用户名: 密码: 验证码:
美洲商陆镉吸收和耐性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染已经成为人类所面临的重大生态环境问题,引起了全世界人民的重视与关注。在所有重金属污染中,Cd污染最为严重,Cd也以其移动性大、毒性高成为最受关注的元素之一。我国农田土壤Cd污染不仅面积大,而且污染程度较重,已成为我国农产品安全生产的重大问题。近年来,我国学者发现报道了美洲商陆(Phytolacca ameircana L., pokeweed)、东南景天(Sedum alfredii Hance)等Cd耐性植物或超积累植物,为Cd污染土壤植物修复提供了良好的植物材料。然而,这些植物对Cd的吸收、累积、解毒和耐性机理还有待深入研究。本论文以美洲商陆为材料,通过温室水培实验,利用抑制剂检测了植物对Cd的吸收方式,用生化分析和透射电镜研究了Cd对植物生理生化和超微结构的影响,用超速离心及透射电镜+能谱技术考察了植物Cd的亚细胞分布规律,用化学试剂连续提取探讨了植物中Cd的化学形态及转化规律,用蛋白质SDS-PAGE和双向电泳2-DE分离了植物体内Cd胁迫表达差异蛋白。旨在阐明美洲商陆对Cd的吸收和耐性机理,为土壤重金属污染植物修复提供一定的理论和科学依据。通过研究取得了以下主要结果:
     美洲商陆具有很高的Cd积累能力,其根系中的Cd含量高于地上部。水培条件下,100μM Cd处理美洲商陆地上部和根系Cd含量分别可达966.9 mg/kg和8179.1 mg/kg,且受害症状较轻;即使在低浓度Cd处理下,美洲商陆仍具有很高的Cd吸收积累能力。解偶联剂DNP和钙离子通道抑制剂LaCl3对美洲商陆Cd吸收均有一定的抑制作用,说明美洲商陆对Cd的吸收可能存在主动吸收,同时与钙离子通道密切相关。不同浓度Cd处理对美洲商陆体内Cu、Fe、Mn、Zn和P、S等元素的积累影响程度不同。美洲商陆对Cd的吸收可能与Zn离子通道无关,同时植物体对Cd与Mn存在竞争性吸收作用,而P和S可能与美洲商陆对Cd的解毒和耐性过程相关。
     生理生化实验结果表明,当Cd处理浓度低于100μM时,美洲商陆叶绿素a、叶绿素b及膜脂过氧化产物丙二醛MDA含量无显著变化,说明一定浓度Cd处理对美洲商陆叶片光合作用和细胞膜没有明显影响。但是随着处理浓度继续增加,植物体内叶绿素a、叶绿素b和总叶绿素含量都呈现下降趋势,说明美洲商陆叶绿素的合成、光合作用进程和生长情况均可能受到了Cd不同程度的抑制;而MDA含量明显增加,则表明高浓度Cd处理使细胞膜受损加重。此外,美洲商陆叶片不同抗氧化酶活性的变化趋势不尽相同,抗氧化酶对植物Cd毒可能存在一定的缓解作用,但这种作用有一定限度。透射电镜结果也显示Cd胁迫下美洲商陆膜系统、叶绿体和线粒体等细胞结构受到不同程度的破坏,这种因结构破坏而呈现的植物衰老现象很可能是由于植物体内活性氧代谢失调、膜脂过氧化加剧而处于氧化状态所致。
     利用超速离心技术对美洲商陆亚细胞组分进行了分离,结果显示各亚细胞组分Cd的含量与处理浓度之间具有很好的相关性,且美洲商陆根和叶细胞中大部分Cd都存在于细胞可溶性组分(53.7%-68.3%)或者细胞壁(23.4%-29.1%)中,说明细胞可溶性组分(液泡)和细胞壁是美洲商陆体内Cd的主要分布位点。而不同化学提取剂对美洲商陆根、茎和叶的提取结果表明,美洲商陆不同组织中Cd的存在形态有所不同。在根中,大部分Cd以水溶态无机盐存在,而在地上部Cd主要与果胶酸或者蛋白质结合。各提取态Cd的含量与处理浓度之间具有很好的相关性。Cd形态分析同样证实液泡和细胞壁可能在美洲商陆对Cd的耐性和解毒中发挥了重要作用,从而使植物细胞免受或少受Cd的毒害。
     利用SDS-PAGE和2-DE技术研究了Cd胁迫对美洲商陆蛋白质表达的影响,SDS-PAGE结果显示美洲商陆根系和叶片蛋白的分子量均集中在10~100 kDa,且在~25 kDa和~50 kDa处出现蛋白主带。与对照相比,根系蛋白在Cd处理前后变化不明显,而美洲商陆叶片蛋白谱带强度在60~150 kDa范围内有所降低,在25~50 kDa则有所增加。2-DE结果表明Cd处理后美洲商陆根系有26个蛋白点在表达量上有显著变化,其中8个蛋白点下调表达,18个蛋白点上调表达;而植物叶蛋白2-DE图谱显示共有46个蛋白点的丰度发生变化,其中下调表达大于2倍的蛋白点有21个,上调表达大于2倍的蛋白点为25个。这些蛋白可能是植物对Cd胁迫的响应,参与Cd的螯合,对美洲商陆Cd吸收和耐性起着积极的作用。
Heavy metals are toxic at excessive concentrations and may pollute the natural and man-made environment ecosystem. In recent years, heavy metal pollution of soil has received increasing attentions worldwide mainly because of the public awareness of environmental issues. Among all of the heavy metals, cadmium (Cd) is of most concern, for its great mobility and high toxicity in the soil environment. Meanwhile, large area of farmland is deeply contaminated by Cd, which leads to one of the major issues of agricultural product safety in China. Phytolacca americana L. (pokeweed) and Sedum alfredii Hance were reported to be Cd-tolerant plants or hyperaccumulators, which were benefit for phytoremediation of Cd polluted soil. However, the mechanisms of Cd uptake, accumulation, detoxification and tolerance were needed for further research. In the present work, we used hydroponically grown seedlings of pokeweed to find out the mechanisms in countering Cd stress in the plant cultures. We used inhibitors to study the Cd uptake way, investigated the impacts of Cd on plant physiology and biology characters and ultrastructure changes through biochemical analysis and transmission electron microscope (TEM) observation, examined cellular distribution of Cd with ultracentrifugation, TEM and energy disperse spectroscopy (EDX) analysis, isolated differential expression proteins from plant using SDS-PAGE and two dimensional electrophoresis (2-DE) technologies. The purpose of our study was to clarify the mechanisms of Cd uptake and tolerance in pokeweed, which could provide theoretical and scientific basis for phytoremediation of heavy metal contaminated soil. The main results were summarized as follows:
     Pokeweed is of high ability for accumulating Cd and this metal is mainly accumulated in plant root. With the hydraulic cultivation of 100μM Cd, the Cd contents were as high as 966.9 mg/kg in shoots and 8179.1 mg/kg in roots, respectively, and the plant showed a little toxicity symptoms. Meanwhile, pokeweed is still of high accumulating ability even under relatively low Cd concentration treatments. Both uncoupling agents 2,4-dinitrophenol (DNP) and Ca2+ channel inhibitor LaCl3 may inhibit the absorption of Cd into plant, suggesting that the uptake of Cd in pokeweed may be an active absorption process and it is closely related to Ca2+ channels. Furthermore, different Cd treatments have different effects on the accumulation of elements in plant. Pokeweed may have competitive absorption towards Cd and Mn. The uptake of Cd may have no/little relationship with Zn2+ channels while P and S may take part in the process of Cd tolerance and detoxification in pokeweed.
