用户名: 密码: 验证码:
氢自养反应器去除饮用水中高浓度硝酸盐的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国饮用水受硝酸盐污染严重、威胁人类健康的现状,提出采用氢自养反硝化技术去除饮用水中高浓度硝酸盐的解决方案。本文主要采用透气膜为氢气扩散器,重点考察了三种氢自养生物膜反应器——一体式透气膜-生物膜反应器(IGM-BR)、分体式透气膜-生物膜反应器(AGM-BR)和分体式生物膜反应器(A-BR)对饮用水中高浓度硝酸盐的去除效果,为氢自养反硝化技术在饮用水处理中的应用提供参考依据。
     采用双Mechaelis-Menten方程来描述氢自养反硝化的动力学过程,通过序批试验测定附着生长型反硝化系统的动力学参数,主要包括硝酸盐的饱和常数KN1、亚硝酸盐的饱和常数KN2以及氢气的饱和常数KH1和KH2,测定结果分别为KN1=2.09 mg/L,KN2=1.55 mg/L,KH1= 0.059 mg/L,KH2=0.006 mg/L。
     IGM-BR反硝化效果不好,出水硝酸盐和亚硝酸盐浓度均较高,硝酸盐和总氮的去除率分别低于60%和40%。硝酸盐还原速率(NRR)和总氮去除速率(TNRR)均较低,分别低于200 g/(m3·d)和150 g/(m3·d)。AGM-BR和A-BR的反硝化效果明显好于IGM-BR,主要表现在硝酸盐去除率高、出水浓度低,出水总氮基本上满足小于10 mg/L的要求。连续试验中,AGM-BR和A-BR的NRR可达300 g/(m3·d)以上,TNRR在250 g/(m3·d)左右。AGM-BR的NRR和TNRR最高值出现在序批试验中,分别为471.36 g/(m3·d)和443.52 g/(m3·d),表明反应器的反硝化能力仍有改善余地。硝酸盐负荷和溶解氢气(DH)浓度是影响反硝化效果的主要因素。
     三种反应器均存在反硝化不完全的问题,虽然出水总氮浓度能满足低于10 mg/L的要求,但是出水亚硝酸盐浓度超出标准要求很多。次氯酸钠可有效氧化亚硝酸盐为硝酸盐。实验结果表明,亚硝酸盐的氯氧化过程可用一级动力学方程来描述,反应速率受亚硝酸盐浓度和pH值的影响较大,计量关系与水相中有机物存在与否关系不大。
     经氢自养反硝化后,出水有机物浓度比进水有所增加,增加幅度受硝酸盐负荷影响。在低硝酸盐负荷下,反硝化菌缺少基质,发生自身水解,出水有机物浓度较高。在较高硝酸盐负荷下,出水有机物浓度较低,试验测定出水总有机碳(TOC)比进水通常高0.23-0.87 mg/L。铁混凝对出水有机物没有明显去除效果。
     由于受氢气压力、硝酸盐负荷、水温等多种因素的影响,IGM-BR出水水质波动很大,运行不稳定;与其相比,AGM-BR和A-BR运行较稳定。试验发现,填料堵塞是影响反应器长期运行稳定性的主要因素。
     总之,虽然氢自养反应器在应用过程中出现了不少问题,但是随着研究的深入,这些问题逐渐得以解决。同时,氢自养反硝化技术在饮用水中高浓度硝酸盐去除方面表现出一定的优势。相信随着技术的不断完善,氢自养反硝化技术在饮用水处理领域将具有广泛的应用前景。
Nitrate contamination in drinking water becomes severe and presents a threat to human health. To solve this problem, hydrogenotrophic denitrification was employed to remove high concentration nitrate from drinking water. Gas-permeable membrane served as hydrogen diffuser in the denitrification process. Denitrification performance of three hydrogenotrophic biofilm reactors, integrated gas-permeable membrane biofilm reactor (IGM-BR), apart gas-permeable membrane biofilm reactor (AGM-BR) and apart biofilm reactor (A-BR), used to remove high concentration nitrate from drinking water, was investigated as a reference for wide practical application of hydrogenotrophic denitrification.
