用户名: 密码: 验证码:
热模拟实验结合GC-IRMS在有效烃源岩研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烃源岩一直是控制油气藏能否存在的重要因素。针对某个具体油/气藏的研究,本文提出有效烃源岩应该是一个动态的概念。随着研究程度的深入,以及定量化的需要,不仅在油/源、气/源对比方面,而且在有效烃源岩的评价方面都不应只是简单地找寻一些静态的参数或指标,过分地相信和依赖它们;而应结合实际地质情况,从动态的角度出发,最理想的目标是通过建立一系列数学模型来对整个烃源岩的生烃演化过程进行准确和可靠的恢复,从而实现有效烃源岩的定量判识与评价。本工作正是朝着这个方向努力的一个尝试。
     本论文结合具体的实际地质背景,通过采用热模拟实验及GC-IRMS测定获取烃源岩热解产物中烃类组分单体碳同位素组成的演化规律,为油/源、气/源对比以及有效烃源岩的判识与评价提供了较好的途径和方法,也获得了一些重要认识和实验依据,概括如下:1)辽河油田烃源岩的生排烃热压模拟实验表明,排烃作用不对液态正构烷烃的单体碳同位素组成产生明显的分馏,这为液态正构烷烃的碳同位素组成在油/源对比中的应用提供了实验依据。并且在生烃开始-生烃高峰,液态正构烷烃的碳同位素分布曲线随热演化程度的变化不显著,因此,可用于油/油、油/源的对比;生烃后期(Ro>1.0%),沥青质、非烃等以及高演化阶段正烷烃可能发生的裂解将造成正构烷烃单体碳同位素组成显著贫~(12)C,变化可达1‰%~4‰,故在油/油、油/源对比中应加以考虑。2)莺-琼盆地三套气源岩不同温度条件下热解产物中轻烃碳同位素组成的测定结果表明,对于莺-琼盆地天然气,仅根据烃类气体碳同位素的数据很难进一步明确其来源。热解轻烃的生成主要分成两个阶段,低温阶段,轻烃以干酪根直接裂解产生为主,它们的碳同位素分布遵循同位素的动力学分馏模式;在高温阶段,来自重烃的二次裂解产物与干酪根的裂解产物叠加,使轻烃的碳同位素组成变得较复杂,因此,在实际应用气态烃碳同位素组成进行气/源对比时应特别注意。另外,实验结果也证实累积效应可能是莺-琼盆地轻烃碳同位素比值产生部分倒转的主要原因之一。3)通过干酪根分子级动力学模拟实验结合GC-IRMS测定结果表明,利用实验获取的动力学参数可将实验结果推导到实际地质条件中去,一方面可以进行有效气源岩生烃量的定量评价;另一方面可以通过建立气态烃碳同位素组成(δ~(13)C)与甲烷转化率(F)之间的关系,对有效气源岩进行判识,从而将有效气源岩的判识与评价结合起来,更好地为油气勘探服务。
It is generally accepted that source rock is a key factor controlling the formation of oil and gas reservoirs. A conception that effective source rock is dynamic is proposed in this paper in order to study a specific oil/gas reservoir. With the extent of investigation increasing, some static parameters or indexes shouldn't be trusted without limit, and also shouldn't be simply applied to the oil/source and gas/source correlation, as well as the evaluation of effective source rock. In contrast, a perfect target is that the whole process of hydrocarbon generation will be accurately described through setting up a set of mathematical models. Thus, combined with an actual geological background, the identification and evaluation of effective source rock can be achieved quantitatively. This study is being an attempt advancing towards the above-mentioned destination.
    Based on the actual geological cases, three different pyrolysis system were selected in the study. Then the carbon isotopic variations of individual hydrocarbons from pyrolysates were revealed by the simulating experiments and the GC-IRMS (gas chromatography-isotope ratio mass spectrometry) analysis. The results derived from the experiments provide a lot of important evidences for the oil (gas)/source correlation and the identification and evaluation of effective source rock. Main conclusions are summarized as follows: 1) Simulating Experiment on Hydrocarbon Generation and Expulsion of Source Rocks from the Liaohe oilfield shows that hydrocarbon expulsion has no considerable effect on the carbon isotopic composition of the liquid n-alkanes. This provides an experimental evidence for the application of the liquid hydrocarbon 6 I3C in the oil/source correlation. During the early hydrocarbon generation, the isotopic compositions of liquid hydrocarbons have no obvious variation with increasing temperature, therefore, they can be used into the oil/oil and oil/source rock correlations. However, at the peak of hydrocarbon generation, the second cracking of those heavy hydrocarbons formed at the early stage, such as asphaltene, NSO fraction, and n-alkanes with high carbon number,
    