     Physiological and biochemical analysises showed that under 100μM Cd treatments, both chlorophyll and MDA (the peroxidating substance of plasma membrane) in pokeweed leaves were not significantly changed, indicating that the photosynthesis was not inhibited and plasma membrane was not injured. However, as the concentrations of Cd treatments continue to increase, all chlorophyll a, chlorophyll b and the total chlorophyll contents were declined while the MDA contents increased dramatically, suggesting chlorophyll synthesis, photosynthesis process and plant growth may all likely be inhibited by Cd. Besides, differences were noted in different antioxidase activities under Cd stress and antioxidase system may have certain extent to help relieve the toxicity of Cd in pokeweed. TEM results also illustrated varying degrees of damages in membrane system, chloroplast, mitochondria and other cellular organelles and these phenomenons may be due to the loss of cellular redox homeostasis and an increase of lipid peroxidation.
     Cd analysis at the subcellular level of plant tissue demonstrated that large proportion of Cd was stored in the soluble fraction (53.7%~68.3%) or bound to the cell wall fraction (23.4%~29.1%). Besides, Cd must be existed in different chemical forms among different tissues and Cd concentrations bound to each form in the plant increased in a concentration-dependent manner following Cd exposure. In roots, the majority of Cd was in inorganic form, while in stems and leaves most of the Cd was integrated with pectates and protein. Both the vacuoles and the cell walls might be involved in the Cd tolerance mechanisms to protect metabolically active cellular compartments from toxic Cd concentrations
     Differential expression proteins in pokeweed tissues under Cd stress were studied by SDS-PAGE and 2-DE techniques. SDS-PAGE results showed that the molecular weight of proteins isolated from roots and leaves of pokeweed is concentrated between 10~100 kDa, while in the 25 kDa and 50 kDa position scales there were two main protein bands. Compared with the control, root proteins did not change significantly after Cd treatment, while in leaves the intensity of protein bands decreased in the 60~150 kDa position scales and increased in the 25~50 kDa position scales, respectively. Moreover,2-DE results indicated that 26 proteins' expression changed in pokeweed roots after Cd treatment. Among them,8 proteins were disappeared or down-regulated, while 18 proteins were induced or up-regulated. In plant leaves,2-DE results indicated that a total of 46 proteins'abundance were altered, among them,21 proteins were two fold down-regulated and 25 proteins were two fold up-regulated These proteins may be related to the response of pokeweed to Cd stress, involved in the chelation of Cd and play an active role in the uptake and tolerance processes of Cd in pokeweed. Therefore, further studies with respect to protein identification and their functions should be carried out.
引文
Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bank JD, Kang KY, Renaut J, Komatsu S, Lee BH.2008. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics,8:3561-3576.
    Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM.2009. Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics,9:2419-2431.
    Antosiewicz DM.2005. Study of calcium-dependent lead-tolerance on plants differing in their level of Ca-deficiency tolerance. Environmental Pollution,134:23-34.
    Bai C, Reilly CC, Wood BW.2006. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiology,140:433-443.
    Baker AJM, McGrath SP, Reeves RD, Simth JAC.2000. Metal hyperaccumulator plants:a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In:Terry N, Banuelos G, eds. Phytoremediation of contaminated soil and water. Boca Raton, Florida, USA:Lewis Publishers,85-107.
    Belcastro M, Marino T, Russo N, Toscano M.2009. The role of glutathione in cadmium ion detoxification:Coordination modes and binding properties-A density functional study. Journal of Inorganic Biochemistry,103:50-57.
    Bertin G, Averbeck D.2006. Cadmium:cellular effects, modification of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie,88:1549-1599.
    Bhatia NP, Walsh KB, Baker AJM.2005. Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. Journal of Experimental Botany,56:1343-1349.
    Boominathan R, Doran PM.2003. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. Journal of Biotechnology,101:131-146.
    Brooks RR, Shaw S, Marfil AA.1981. The chemical form and physiological function of nickel in some Iberian Alyssum species. Plant Physiology,51:167-170.
    Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M. 2000. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems:approaches and progress. In:Phytoremediation of contaminated soil and water. pp. 129-158. Terry N and Banuelos G Eds., Lewis, Boca Raton, Florida.
    Clarkson DT.1967. Interaction between aluminium and phosphorus on root surfaces and cell wall material. Plant and Soil,27:347-356.
    Clemens S.2001. Molecular mechanisms f plant metal tolerance and homeostasis. Planta,212: 475-486.
    Clemens S.2006. Toxic metal accumulation, response to exposure and mechanisms of tolerance in plants. Biochimie,88:1707-1719.
    Clemens S, Simm C.2003. Schizosaccharomyces pombe as a model for metal homeostasis in plant cells:the phytochelatin-dependent pathway is the main cadmium detoxification mechanism. New Phytologist,159:323-330.
    Cobbett C, Goldsbrough P.2002. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology,53:159-182.
    Cosio C, DeSantis L, Frey B, Diallo S, Keller C.2005. Distribution of cadmium in leaves of Thlaspi caerulescens. Journal of Experimental Botany,56:765-775.
    De DN.2000. Plant cell vacuoles. Collingwood, Australia:CSIRO Publishing.
    Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR.2003. Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell,15: 1131-1142.
    Devi R, Munjral N, Gupta AK, Kaur N.2007. Cadmium induced changes in carbohydrate status and enzymes of carbohydrate metabolism, glycolysis and pentose phosphate pathway in pea Environmental and Experimental Botany,61:167-174.
    Dguimi HM, Debouba M, Ghorbel MH, Gouia H.2009. Tissue-specific cadmium accumulation and its effects on nitrogen metabolism in tobacco (Nicotiana tabaccum, Bureley v. Fb9). Comptes Rendus Biology,332:58-68.
    Dou CM, Fu XP, Chen XC, Shi JY, Chen YX.2009. Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana. Plant Biology,11:664-670.
    Dove A.1999. Proteomics:translation genomics into products. Nature Biotechnology,17: 233-236.
    Ernst WHO.1975. Physiology of heavy metal resistance in plants. In:Hutchinson TC, Epstein S, Page AL, van Loon J, Davey T eds. Proceedings of an International Conference on Heavy Metals in the Environment, Vol.2. CEP Consultants Ltd, Edinburgh, UK.121-136.
    Ernst WHO, Verkleij JAC, Schat H.1992. Metal tolerance in plants. Acta Botany Neerlandica,41: 229-248.
    Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE.2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell,16:2176-2191.
    Fiihrs H, Hartwig M, Molina LEB, Heintz D, Dorsselaer AV, Braun HP, Horst WJ.2008. Early manganese-toxicity response in Vigna unguiculata L.-a proteomic and transccriptomic study. Proteomics,8:149-159.
    Fukao Y, Ferjani A, Fujiwara M, Nishimori Y, Ohtsu I.2009. Identification of zinc-responsive proteins in the roots of Arabidopsis thaliana using a highly improved method of two-dimensional electrophoresis. Plant and Cell Physiology,50:2234-2239.
    Garcia HM, Murphy A, Taiz L.1998. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiology,118:387-397.
    Garcia-Rios V, Freile-Pelegrin Y, Robledo D, Mendoza-Cozatl D, Moreno-Sanchez R, Gold-Bouchot G.2007. Cell wall composition affects Cd2+ accumulation and intracellular thiol peptides in marine red algae. Aquatic Toxicology,81:65-72.
    Gonzalez-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N.2005. Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology,42: 130-140.
    Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W.2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis,21: 1037-1053.
    Gorg A, Weiss W, Dunn MJ.2004. Current two-dimensional electrophoresis technology for proteomics. Proteomics,4:3665-3685.
    Grill E, Mishra S, Srivastava S, Tripathi R D.2006. Role of phytochelatins in phytoremediation of heavy metals. In:Singh S N, Tripathi R D (Eds.) Environmental Bioremediation Technologies. Springer, Heidelberg, pp.101-145.
    Grispen VMJ, Irtelli B, Hakvoort HWJ, Vooijs R, Bliek T, ten Bookum WM, Verkleij JAC, Schat H.2009. Expression of the Arabidopsis metallothionein 2b enhances arsenite sensitivity and root to shoot translocation in tobacco. Environmental and Experimental Botany,66:69-73.
    Guo YB, Peng ZL, Han F, Shan XQ, Lin JM.2007. Study of low-molecular weight organic acids in maize roots under the stress of cadmium using capillary zone electrophoresis. Journal of Separation Science,30:2742-2747.
    Guo WJ, Meetam M, Goldsbrough PB.2008. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiology, 146:1697-1706.
    Hall JL.2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany,53:1-11.
    Hall JL, Williams LE.2003. Transition metal transporters in plants. Journal of Experimental Botany,54:2601-2613.
    Homer FA, Reeves RD, Brooks RR.1995. The possible involvement of amino acids in nickel chelation in some nickel-accumulating plants. Current Topics in Phytochemistry,14:31-37.
    Hong MLW, Jiang N, Gopinath S, Chew FT.2006. Proteomics technology and therapeutics. Clinical and Experimental Pharmacology and Physiology,33:563-568.
    Hori Y, Yoshikawa T, Tsuji N, Bamba T, Aso Y, Kudou M, Uchida Y, Takagi M, Harada K, Hirata K.2009. Phytochelatins inhibit the metal-induced aggregation of a-crystallin. Journal of Bioscience and Bioengineering,107:173-176.
    Home AJ.2000. Phytoremediation by constructed wetlands. In:Phytoremediation of contaminated soil and water. pp.13-40. Terry, N. and Banuelos, G., Eds., Lewis, Boca Raton, Florida.
    Horst WJ, Fecht M, Naumann A.1999. Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. Journal of Plant Nutrition and Soil Science,162:263-274.
    Hradilova J, Rehulka P, Rehulkova H, Vrbova M, Griga M, Brzobohaty B.2010. Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis,31:421-431.