     A double Mechaelis-Menten form was employed to describe the hydrogenotrophic denitrification kinetics. Kinetic parameters, mainly the saturation constants of nitrate (KN1), nitrite (KN2) and hydrogen (KH1 and KH2), were measured by batch tests in an attached-growth denitrification system. The results showed that KN1 was 2.09 mg/L, KN2 was 1.55 mg/L, KH1 was 0.059 mg/L and KH2 was 0.006 mg/L.
     The denitrification performance of IGM-BR was not so good with high concentration nitrate and nitrite in the effluent. Lower than 60% of nitrate and 40% of total nitrogen were removed, respectively, and nitrate reducing rate (NRR) and total nitrogen removal rate (TNRR) were less than 200 g/(m3·d) and 150 g/(m3·d), respectively. AGM-BR and A-BR performed better than IGM-BR in the term of good nitrate removal and less nitrate in the effluent. The effluent total nitrogen was below 10 mg/L, satisfying the requirement of this study. In the continuous experiments, NRRs of AGM-BR and A-BR could achieve above 300 g/(m3·d), and TNRRs were about 250 g/(m3·d). The maximum NRR and TNRR of AGM-BR appeared in batch test, 471.36 g/(m3·d) and 443.52 g/(m3·d), respectively, indicating that improvement of denitrification capacity was available for the reactor. Nitrate loading and dissolved hydrogen (DH) concentration were the main factors influencing denitrification performance.
     Incomplete denitrification occurred in all of the three reactors. Although the effluent total nitrogen was less than 10 mg/L, the effluent nitrite concentration was more than the standards required. Nitrite could be oxidized to nitrate by sodium hypochlorite. The tests results showed that the kinetics of nitrite oxidation by hypochlorite followed the first-order form. The reaction rate was influenced by nitrite concentration and pH value, and the stoichiometric relationship between nitrite and hypochlorite was unrelated with the organics in the water.
     The organics in the effluent increased after hydrogenotrophic denitrification treatment, and the increasing amount depended on the nitrate loading of the reactor. Under low nitrate loading, denitrifying bacteria lacked substrates and self-hydrolysis occurred. Thus, the organics concentration in the effluent was relatively high. Under high nitrate loading, the organics in the effluent was low, and the measured total organic carbon (TOC) was 0.23-0.87 mg/L higher than that in the influent Coagulation with ferrous-coagulant had no obvious effect on organics removal.
     Under the influence of many factors, such as hydrogen pressure, nitrate loading and temperature, the effluent water quality of IGM-BR fluctuated and IGM-BR was in an unstable running state. Compared with that, AGM-BR and A-BR worked stably. It was found that clogging was the main factor influencing the stability of the reactor for long time operation.
     In conclusion, although some problems had arisen during the application of hydrogenotrophic reactors, they were resolved gradually as the investigation went on. Moreover, hydrogenotrophic denitrification exhibited some advantages for the removal of high concentration nitrate from drinking water. It is believed that hydrogenotrophic denitrification will have an extensive future in the field of drinking water treatment as it is improved.
引文
[1]毕二平,李政红.石家庄市地下水中氮污染分析[J].水文地质工程地质, 2001, 28(2): 31-34.
    [2]梅双斌.石家庄市地下水污染及防治[J].地质灾害和环境保护, 1998, 9(2): 33-37.
    [3]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报, 1995, 1(2): 80-87.
    [4]梅双斌.浅谈河北省城市地下水污染及防治[J].环境保护, 1994(8): 45-46.
    [5]金赞芳,王飞儿,陈英旭,等.城市地下水污染及其成因分析[J].土壤学报, 2004, 41(2): 252-258.
    [6]吕世华,曾祥忠,张福锁,等.成都市农村地下水硝酸盐污染的调查研究[J].土壤学报, 2002, 39(增): 286-293.
    [7]金速.辽宁省地下水硝酸盐污染成因分析及其防治对策探讨[J].辽宁地质, 1997(1): 63-69.
    [8]姜桂华,王文科,杨晓婷,等.关中盆地潜水硝酸盐污染分析及防治对策[J].水资源保护, 2002(2): 6-8.
