压缩库水-地基地震波动反应分析方法[J].水利学报,2002,(33)6:83-90.
    [165]林皋,杜建国.基于SBFEM的坝-库水相互作用分析[J].大连理工大学学报.2005,45(5):723-729.
    [166]Rosenbluth E. Presion hidrodinamica en presas debida a aceleracion vertical con refraccion en el fondo[C]. Proceeding 2nd Congress National de Ingen. Sism., Veracruz, Mexico,1968.
    [167]Chopra A. K., Chakrabarti P. Earthquake analysis of concrete gravity dams including dam-water-foundation interaction[J]. Earthquake Engineering and Structural Dynamics, 1981,9(4):363-383.
    [168]Lofti H., Roesset J. M., Tassoulas J. L. A technique for the analysis of the response of dams to earthquakes [J]. Earthquake Engineering and Structural Dynamics,1987,15(4): 463-490.
    [169]Medina F., Dominguez J. Boundary elements for the analysis of the seismic response of dams including dam-water-foundation interaction effects. Ⅰ[J]. Engineering Analysis with Boundary Elements,1989,6(3):152-157.
    [170]Medina F., Dominguez J. Boundary elements for the analysis of the seismic response of dams including dam-water-foundation interaction effects. Ⅱ [J]. Engineering Analysis with Boundary Elements,1989,6(3):158-163.
    [171]ouhei T., Ohmachi T. A FE-BE method for dynamic analysis of dam-foundation-reservoir system in the time domain[J]. Earthquake Engineering and Structural Dynamics,1993, 22(3):195-209.
    [172]杜修力,王进廷.动水压力及其对坝体地震反应影响的研究进展[J].水利学报,2001,32(7):13-21.
    [173]范书立.混凝土重力坝的动力模型破坏试验及可靠性研究[D].大连:大连理工大学,2007.
    [174]朱彤.结构动力模型相似问题及结构动力试验技术研究[D].大连:大连理工大学,2004.
    [175]陈健云,范书立,白卫峰,等.混凝土仿真材料断裂韧度的试验研究及分析[J].建筑结构学报,2010,(增):345-350.
    [176]赵锦华.仿真混凝土的力学性能研究及重力坝的动力模型数值分析[D].大连:大连理工大学,2007.
    [177]张斌.碾压混凝土重力坝抗震措施模型试验研究[D].大连:大连理工大学,2009.
    [178]王铭明.阿海碾压混凝土重力坝抗震加固措施的试验及数值研究[D].呼和浩特:内蒙占农业大学,2010.
    [179]黄海燕,张子明.混凝土的尺寸效应[J].混凝土,2004,(3):8-9.
    [180]万玲,彭向和,林发荣.混凝土尺寸效应机理的有限元分析[J].地下空间,2004,24(4):453-456.
    [181]Carpinteri A., Ferro G. Size effects on tensile fracture properties:A unified explanation based on disorder and fractality of concrete microstructure[J]. Materials and structures,1994,27(10):563-571.
    [182]朱彤,林皋,马恒春.混凝土仿真材料特性及其应用的试验研究[J].水力发电学报,2004,23(4):31-37.
    [183]李晓晖.塑性混凝土防渗墙在张峰水库大坝基础防渗中的应用研究[J].水利与建筑工程学报,2007,5(2):39-41.
    [184]高仲璞.塑性混凝土在水口水电站主围堰防渗墙中的应用[J].人民长江,1991,22(12):23-25.
    [185]Toutanji H. A. The use of rubber tire particles in concrete to re-place mineral aggregates[J]. Cement and Concrete Composites,1996,18(4):135-139.
    [186]Hernandez-Olivares F., Barluenga G., Bollati M.,等. Static and dynamic behaviour of recycled tyre rubber-filled concrete [J]. Cement and Concrete Research,2002,32(10): 1587-1596.
    [187]Benazzouk A., Mezreb K., Doyen G. Effect to rubber aggregates of physico-mechanical behaviour of cement-rubber-composites-influence of the alveolar texture of rubber aggregates[J]. Cement and Concrete Composites,2003,25(7):711-720.
    [188]Segre N., Joekes I. Use of tire rubber particles as additionto cement paste[J]. Cement and Concrete Research,2000,30(9):1421-1425.
    [189]Hernandez-Olivares F., Barluenga G., Parga-Landa B.,等. Fatigue behavior of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements [J]. Construction and Building Materials.2007,21(10):1-10.
    [190]Rafat Siddique, Tarun R. Naik. Properties of concrete containing scrap tire rubber an overview[J]. Waste Management,2004,24(6):563-569.