    Hu PJ, Qiu RL, Senthikumar P, Jiang D, Chen ZW, Tang YT, Liu FJ.2009. Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environmental and Experimental Botany,66:317-325.
    Hu S, Lau KWK, Wu M.2001. Cadmium sequestration in Chlamydomonas reinhardtii. Plant Science,161,987-996.
    Inaba S, Takenaka C.2005. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts. Environment International,31:603-608.
    Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J.2006. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochimica Acta Part B-Atomic Spectroscopy,61:1242-1252.
    Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J.2008. Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics,8:2514-2530.
    Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE.2004. The plant CDF family membrane TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. The Plant Journal,39:237-251.
    Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M.2004. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiology,45:1749-1758.
    Kovalchuk O, Titov V, Hohn B, Kovalchuk I.2001. A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nature Biotechnology,19:568-572.
    Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC.1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature,379:635-638.
    Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE.2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiology,122:1343-4353
    Lee JH, Shim DH, Song WY, Hwang IH, Lee YS.2004. Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Molecular Biology,54:805-815.
    Li F, Shi JY, Shen CF, Hu SP, Chen GC, Chen YX.2009. Proteomic characterization of copper stress responses in Elsholtzia splendens roots and leaves. Plant Molecular Biology,71: 251-263.
    Li TQ, Yang XE, Yang JY, He ZL.2006. Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. Pedosphere,16:616-623.
    Liu DH, Kottke I.2004. Subcellular localization of copper in the root cells of Allium sativum by electron energy loss spectroscopy (ELLS) Bioresource Technology,94:153-158.
    Liu XQ, Peng KJ, Wang AG, Lian CL, Shen ZG.2010. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere,78: 1136-1141.
    Liu YG, Wang X, Zeng GM, Qu D, Gu JJ, Zhou M, Chai LY.2007. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere,69:99-107.
    Ma JF, Ryan PR, Delhaize E.2001. Aluminum tolerance in plants and the complexing role of organic acids. Trends in Plant Science,6,273-278.
    Ma M, Lau PS, Jia YT, Tsang WK, Lam SKS, Tam NFY, Wong YS.2003. The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Science,164:51-60.
    Mathys W.1977. The role of malate, oxalate, and mustard oil giucosides in the evolution of zinc-resistance in herbage plants. Physiologia Plantarum,40:130-136.
    Memon AR, Aktoprakligil D, Ozdemir A, Vertii A.2001. Heavy metal accumulation and detoxification mechanisms in plants. Turkish Journal of Botany,25:111-121.
    Memon AR, Yatazawa M.1982. Chemical nature of manganese in the leaves of manganese accumulator plants. Soil Science and Plant Nutrition,28:401-412.
    Memon AR, Yatazawa M.1984. Nature of manganese complexes in manganese accumulator plant Acanthopanax sciadophylloides. Journal of Plant Nutrition,7:961-974.
    Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R.2005. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiology Reviews,29:653-671.
    Mishra S, Tripathi RD, Srivastava S, Dwivedi S, Trivedi PK, Dhankher OP, Khare A.2009. Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresource Technology,100:2155-2161.
    Mishra Y, Bhargava P, Rai LC.2005. Differential induction of enzymes and antioxidants of the antioxidative defense system in Anabaena doliolum exposed to heat stress. Journal of Thermal Biology,30:524-531.
    Mittler R.2001. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,7: 405-410.
    Montarges-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL.2008. Identification of nickel chelators in three hyperaccumulating plants:An X-ray spectroscopic study. Phytochemistry,69:1695-1709.
    Morelli E, Cruz BH, Somovigo S, Scarano G.2002. Speciation of cadmium-y-glutamyl peptides complexes in cells of the marine microalga Phaeodactylum tricornutum. Plant Science,163: 807-813.
    Nascimento CWA, Amarasiriwardena D, Xing BS.2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution,140:114-123.
    Nishikawa K, Onodera A, Tominaga N.2006. Phytochelatins do not correlate with the level of Cd accumulation in Chlamydomonas spp. Chemosphere,63:1553-1559.
    Nocito FF, Pirovano L, Cocucci M, Scacchi G A.2002. Cadmium-induced sulfate uptake in maize roots. Plant Physiology,129:1872-1879.
    Oberschall A, Deak M, Torok K, Sass L, Vass I, Kovacs I, Feher A, Dudits D, Horvath GV.2000. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. The Plant Journal,24:437-446.
    Pal M, Horvath E, Janda T, Paldi E, Szalai G.2006. Physiological changes and defense mechanisms induced by cadmium stress in maize. Journal of Plant Nutrition and Soil Science, 169:239-246.
    Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV.2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences, USA,97:4956-4960.
    Peng KJ, Li XD, Luo CL, Shen ZG.2006. Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substance,41:65-76.
    Phillips CI, Bogyo M.2005 Proteomics meets microbiology:technical advances in the global mapping of protein expression and function. Cellular Microbiology,7:1061-1076.
    Polec-Pawlak K, Ruzik R, Abramski K, Ciurzynska M, Gawronska H.2005. Cadmium speciation in Arabidopsis thaliana as a strategy to study metal accumulation system in plants. Analytica Chimica Acta,540:61-70.
    Prochazkova D, Sairam RK, Srivastava GC, Singh DV 2001. Oxidative stress and antioxidative activity as the basis of senescence in maize leaves. Plant Science,161:765-771.
    Ramos I, Esteban E, Lucena JJ, Garate A.2002. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science,162:761-767.
    Rauser WE.1995. Phytochelatins and related peptides, structure, biosynthesis, and function. Plant Physiology,109:1141-1149.
    Rauser WE.1999. Structure and function of metal chelators produced by plants. The case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochemistry Biophysics, 31:19-48.
    Requejo R, Tena M.2006. Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Proteomics,6:s156-s162.
    Roesijadi G.1996. Metallothionein and its role in toxic metal regulation. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology,113C:117-123.