    [9]云敏瑞.内蒙古地区主要城市地下水污染状况分析[J].内蒙古环境保护, 1995, 7(2): 26-29.
    [10]史静,张乃明,褚素贞,等.滇池流域地下水硝酸盐污染特征及影响因素研究[J].农业环境科学学报, 2005, 24(增): 104-107.
    [11]赵同科,张成军,杜连凤,等.环渤海七省(市)地下水硝酸盐含量调查[J].环境农业科学学报, 2007, 26(2): 779-783.
    [12]李明悦,朱静华,廉晓娟,等.天津市水体硝酸盐污染现状与分析[J].天津农业科学, 2008, 14(1): 43-46.
    [13]赵新锋,陈法锦,陈建耀,等.城市地下水硝酸盐污染及其成因分析[J].水文地质工程地质, 2008(3): 87-92.
    [14]白晓慧,王宝贞.饮用水中硝酸盐污染及其去除技术[J].环境科学动态, 1998(3): 19-21.
    [15] Della Rocca C, Belgiorno V, Meric S. Overview of in-situ applicable nitrate removal processes[J]. Desalination, 2007, 204(1/2/3): 46-62.
    [16] Mena-Duran C J, Sun Kou M R, Lopez T, et al. Nitrate removal using natural clays modified by acid thermoactivation[J]. Applied Surface Science, 2007, 253(13): 5762-5766.
    [17] Baes A U, Okuda T, Nishijima W, et al. Adsorption and ion exchange of some groundwater anion contaminants in an amine modified coconut coir[J]. Water Science and Technology, 1997, 35(7): 89-95.
    [18] ?ztürk Ne?e, Bekta? T Ennil. Nitrate removal from aqueous solution by adsorption onto various materials[J]. Journal of Hazardous Materials, 2004, 112(1/2): 155-162.
    [19] Cengeloglu Yunus, Tor Ali, Ersoz Mustafa,et al. Removal of nitrate from aqueous solution by using red mud[J]. Separation and Purification Technology, 2006, 51(3): 374-378.
    [20] Huang H Y, Zhang C T. Effect of low pH on nitrate reduction by iron powder[J]. Water Research, 2004, 38(11): 2631-2642.
    [21] Gandhi Sumeet, Oh Byung-Taek, Schnoor Jerald L, et al. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions[J]. Water Research, 2002, 36(8): 1973-1982.
    [22] Chen Y M, Li C W, Chen S S. Fluidized zero valent iron bed reactor for nitrate removal[J]. Chemosphere, 2005, 59(6): 752-759.
    [23] Huang C P, Wang H W, Chiu P C. Nitrate reduction by metallic iron[J]. Water Research, 1998, 32(8): 2257-2264.
    [24] Su C, Puls W R. Nitrate reduction by zerovalent iron: Effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate[J]. Environmental Science and Technology, 2004, 38(9): 2715-2720.
    [25] Schipper L A, Vojvodi?-Vukovi? M. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust[J]. Ecological Engineering, 2000, 14(3): 269-278.
    [26] Inês M, Soares M, Abeliovich Aharon. Wheat straw as substrate for water denitrification[J]. Water Research, 1998, 32(12): 3790-3794.
    [27] Su C, Puls W R. Removal of added nitrate in cotton burr compost, mulch compost, and peat: Mechanisms and potential use for groundwater nitrate remediation[J]. Chemosphere, 2007, 66(1): 91-98.
    [28]周海红,王建龙.利用生物可降解聚合物同时作为反硝化微生物的碳源和附着载体研究[J].中国生物工程杂志, 2006, 26(2): 95-98.
    [29] Schipper L A, Barkle G F, Hadfield J C, et al. Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater[J]. Journal of Contaminant Hydrology, 2004, 69(3/4): 263-279.
    [30] Schipper L A, Vojvodi?-Vukovi? M. Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall[J]. Water Research, 2001, 35(14): 3473-3477.
    [31] Moon H S, Ahn K H, Lee S, et al. Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system[J]. Environmental Pollution, 2004, 129(3): 499-507.
    [32] Su Chunming, Puls R W. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers[J]. Chemosphere, 2007, 67(8): 1653-1662.