    [191]Topcu I. B. The properties of rubberized concretes[J]. Cement and Concrete Research, 1995,25(2):304-310.
    [192]刘锋,张文杰,何东明,等.橡胶粉—纤维改性高强混凝土的高温性能[J].建筑材料学报,2011,14(1):124-131.
    [193]陈波,张亚梅,陈胜霞,等.橡胶混凝土性能的初步研究[J].混凝土,2004,182(12):37-39.
    [194]张亚梅,陈胜霞,高岳毅.浸-烘循环作用下橡胶水泥混凝土的性能研究[J].建筑材料学报,2005,8(6):665-671.
    [195]亢景付,任海波,张平祖.橡胶混凝土的抗裂性能和弯曲变形性能[J].复合材料学报,2006,23(6):158-162.
    [196]朱涵,刘春生,张永明等.橡胶集料掺量对混凝土压弯性能的影响[J].天津大学学报,2007,40(7):761-765.
    [197]田薇,郑磊,袁勇.橡胶混凝土脆性的试验研究[J].混凝土,2007,208(02):37-40.
    [198]王婧一, 王立燕,张亚梅.弹性橡胶混凝土压、弯变形性能试验研究[J].混凝土与水泥制品,2008,(02):610.
    [199]李清富,张鹏,张保雷.塑性混凝土弹性模量的试验研究[J].水力发电,2005,31(3):30-32.
    [200]李丽绢,谢伟锋,刘锋,等.高温作用后高强橡胶混凝土的性能研究[J].建筑材料学报,2007,10(6):692-698.
    [201]唐弢,漆新华,王维平.中国废旧轮胎资源循环利用的现状、问题及对策研究[C].中国可持续发展论坛—中国可持续发展研究会,上海,2005.196-199.
    [202]赵志远,毕乾,王立燕,张亚梅.废橡胶颗粒改性水泥基材料的塑性开裂和抗冲击性能[J].混凝土与水泥制品,2008,(4):1-5.
    [203]陈厚群.混凝土高坝强震震例分析和启迪[J].水利学报,2009,40(1):10-18.
    [204]陈厚群,徐洋平,李敏.汶川大地震和大坝抗震安全[J].水利学报,2008,39(10):1158-1167.
    [205]杜成斌,苏擎柱.混凝土坝地震动力损伤分析[J].工程力学,2003,20(5):170-173.
    [206]钟红,林皋,李建波,等.高拱坝地震损伤破坏的数值模拟[J].水利学报,2008,39(7):848-853.
    [207]Lin Gao, Du Jianguo, Hu Zhiqiang. Earthquake analysis of arch and gravity dams including the effects of foundation inhomogeneity[J]. Frontiers of Architecture and Civil Engineering in China,2007,1(1):41-50.
    [208]林皋.混凝土大坝抗震安全评价的发展趋向[J].防灾减灾工程学报,2006,26(1):1-12.
    [209]李同春,王仁坤,等.高拱坝安全度评价方法研究.水利学报,2007,(增):78-83.
    [210]鲁亮,吕西林.振动台模型试验中一种消除重力火真效应的动力相似关系研究[J].结构工程师.2001,(4):45-48.
    [211]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8.
    [212]夏颂佑,张楚芳,张鸣歧.动态结构模型相似条件若干问题的探讨[J].河海大学学报,1980,(1):59-72.
    [213]林皋.研究拱坝震动的模型相似律[J].水利学报,1958,(1):79-104.
    [214]左东启.模型试验的理论和方法[M].北京:水利电力出版社,1984.
    [215]徐挺.相似理论与模型试验[M].北京:中国农业机械出版社,1982.
    [216]徐挺.相似方法及其应用[M].北京:机械工业出版社,1995.
    [217]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [218]倪汉根,金崇磐.大坝抗震特性与抗震计算[M].大连:大连理工大学出版社,1994.
    [219]杨健辉,方坤河,赵东拂,等.基于残余应变的多侧压下混凝土受拉疲劳损伤研究[J].工程力学,2006,23(增):169-176.
    [220]Frantziskonis G., Desai C. S. Constitutive model with strain softening[J]. International Journal of Solids and Structures,1987,23(06):733-750.
    [221]郭向勇,方坤河,冷发光.混凝土断裂能的理论分析[J].哈尔滨工业大学学报,2005,37(09):1219-1222.
    [222]Kong F. K., Evans R. H, Cohen E. Handbook of structural concrete[M]. London:Pitman Books Ltd,1983.
    [223]沈德建,吕西林.模型试验的微粒混凝十力学性能试验研究[J].土木工程学报,2010,43(10):14-21.