    Roosens NH, Leplae R, Bernard C, Verbruggen N.2005. Variations in plant metallothioneins:the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta,222:716-729.
    Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ.1999. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using x-ray absorption spectroscopy. Environmental Science & Technology,33:713-717.
    Santa-Maria GE, Cogliatti DH.1998. The regulation of zinc uptake in wheat plants. Plant Science, 137:1-12.
    Satofuka H, Fukui T, Takagi M, Atomi H, Imanaka T.2001. Metal-binding properties of phytochelatin-related peptide. Journal of Inorganic Biochemistry,86:595-602.
    Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frerot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P.2009. Zinc distribution and speciation in Arabidopsis halleri X Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytologist,184; 581-595.
    Schutzendubel A, Nikolova P, Rudolf C, Polle A.2002. Cadmium and H2O2-induced oxidative stress in Populus×canescens roots. Plant Physiology Biochemistry,40,577-584.
    Semane B, Cuypers A, Smeets K, Belleghem FV, Horemans N, Schat H, Vangronsveld J.2007. Cadmium responses in Arabidopsis thaliana:glutathione metabolism and antioxidative defence system. Physiologia Plantarum,129:519-528.
    Sun Q, Ye ZH, Wang XR, Wong MII 2007 Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. Journal of Plant Physiology,164:1489-1498
    Turner RG.1970. The subcellular distribution of zinc and copper within the roots of metal-tolerant clones of Agrostis tenuis Sibth. New Phytologist,69:725-731.
    Vitoria AP, Cunha MD, Azevedo RA.2006. Ultrastructural changes of radish leaf exposed to cadmium. Environmental and Experimental Botany,58:47-52.
    Wang X, Liu YG, Zeng GM, Chai LY, Song XC, Min ZY, Xiao X.2008. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environmental and Experimental Botany,62:389-395.
    Wojcik M, Vangronsveld J, D'Haen J, Tukiendorf A.2005 Cadmium tolerance in Thlaspi caerulescensⅡ. Localization of cadmium in Thlaspi caerulescens. Environmental and Experimental Botany,53:163-171.
    Wu B, Chen YX, Becker JS.2009. Study of essential element accumulation in the leaves of a Cu-tolerant plant Elsholtzia splendens after Cu treatment by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Analytica Chimica Acta,633: 165-172.
    Xue SG, Chen YX, Reeves RD, Baker AJM, Lin Q, Fernando DR.2004. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environmental Pollution,131:393-399.
    Xu XH, Shi JY, Chen XC, Chen YX, Hu TD.2009. Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Plant and Soil, 318:197-204.
    Yang XE, Baligar VC, Foster JC, Martens DC.1997. Accumulation and transport of nickel in relation to organic acids in ryegrass and maize grown with different nickel levels. Plant and Soil,196:271-276.
    Zenk MH.1996. Heavy metal detoxification in high plants. Gene,179:21-30.
    Zhang YW, Tam NFY, Wong YS.2004. Cloning and characterization of type 2 metallothionein-like gene from a wetland plant, Typha latifolia. Plant Science,167:869-877.
    安志装,王校常,严蔚东,施卫明2004.镉硫交互处理对水稻吸收累积镉及其蛋白巯基含量的影响.土壤学报,41:728-734.
    蔡保松,雷梅,陈同斌,张国平,陈阳2003.植物螯合肽及其在抗重金属胁迫中的作用.生态学报,23:2125-2132.
    常福辰,施国新,丁小余,解凯彬,王建军,丁静2002.Cd2+、Hg2+复合污染下金鱼藻的细胞膜脂过氧化和抗氧化酶活性的变化.南京师大学报(自然科学版),25:44-48
    陈晓.2008.镉对肾脏和骨骼的毒性研究进展.环境与职业医学,25:412-415
    陈英旭等著2008.土壤重金属的植物污染化学.北京:科学出版社.
    仇硕,张敏,孙延东,黄苏珍2006.植物重金属镉(Cd2+)吸收、运输、积累及耐性机理研究进展.西北植物学报,26:2615-2622.
    崔力拓,耿世刚,李志伟.2006.我国农田土壤镉污染现状及防治对策.现代农业科技,11:184-185.
    冯建鹏,史庆华,王秀峰,洪艳艳.2009.镉对黄瓜幼苗光合作用、抗氧化酶和氮代谢的影响植物营养与肥料学报,15:970-974
    葛才林,蔡新华,孙锦荷,罗时石,王泽港,龚峥,马飞.2002.重金属胁迫对小麦光合产物输配影响的示踪动力学研究.核农学报,16:167-173
    耿鑫,张维铭.2003.蛋白质组学研究方法及其新进展.中国医学文章(肿瘤学),13:339-341.
    顾继光,林秋奇,胡韧,诸葛玉平,周启星.2005土壤-植物系统中重金属污染的治理途径及其研究展望.土壤通报,36:128-133.
    环境保护部.2008.关于加强土壤污染防治工作的意见[R].北京:环境保护部.
    皇甫海燕,官春云,郭宝顺,张秀英.2006蛋白质组学及植物蛋白质组学研究进展.作物研究.5:577-581
    简令成,王红.2009.逆境植物细胞生物学.北京:科学出版社.88
    金晓芬2008.镉超积累植物东南景天谷胱甘肽代谢特征及比较蛋白质组学研究.浙江大学博士论文(导师杨肖娥)
    李德明,朱祝军.2004.镉在不同品种小白菜中的亚细胞分布.科技通报,20:278-282.
    李锋.2009.转录组学、蛋白质组学研究海州香薷Cu吸收与耐性分子机理及其cDNA文库的构建.浙江大学博士论文(导师陈英旭)
    李宁,许红韬.2000.蛋白质组研究的现状与展望.生物技术通讯,11:281-285.
    李巍.2004生物信息学导论.郑州:郑州大学出版社.