    [33] Della Rocca C, Belgiorno V, Meri? S. An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water[J]. Process Biochemistry, 2006, 41(5): 1022-1028.
    [34] Eisentraeger A, Klag P, Vansbotter B, et al. Denitrification of groundwater with methane as sole hydrogen donor[J]. Water Research, 2001, 35(9): 2261-2267.
    [35] Fang Y, Hozalski R M, Clapp L W, et al. Passive dissolution of hydrogen gas into groundwater using howllow-fiber membrane[J]. Water Research, 2002, 36(14): 3533-3542.
    [36] Bohdziewicz Jolanta, Bodzek Michal, W?sik Ewa. The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater[J]. Desalination, 1999, 121(2): 139-147.
    [37] Wisniewski C, Persin F, Cherif T. Denitrification of drinking water by the association of an electrodialysis process and a membrane bioreactor: feasibility and application[J]. Desalination, 2001, 139(1/2/3): 199-205.
    [38] Kesore K, Janowski F, Shaposhnik V A. Highly effective electrodialysis for selective elimination of nitrates from drinking water[J]. Journal of Membrane Science, 1997, 127(1): 17-24.
    [39] Samatya Saba, Kabay Nalan, Yükselümran, et al. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins[J]. Reactive and Functional Polymers, 2006, 66(11): 1206-1214.
    [40] Foglar L, Bri?ki F. Wastewater denitrification process-the influence of methanol and kinetic analysis[J]. Process Biochemistry, 2003, 39(1): 95-103.
    [41] Nerenberg R, Rittmann B E, Najm I. Perchlorate reduction in a hydrogen-based membrane biofilm reactor[J]. Journal American Water Works Association, 2002, 94(11): 103-114.
    [42] Koeng A, Liu L H. Autotrophic denitrification of landfill leachate using elemental sulphur[J]. Water Science and Technology, 1996, 34(5/6): 469-476.
    [43] Park Ho ll, Kim Dong kun, Choi Yong-Jin, et al. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor[J]. Process Biochemistry, 2009, 40(10): 3383-3388.
    [44] Chen Y M, Li C W, Chen S S. Fluidized zero valent iron bed reactor for nitrate removal[J]. Chemosphere, 2009, 59(6): 753-759.
    [45] Huang Y H, Zhang T C. Effects of low pH on nitrate reduction by iron powder[J]. Water Research, 2004, 38(11): 2631-2642.
    [46] Prüsse U, H?hnlein M, Daum J, et al. Improving the catalytic nitrate reduction[J]. Catalysis Today, 2000, 55(1/2): 79-90.
    [47] Prüsse U, Vorlop K D. Supported bimetallic catalysts for water-phase nitrate reduction[J]. Journal of Molecular Catalysis A: Chemical, 2001, 173(1/2): 313-328.
    [48] Pintar Albin, Batista Jurka, Mu?evi? Igor. Palladium-copper and palladium-tin catalysts in the liquid phase nitrate hydrogenation in a batch-recycle reactor[J]. Applied Catalysis B: Environmental, 2004, 52(1): 49-60.
    [49] Garron Anthony, Lazar Karoly, Epron Florence. Effect of the support on tin distribution in Pd-Sn/Al2O3 and Pd-Sn/SiO2 catalysts for application in water denitrification[J]. Applied Catalysis B: Environmental, 2005, 59(1/2): 57-69.
    [50] Sa Jacinto, Gasparovicova Dana, Hayek Konrad. Water denitration over a Pd-Sn/Al2O3 catalyst[J]. Catalysis Letters, 2005, 105(3/4): 209-217.
    [51] Nuhoglu Alper, Pekdemir Turgay, Yildiz Ergun, et al. Drinking water denitrification by a membrane bio-reactor[J]. Water Research, 2002, 36(5): 1155-1166.
    [52] Buttiglieri Gianluigi, Malpei Francesca, Daverio Emilio, et al. Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor[J]. Desalination, 2005, 178(1/2/3): 211-218.
    [53] Aslan ?ükrü, Türkman Ay?en. Combined biological removal of nitrate and pesticides using wheat straw as substrates[J]. Process Biochemistry, 2005, 40(2): 935-943.