    [224]Swartz S. E., Chi en C. C., Hu K. K,等.Tests on micro-concrete model of hyperbolic cooling tower[J]. Experimental Mechanics,1985,25(1):12-23.
    [225]方诗圣,何敏,胡成,等.配变形钢筋T形截面连续梁的微混凝土结构模型试验[J].合肥工业大学学报(自然科学版),2002,25(02):27-35.
    [226]胡成.微混凝土模型板的试验研究[J].合肥工业大学学报(自然科学版),1998,21(05):244-248.
    [227]项连清,李宏男,任亮,等.FBG传感器在碾压仿真混凝土大坝模型实验中的应用[J].世界地震工程,2002,22(40):27-34.
    [228]Lubliner J., Oliver J., Oller S.,等.A Plastic-Damage Model for Concrete[J]. International Journal of Solids and Structures,1989,25(3):229-326.
    [229]Xuehui An, Maekawa K., Okamura H. Numerical simulation of size effect in shear strength of RC beams [J]. Concrete Library of JSCE,1998,31:323-334.
    [230]SL/T191-96,水工混凝土结构设计规范[S].1997.
    [231]Greeves E. J. The model ing and analysis of linear and nonlinear fluid-structure systems with particular reference to concrete dams[D]. PhD thesis, University of Bristol, UK, 1991.
    [232]陈明阳.碾压混凝土重力坝抗震措施研究[D].大连:大连理工大学,2007.
    [233]宫必宁.重力坝地震动水压力试验研究[J].河海大学学报,1997,25(1):98-102.
    [234]李德玉,张伯艳,王海波,禹莹.重力坝坝体-库水相互作用振动台试验研究[J].中国水利水电科学研究院学报,2003,(1)3:216-220.
    [235]高瑞强,宫必宁。,郭建平.坝—水相互作用中水的压缩性影响研究[J].水利与建筑工程学报,2008,(01):106-108.
    [236]居荣初,曾心传.弹性结构与液体耦合振动理论[M].北京:地震出版社,1983.
    [237]陈厚群,侯顺载,杨大伟,.地震条件下拱坝库水相互作用的试验研究[J].水利学报,1989,(7):29-39.
    [238]王铭明,陈健云,范书立.重力坝地震动水压力的试验研究[J].水电能源科学,2012,(5):58-61.
    [239]Kotsubo S. Dynamic water pressure on dams due to irregular earthquakes[J]. Memoirs Faculty of Engineering, Kyushu University, Fukuoka, Japan,1959,18(4):119-129.
    [240]Zangar C. N.,Haefeli R J. Electric analog indicates effect of horizontal earthquake shock on dams[J]. Civil Engineering,1952,22:278-279.
    [241]Permumal swami P. R., Lakshimidhar Kar. Earthquake Hydrodynamic Forces on Arch Dams [J]. Journal of the Engineering Mechanics Division, ASCE,1973,99(5):965-977.
    [242]Brahtz, H. A. Heilbron, C. H. Discussion of "Water Pressures on Dams during Earthquakes" [J]. Transaction ASCE,1933,98(2):434-470.
    [243]晏启祥,刘浩吾,王忠.流固耦合系统库底边界对动水压力的影响[J].西南交通大学学报,2002,37(3):246-249.
    [244]章青,傅作新.考虑库底吸收作用时挡水坝的抗震分析[J].河海大学学报,1988,16(6):20-32.
    [245]王忠,晏启祥,刘浩吾.库底反射性边界条件与地震动水压力分析[J].四川大学学报(工程科学版),2002,34(1):36-39.
    [246]陈江,张少杰,闵兴鑫.坝体-库水互相互作用的流固耦合分析[J].西南科技大学学报,2009,24(1):13-18.
    [249]牛志伟,李同春,赵兰浩.库底淤沙对混凝土重力坝地震响应的影响[J].水力发电学报,2009 28(5):187-190.
    [250]冯利.淤沙在坝-库水-地基系统动力时程响应中的影响研究[J].水利科技与经济,2009,15(10):870-872.
    [251]王进廷,杜修力,张楚汉.重力坝-库水-淤砂-地基系统动力分析的时域显式有限元模型[J].清华大学学报(自然科学版),2003,43(8):1112-1115.
    [252]百色东笋造纸厂,广西林科所.消除造纸黑液污染的新途径—常压法用造纸黑液制甲硫醚、甲硫醇和石油钻井泥浆降粘剂扩大试验报告[J].广西林业科学,1977,(z1):11-34.
    [253]饶黄云,刘悦.用自制仪器精确测定变温液体的粘滞系数[J].实验力学,2008,23(2):186-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700