    李炜修,乔季,颜丙玉.2007.环境镉暴露与肿瘤危险性.国外医学医学地理分册,28,183-185.
    廖自基.微量元素的环境化学及生物效应.中国环境科学出版社,北京,1993.
    龙新宪,杨肖娥,倪吾钟.2002.重金属污染土壤修复技术研究的现状与展望.应用生态学报,13:757-762.
    龙新宪,杨肖娥,叶正钱.2003.超积累植物的金属配位体及其在植物修复中的应用.植物生理学通讯,39:71-77.
    莫文红,李懋学.1992.镉离子对蚕豆根尖细胞分裂的影响.植物学通报,9:30-34.
    倪天华.2003.东南景天(Sedum alfredii Hance)对镉特异吸收和积累特性的研究.浙江大学博士论文.
    潘静娴,戴锡玲,宋莲花.2008.Cd对萎蒿生理生化及叶片超微结构的影响.广西植物,28:837-841.
    彭鸣,王焕校,吴玉树.1991.镉、铅诱导的玉米(Zea mays L.)幼苗细胞超微结构的变化.中国环境科学,1:426-431.
    任继凯,陈清朗,陈灵芝,韩荣庄,姚依群,孙凡志,缪有贵.1982.土壤镉污染与作物.植物生态学与地植物学丛刊,6:131-141.
    史静,潘根兴,李恋卿.2008.外加Cd对两水稻品种细胞超微结构的影响研究.生态毒理学报,3:403-409.
    施积炎.2004.海州香薷和鸭趾草铜吸收机理和分子形态研究.浙江大学博士论文(导师陈英旭)
    孙琴,叶志鸿,王晓蓉,黄铭洪.2005.柱前衍生反相高效液相色谱法同时测定植物络合素(PCn)等巯基化合物.南京大学学报(自然科学),41:304-310.
    孙秀梅,张纪秀,张海军,倪余文,张青,陈吉平,关亚风.2010.镉胁迫对拟南芥中氨基酸及其衍生物的影响.环境化学,29:25-28.
    田如男,薛建辉,潘良,吴菱蓉.2004.铅胁迫对4种常绿阔叶行道树幼苗细胞膜透性的影响.南京林业大学学报(自然科学版),28:43-46.
    王立群.2009.镉污染土壤原位修复剂及其机理研究.首都师范大学博士学位论文
    王焕校.1990.污染生态学基础.昆明:云南大学出版社,91-108.
    王学东,周红菊,华珞.2006植物对重金属的抗性机理及其植物修复研究进展.南水北调与水利科技,4:43-46.
    王泽港,骆剑峰,刘冲.2004.单一重金属污染对水稻叶片光合特性的影响.上海环境科学,23:237-240
    韦朝阳,陈同斌.2002.重金属污染植物修复技术的研究与应用现状.地球科学进展,17:833-839.
    吴燕玉,陈涛,张学询.1989.沈阳张士灌区镉污染生态的研究.生态学报,9:21-26.
    徐晟徽,郭书海,胡筱敏,李凤梅,王明弘,叶汉峰,钟爱平,史长华.2007.沈阳张士灌区重金属污染再评价及镉的形态分析.应用生态学报,18:2144-2148
    徐正浩,沈国军,诸常青,徐林娟,何勇,俞古松.2006植物镉忍耐的分子机理.应用生态学报,17:1112-1116.
    宇克莉,孟庆敏,邹金华.2010.镉对玉米幼苗生长、叶绿素含量及细胞超微结构的影响.华北农学报,25:118-123.
    袁祖丽,马新明,韩锦峰,李春明,吴葆存.2005.镉污染对烟草叶片超微结构及部分元素含量的影响.生态学报,25:2919-2927
    翟军鹏,夏蓓蓓,田婷婷,苏承刚,杜小兵.2010.植物金属硫蛋白的研究进展.南方农业,1:87-89.
    翟礼嘉,顾红雅,白书农,赵进东,陈章良主译.2004.植物生物化学与分子生物学.北京:科学出版社.
    张从,夏立江.2000.污染土壤生物修复技术.北京:中国环境科学出版社.47-56.
    张义贤.1997.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,17:199-204.
    赵素达,付成秋,朱松龄.2000.镉对石莼光合作用和呼吸作用及叶绿素含量的影响.青岛海洋大学学报,30:519-523.
    赵永新.2006.全国土壤污染状况调查启动[N].人民日报,07-19(2).
    郑国铝.1992.细胞生物学.北京:高等教育出版社(第2版)
    Ajouri A, Asgedom H, Becker M.2004. Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. Journal of Plant Nutrition and Soil Science, 167:630-636.
    Anjum NA, Umar S, Singh S, Nazar R, Khan NA.2008. Sulfur assimilation and cadmium tolerance in plants. In:Khan NA et al. (eds), Sulfur assimilation and abiotic stress in plants. Springer-Verlag Berlin Heidelberg,271-302.
    Baker AJM, McGrath SP, Reeves RD, Simth JAC.2000. Metal hyperaccumulator plants:a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In:Terry N, Banuelos G, eds. Phytoremediation of contaminated soil and water. Boca Raton, Florida, USA:Lewis Publishers,85-107.
    Bondgaard M, Bjerregaard P.2005. Association between cadmium and calcium uptake and distribution during the moult cycle of female shore crabs, Carcinus maenas. an in vivo study. Aquatic Toxicology,72:17-28.
    Cakmak I, Welch RM, Erenoglu B, Romheld V, Norvell WA, Kochian LV. 2000. Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings. Plant and Soil,219:279-284.
    Clemens S.2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie,88:1707-1719.
    Cohen CK, Fox TC, Garvin DF, Kochian LV.1998. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology,116:1063-1072.
    Dou CM, Fu XP, Chen XC, Shi JY, Chen YX.2009. Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana. Plant Biology,11:664-670.