    [54] Aslan ?ükrü, Türkman Ay?en. Simultaneous biological removal of endosulfan (α+β) and nitrates from drinking waters using wheat straw as substrate[J]. Environment International, 2004, 30(4): 449-455.
    [55] Volokita Michal, Belkin Shimshon, Abeliovich Aharon, et al. Biological denitrification of drinking water using newspaper[J]. Water Research, 1996, 30(4): 956-971.
    [56]徐锁洪,施巍.以稻壳为载体培养反硝化菌及硝酸盐氮的去除[J].大连铁道学院学报, 2001, 22(4): 98-101.
    [57]沈梦蔚.地下水硝酸盐去除方法研究[D].浙江:浙江大学环境与资源学院, 2004.
    [58] Mansell B O, Schroeder E D. Biological denitrification in a continuous flow membrane reactor[J]. Water Research, 1999, 33(8): 1845-1850.
    [59] Ergas S J, Rheinheimer D E. Drinking water denitrification using a membrane bioreactor[J]. Water Research, 2004, 38(14/15): 3225-3232.
    [60] Soares M I M. Denitrification of groundwater with elemental sulfur[J]. Water Research, 2002, 36(5): 1392-1395.
    [61]刘玲花.硫/石灰石自养反硝化工艺的研究[J].环境工程, 1994, 12(3): 3-8.
    [62]刘玲花,王占生,王志石.硫/石灰石滤柱去除地下水中硝酸盐的研究[J].环境工程, 1995, 13(3): 11-16.
    [63] Zhang T C, Lampe D G. Sulfur: limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments[J]. Water Research, 1999, 33(3): 599-608.
    [64] Moon Hee Sun, Chang Sun Woo, Nam Kyoungphile, et al. Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification[J]. Environmental Pollution, 2006, 144(3): 802-807.
    [65]王海燕,曲久辉,雷鹏举.电化学氢自养与硫自养集成去除饮用水中的硝酸盐[J].环境科学学报, 2002, 22(6): 711-715.
    [66]王海燕,曲久辉,雷鹏举.两种电化学-硫自养集成脱硝工艺的对比[J].环境化学,2004,23(1): 51-57.
    [67] Wang Haiyan, Qu Jiuhui. Combined bioelectrochemical and sulfur autotrophic denitrification for drinking water treatment[J]. Water Research, 2003, 37(15): 3767-3775.
    [68] Wan Dongjin, Liu Huijuan, Qu Jiuhui, et al. Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification[J]. Bioresource Technology, 2009, 100(1): 142-148.
    [69] Chung J, Li X, Rittmann B E. Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor[J]. Chemosphere, 2006, 65(1):24-34.
    [70] Chung J, Nerenberg R, Rittmann B E. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor[J]. Water Research, 2006, 40(8):1634-1642.
    [71] Nerenberg R, Rittmann B E. Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants[J]. Water Science and Technology, 2004, 49(11/12): 223-230.
    [72] Logan B E, LaPoint Dina. Treatment of perchlorate- and nitrate-contaminated groundwater in an autotrophic, gas phase, packed-bed bioreactor[J]. Water Research, 2002, 36(14): 3647-3653.
    [73] Giblin T L, Herman D C, Frankenberger W T. Removal of perchlorate from ground water by hydrogen-utilizing bacteria[J]. Journal of Environmental Quality, 2000, 29(4): 1057-1062.
    [74] Chang Chao-Chien, Tseng Szu-Kung, Chang Chih-Cheng, et al. Degradation of 2-chlorophenol via a hydrogenotrophic biofilm under different reductive conditions[J]. Chemosphere, 2006, 56(10): 989-997.
    [75] Lee K C, Rittmann B E. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water[J]. Water Research, 2002, 36(8): 2040-2052.
    [76] Kurt M, Dunn I J, Bourne J R. Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor[J]. Biotechnology and Bioengineering, 1987, 29(4): 493-501.
    [77] Vasiliadou I A, Pavlou S, Vayenas D V. A kinetic study of hydrogenotrophic denitrification[J]. Process Biochemistry, 2006, 41(6): 1401-1408.