    Harada E, Yamaguchi Y, Koizumi N, Sano H.2002. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. Journal of Plant Physiology,159:445-448.
    Liu JG, Li KQ, Xu JK, Liang JS, Lu XL, Yang JC, Zhu QS.2003. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Research,83:271-281.
    McGrath SP, Zhao FJ.2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology,14:277-282.
    McGrath SP, Dunham SJ, Correl RL.2000. Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants, In:Terry N, Banuelos G (Eds.), Phytoremediation of contaminated soil and water, Lewis Publishers, Boca Raton, FL, pp.109-128.
    Nocito FF, Pirovano L, Cocucci M, Scacchi G A.2002. Cadmium-induced sulfate uptake in maize roots. Plant Physiology,129:1872-1879.
    Pal M, Horvath E, Janda T, Paldi E, Szalai G.2006. Physiological changes and defense mechanisms induced by cadmium stress in maize. Journal of Plant Nutrition and Soil Science, 169:239-246.
    Peng KJ, Li XD, Luo CL, Shen ZG 2006. Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering,41:65-76.
    Peng KJ, Luo CL, You WX, Lian CL, Li XD, Shen ZG.2008. Manganese uptake and interactions with cadmium in the hyperaccumulatot-Phytolacca americana L. Journal of Hazardous Materials,154:674-681.
    Punz WF, Sieghardt H.1993. The response of roots of herbaceous plant species to heavy metals. Environmental and Experimental Botany,33:85-98.
    Quartacci MF, Baker AJM, Navari-Izzo F.2005. Nitrilotriacetate-and citric acid-assisted phytoextraction of cadmium by Indian mustard(Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere,59:1249-1255.
    Roosens N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC.2003. Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe. Plant Cell and Environment,26:1657-1672.
    Salt DE, Prince RC, Pickering IJ.2002. Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchemical Journal,71:255-259.
    Schrauwen P, Hoeks J, Hesselink MKC.2006. Putative function and physiological relevance of the mitochondrial uncoupling protein-3:involvement in fatty acid metabolism? Progress in Lipid Research,45:17-41.
    Sun QB, Shen RF, Zhao XQ, Chen RF, Dong XY.2008. Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-senstive L. cuneata under relatively high Al stress. Annals of Botany,102:795-804.
    Vassilev A, Vangronsveld J, Yordanov I.2002. Cadmium phytoextraction:present state, biological backgrounds and research needs. Belgium Journal of Plant Physiology,28:68-95.
    Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP.2002. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology,130:1552-1561.
    Wu FB, Dong J, Cai Y, Chen F, Zhang GP.2007. Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity. Science of the Total Environment,385:228-234.
    Yuan M, Tie BQ, Tang MZ, Isao A.2007. Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana. Minerals Engineering,20:188-190.
    Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H.2005. Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiology,138:297-303.
    安志装,王校常,严蔚东,施卫明.2004.镉硫交互处理对水稻吸收累积镉及其蛋白巯基含量的影响.土壤学报,41:728-734.
    豆长明.2009.超积累植物美洲商陆锰累积和耐性机制研究.浙江大学博士论文.
    李文一,徐卫红,李仰锐,刘吉振,王宏信.2006.土壤重金属污染的植物修复研究进展.污染防治技术,19:18-22.
    薛生国.2006.超积累植物商陆的锰富集机理及其对污染水体的修复潜力.浙江大学博士论 文.
    翟礼嘉,顾红雅,白书农,赵进东,陈章良主译.2004.植物生物化学与分子生物学.北京:科学出版社.
    Arnon DI.1949. Copper enzyme in isolated chloroplasts:polyphenoloxidase in Beta vulgaris. Plant Physiology,24:1-15.
    Boojar MMA, Goodarzi F.2008. Comparative evaluation of oxidative stress status and manganese availability in plants growing on manganese mine. Ecotoxicology and Environmental Safety, 71:692-699.
    Chen YX, He YF, Luo YM, Yu YL, Lin Q, Wong MH.2003. Physiological mechanism of plant roots exposed to cadmium. Chemosphere,50:789-793.
    Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U.2004. Biochemical changes in barley plants after excessive supply of copper and manganese. Environmental and Experimental Botany,52:253-266.
    Guo TR, Zhang GP, Zhang YH.2007. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids and Surfaces B:Biointerfaces,57: 182-188.
    Israr M, Sahi SV.2006. Antioxidative responses to mercury in the cell cultures of Sesbania drummondii. Plant Physiology and Biochemistry,44:590-595.
    Jin XF, Yang XE, Mahmood Q, Islam E, Liu D, Li H.2008. Response of antioxidant enzymes, ascorbate and glutathione metabolism towards cadmium in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii H. Environmental Toxicology,23:517-529
    Khan NA, Samiumllah, Singh S, Nazar R.2007. Activities of antioxidative enzymes, sulfur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy & Crop Science,193: 435-444.
    Lidon FC, Teixeira MG.2000. Oxy radicals production and control in the chloroplast of Mn-treated rice. Plant Science,152:7-15
    Liu YG, Wang X, Zeng GM, Qu D, Gu JJ, Zhou M, Chai LY 2007. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere,69:99-107.
    Milla MAR, Maurer A, Huete AR, Gustafson JP.2003. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. The Plant Journal,36:602-615.
    Prasad MNV.1995. Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany,35:525-545.
    Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ.2008. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere,74:6-12.
    Ruzsa SM, Scandalios JG.2003. Altered Cu metabolism and differential transcription of Cu/ZnSod genes in a Cu/ZnSOD-deficient mutant of maize: Evidence for a Cu-responsive transcription factor. Biochemistry,42:1508-1516.
    Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MCR, del Rio LA. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany,52:2115-2126.
    Semane B, Cuypers A, Smeets K, Belleghem FV, Horemans N, Schat H, Vangronsveld J.2007. Cadmium responses in Arabidopsis thaliana:glutathione metabolism and antioxidative defence system. Physiologia Plantarum,129:519-528.