    [78] Vasiliadou I A, Karanasios K A, Pavlou S, et al. Experimental and modeling study of drinking water hydrogenotrophic denitrification in packed-bed reactors[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 812-824.
    [79] Glass C, Silverstein J. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation[J]. Water Research, 1998, 32(3): 831-839.
    [80] Chang C C, Tseng S K, Huang H K. Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment[J]. Bioresource Technology, 1999, 69(1): 53-58.
    [81] Sriram Barigeda. Denitrification via membrane-delivered hydrogen in soil column reactors[D]. Texas: Texas A&M University-Kingsville, 2005.
    [82] Haugen K S, Semmens M J, Novak P J. A novel in situ technology for treatment of the nitrate contaminated groundwater[J]. Water Research, 2002, 36(14): 3497-3506.
    [83] Terada A, Kaku S, Matsumoto S, et al. Rapid autohydrogenotrophic denitrification by a membrane biofilm reactor equipped with fibrous support around a gas-permeable membrane[J]. Journal of Biochemical Engineering, 2006, 31(1): 84-91.
    [84]张自杰,林荣忱,金儒霖.排水工程(下册)[M]. 4版.北京:中国建筑工业出版社, 2000, 311.
    [85] Ho C M, Tseng S K, Chang Y J. Autotrophic denitrification via a novel membrane-attached biofilm reactor[J]. Letters in Applied Microbiology, 2001, 33(3): 201-205.
    [86] Mansell B O, Schroeder E D. Hydrogenotrophic denitrification in a microporous membrane[J]. Water Research, 2002, 36(19): 4683-4690.
    [87] Smith R L, Buckwalter S P, Repert D A, et al. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water[J]. Water Research, 2005, 39(10): 2014-2023.
    [88] Lee K C, Rittmann B E. Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor[J]. Water Research, 2003, 37(7): 1551-1556.
    [89] Shin J H, Sang B, Chung Y C. The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilm reactor[J]. Desalination, 2005, 183(1/2/3): 447-454.
    [90] Rezania B, Cicek N, Oleszkiewicz J A. Kinetics of hydrogen-dependent denitrification under varying pH and temperature conditions[J]. Biotechnology and Bioengineering, 2005, 92(7): 900-906.
    [91] Rezania B, Oleszkiewicz J A, Cicek N, et al. Hydrogen-dependent denitrification in an alternating anoxic-aerobic SBR membrane bioreactor[J]. Water Science and Technology, 2005, 51(6/7): 403-409.
    [92] Kruithof J C, van Bennekom C A, Dierx H A L, et al. Nitrate removal from groundwater by sulphur/limestone filtration[J]. Water Supply, 1988, 6(3): 205-217.
    [93] Germonpre R, Liessens J, Verstraete W, et al. Methylotrophic and hydrogenotrophic denitrification at the blankaart plant[J]. Water Supply, 1992, 10(3): 53-64.
    [94] Hunter W J. Accumulation of nitrite in denitrifying barriers when phosphate is limiting[J]. Journal of Contaminant Hydrology, 2003, 66(1/2): 79-91.
    [95] Schnobrich M R, Chaplin B P, Semmens M J, Novak P J. Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations[J]. Water Research, 2007, 41(9): 1869-1876.
    [96] Rittmann B E, McCarty P L. Environmental Biotechnology: Principles and Application[M].北京:清华大学出版社, 2002.
    [97] Visvanathan C, Hung N Q, Jegatheesan V. Hydrogenotrophic denitrification of synthetic aquaculture wastewater using membrane bioreactor[J]. Process Biochemistry, 2008, 43(6): 673-682.
    [98] Ho C M, Tseng S K, Chang Y J. Simultaneous nitrification and denitrification using an autotrophic membrane-immobilized biofilm reactor[J]. Letters in Applied Microbiology, 2002, 35(6): 481-485.
    [99] Ghafari Shahin, Hasan Masitah, Aroua Mohamed Kheireddine. Improvement of autohydrogenotrophic nitrite reduction rate through optimization of pH and sodium bicarbonate dose in batch experiments[J]. Journal of Bioscience and Bioengineering, 2009, 107(3): 275-280.
    [100] Blaszczyk, M. Comparison of denitrification by Paracoccus denitrificans, Pseudomonas stutzeri and Pseudomonas aeruginosa[J]. Acta Microbiologica Polonica, 1992, 41(3/4): 203-210.
    [101] Betlach M R, Tiedje J M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification[J]. Applied and Environmental Microbiology, 1981, 42(6): 1074-1084.
    [102] Xu B, Enfors S O. Influence of nitrate starvation on nitrite accumulation during denitrification by Pseudomonas stutzeri[J]. Applied Microbiology and Biotechnology, 1996, 45(1/2): 229-235.
    [103] Turk O, Mavinivic S. Benefits of using selective inhibition to remove nitrogen from highly nitrogenous wastes[J]. Environmental Technology Letters, 1987, 8(9): 419-426.
    [104] Rezania B, Oleszkiewicz J A, Cicek N. Hydrogen-dependent denitrification of water in an anaerobic submerged membrane bioreactor coupled with a novel hydrogen delivery system[J]. Water Research, 2007, 41(5): 1074-1080.
    [105] Rittmann B E. Hydrogen-based membrane-biofilm reactor solves oxidized contaminant problems[J]. Membrane Technology, 2002, 2002(11): 6-10.
    [106] Mo H, Oleszkiewicz J A, Cicek N, et al. Incorporating membrane gas diffusion into a membrane bioreactor for hydrogenotrophic denitrification of groundwater[J]. Water Science and Technology, 2005, 51(6/7): 357-364.
    [107] Roggy D K, Novak P J, Hozalski R M, et al. Membrane gas transfer for groundwater remediation: chemical and biological fouling[J]. Environmental Engineering Science, 2002, 19(6): 563-574.
    [108] Ma X, Novak P J, Clapp L W, et al. Evaluation of polyethylene hollow-fiber membranes for hydrogen delivery to support reductive dechlorination in a soil column[J]. Water Research, 2003, 37(12): 2905-2918.
    [109] Gros H, Schnoort G, Ruttent. Biological denitrification process with hydrogen-oxidizing bacteria for drinking water treatment[J]. Water Supply, 1988, 6(3): 193-198.
    [110] Lee K C, Rittmann B E. A novel hollow-fiber membrane biofilm reactor for autohydrogenotrophic of drinking water[J]. Water Science and Technology, 2000, 41(4/5): 219-226.
    [111] Zhang Y, Zhong F, Xia S, et al. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor[J]. Journal of Hazardous Materials, 2009, 170(1): 203-209.
    [112]王景峰.好氧颗粒污泥脱氮除磷及颗粒污泥膜生物反应器研究[D].天津:天津大学环境科学与工程学院, 2006.
    [113]国家环境保护总局《水和废水监测分析方法编委会》.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [114]陆彩霞,顾平.氢自养反硝化系统中亚硝酸盐的累积特性[J].环境科学, 2008,29(10): 2830-2834.
    [115]陆彩霞,顾平.氢自养反硝化去除饮用水中硝酸盐的试验研究[J].环境科学, 2008, 29(3): 671-676.
    [116] Casey E, Glennon B, Hamer G. Review of membrane aerated biofilm reactors[J]. Resources, Conservation and Recycling, 1999, 27(1/2): 203-215.
    [117] Kinnan C M, Johnson D W. Iron fouling in membrane gas transfer applications[J]. Journal of Membrane Science, 2002, 205(1/2): 45-71.
    [118] Dlyamandoglu V, Mari?as B, Selleck R E. Stoichiometry and kinetics of the reaction of nitrite with free chlorine aqueous solutions[J]. Environmental Science and Technology, 1990, 24(11): 1711-1716.
    [119] McAdam E J, Judd S J. Denitrification from drinking water using a membrane bioreactor: Chemical and biochemical feasibility[J]. Water Research, 2007, 41(18): 4242-4250.
    [120]许保玖,龙腾锐.当代给水与废水处理原理[M]. 2版.北京:高等教育出版社, 2000, 152.
    [121]刘丽君,张秀忠,陆坤明.水质分析中的检出限及其确定方法[J].净水技术, 2003, 22(1): 37-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700