    Stobart AK, Griffiths WT, Amcen-Bukhari I, Sherwood RP.1985. The effects of Cd2+on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum,63:293-298.
    Wojcik M, Skorzynska-Polit E, Tukiendorf A.2006. Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regulation, 48:145-155.
    Zengin FK, Munzuroglu O.2006. Toxic effects of cadmium (Cd++) on metabolism of sunflower (Helianthus annuus L.) seedlings. Acta Agriculturae Scandinavica, Section B-Plant Soil Science,56:224-229.
    金晓芬.2008镉超积累植物东南景天谷胱甘肽代谢特征及比较蛋白质组学研究.浙江大学博士论文.
    Bhatia NP, Walsh KB, Baker AJM.2005. Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. Journal of Experimental Botany,56:1343-1349.
    Cataldo DA, Garland TR, Wildung RE.1981. Cadmium distribution and chemical fate in soybean plants. Plant Physiology,68:835-839.
    Dou CM, Fu XP, Chen XC, Shi JY, Chen YX.2009b. Accumulation and interaction of calcium and manganese in Phytolacca americana. Plant Science,177:601-606.
    Harmens H, Koevoets PLM, Verkleij JAC, Ernst WHO.1994. The role of low molecular weight organic acids in the mechanism of increased zinc tolerance in Silene vulgaris (Moench) Garcke. New Phytologist,126:615-621.
    Hu PJ, Qiu RL, Senthikumar P, Jiang D, Chen ZW, Tang YT, Liu FJ.2009. Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environmental and Experimental Botany,66:317-325.
    Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J.2006. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochimica Acta Part B-Atomic Spectroscopy,61:1242-1252.
    Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO. Distribution of cadmium in shoot and root tissues of maize and pea plants:physiological disturbances. Journal of Experimental Botany,48(1997) 123-128.
    Memon AR, Aktoprakligil D, Ozdemir A, Vertii A.2001. Heavy metal accumulation and detoxification mechanisms in plants. Turkey Journal of Botany,25:111-121.
    Pittman JK.2005. Managing the manganese:molecular mechanisms of manganese transport and homeostasis. New Phytologist,167:733-742.
    Ramos I, Esteban E, Lucena JJ, Garate A.2002. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science,162:761-767.
    Salt DE, Prince RC, Pickering IJ.2002. Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchemical Journal,71:255-259.
    Sanita di Toppi LS, Gabbrielli R.1999. Response to cadmium in higher plants. Environmental and Experimental Botany,41:105-130.
    Souza JF, Rauser WE.2003. Maize and radish sequester excess cadmium and zinc in different ways. Plant Science,165:1009-1022.
    Wang X, Liu YG, Zeng GM, Chai LY, Song XC, Min ZY, Xiao X.2008. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environmental and Experimental Botany,62,389-395.
    Wojcik M, Vangronsveld J, D'Haen J, Tukiendorf A.2005. Cadmium tolerance in Thlaspi caerulescens Ⅱ. Localization of cadmium in Thlaspi caerulescens. Environmental and Experimental Botany,53:163-171.
    Wu FB, Dong J, Qian QQ, Zhang GP.2005. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere,1437-1446.
    Yang JR, He JQ, Zhang GX, Mao XQ.1995. Tolerance mechanism of crops to Cd pollution. Chinese Journal of Appllied Ecology,6:87-91.
    黄长干,付凌,梁英,魏国清,邱业先.2008.紫鸭跖草细胞中铜的分配和化学形态特征研究.安徽农业科学,36:14499-14502.
    司江英,赵海涛,汪晓丽,姚彩艳,邓桂芳,封克.2008.不同铜水平下玉米细胞内铜的分布和化学形态的研究.农业环境科学学报,27:452-456.
    翟礼嘉,顾红雅,白书农,赵进东,陈章良主译.2004.植物生物化学与分子生物学.北京:科学出版社Buchannan BB et al., EDs.
    Ahsan N, Renaut.J, Komatsu S.2009. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics,9:2602-2621.
    Ames JM.2005. Application of semiquantitative proteomics techniques to the Maillard reaction. Annals New York Academy of Sciences,1043:225-235.
    Huang ZY, Li LP, Huang GL, Yan QP, Shi B, Xu XQ.2009. Growth-inhibitory and metal-binding proteins in Chlorella vulgaris exposed to cadmium or zinc. Aquatic Toxicology,91:54-61.
    Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiology and Biochemistry,46:1019-1030.
    Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman JF, Renaut J.2009. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. Journal of Proteome Research,8:400-417.
    Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E.2006. Zea mays L. Protein changes in response to potassium dichromate treatments. Chemosphere,62: 1234-1244.
    Lopez-Barea J, Gomez-Ariza JL.2006. Environmental proteomics and metallomics. Proteomics,6: s51-s62.
    Rustichelli C, Visioli G, Kostecka D, Vurro E, Sanita di Toppi L, Marmiroli N.2008. Proteomic analysis in the lichen Physcia adscendens exposed to cadmium stress. Environmental Pollution,156:1121-1127.
    Singh OV.2006. Proteomics and metabolomics:the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics,6:5481-5492.
    Timperio AM, Egidi MG, Zolla L.2008. Proteomics applied on plant abiotic atresses:role of heat shock proteins (HSP). Journal of Proteomics,71:391-411.
    Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Reddy PCO, Surabhi GK, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha Ch, Sudhakar C.2008. Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Science,175:631-641.
    Xu SY, Chen YX, Wu WX, Zheng SJ, Xue SG, Yang SY, Peng YJ.2006. Protein changes in response to pyrene stress in maize (Zea mays L.) leaves. Journal of Integrative Plant Biology, 48:1-5.
    Zhang JH, Huang WD, Pan QH, Liu YP.2005. Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries (Vitis vinifera cv. Jingxiu) by heat pretreatment. Postharvest Biology and Technology,38:80-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700