    
    
    leads to the remaining n-alkanes markedly riched 13C in carbon isotope, ranging from l%o to 4%o. The variation should be considered in the oil/oil and oil/source correlations. 2) Three potential source rocks from the Ying-Qiong basins were pyrolyzed at different temperatures. The carbon isotopic composition of individual light hydrocarbons from pyrolysates indicate that, for the natural gases from the Ying-Qiong basins, it is difficult to further identify the origin of gas in terms of carbon isotope data alone. Light hydrocarbons from pyrolysates can be divided into two main generation stages: at the lower temperature stage, light hydrocarbons are formed directly from primary cracking of kerogen, and their carbon isotopic distributions accord with isotope kinetic fractionation; at the higher temperature stage, isotopic distributions of light hydrocarbons become more complex due to the mixing of light hydrocarbons with different generation mechanisms, e.g. secondary cracking of heavy hydrocarbons. In addition, experimental results also prove that an "accumulative" effect may be one of major factors that cause the part reversal in carbon isotope ratios among light hydrocarbon components from the Ying-Qiong basins. 3) Kinetic simulating experiment combined with GC-IRMS analysis indicates that the experimental results can be reliably extrapolated to geological conditions through the kinetic parameters derived from the experiment. On the one hand, the kinetic simulating experiment is usually applied to obtain the kinetic parameters of hydrocarbon generation, and further to recover the hydrocarbon generating history of potential source rock. So it can provide a quantitative evaluation for effective source rock. On the other hand, effective source rock will be identified in terms of the relationship between the isotopic composition (5l3Ci) of methane in natural gases and methane conversion ra
引文
1 Abrajano T. A., Jr Murphy D. E., Fang J., Comet P., and Brooks J. M. (1994) 13C/12C ratios in individual fatty acids of marine mytilids with and without bacterial symbionts. Org. Geochem.21,611-617.
    2 Bakel A. J., Dyer R. M., Ruble T. E., and Philp R. P. (1993) Carbon isotopic composition of n-alkanes and isoprenoids in slightly biodegraded crude oils from the Philipstown Field (Illinois Basin). In: Poster sessions from the 16th International Meeting on Organic Geochemistry (edited by kjell (?)ygard). Falch Hurtigtrykk, Norway. 91-94.
    3 Baylis S. A., Hall K., and Jumeau E. J. (1994) The analysis of the C1-C5 components of natural gas samples using gas chromatography-combustion-isotope ratio mass spectrometry. Org. Geochem. 21, 777-785.
    4 Behar F., Kressmann S., Vandenbroucke M., et al. (1991) Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Org. Geochem. 19, 173-189.
    5 Behar F., Pelet R., and Roucache J. (1984) Geochemistry of asphaltenes. Org. Geochem. 6, 587-595.
    6 Behar F., Vandenbroucke M., Tang Y., et al. (1997) Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Org. Geochem. 26, 321-339.
    7 Berner U., Faber E., and Stahl W. (1992) Mathematical simulation of the carbon isotopic fractionation between huminitic coals and related methane. Chem. Geol. 94, 315-319.
    8 Berner U., Faber E., Scheeder G., and Panten D. (1995) Primary cracking of algal and land plant kerogens: kinetic modeling of kerogen and oil cracking. Org. Geochem. 126, 233-245.
    9 Bjor(?)y M., Hall K., Gillyon P., and Jumeau J. (1991) Carbon isotope variations in n-alkanes and isoprenoids of whole oils. Chem. Geol. 93, 13-20.
    10 Bjor(?)y M., Hall K., and Jumeau J. (1990) Stable carbon isotope ratio analysis on single components in crude oils by direct GC-Isotope analysis. TRAC. Trends in Analytical Chemistry 9, 331-336.
    11 Bjor(?)y M., Hall P. B., and Moe R. P. (1994) Variation in the isotopic composition of single components in the C4-C20 fraction of oils and condensates. Org. Geochem. 21, 761-776.
    12 Bjor(?)y M., Hall P. B., Hrstad E., and Williams J. A. (1992) Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity. Org. Geochem. 19,89-105.
    13 Bjor(?)y M., Hall P. B., and Rita P. M. (1993) Sstable carbon isotope variation of n-alkanes
    
    in Central Graben oils. Adv. in Org. Geochem. 22, 355-381.
    14 Boreham C. J., Dowling L. M., and Murray A. P. (1995) Biodegradation and maturity influences on n-alkane isotopic profiles in terrigenous sequences. In: Organic Geochemistry: Developments and application to energy, climate and human history (Selected papers from the 17th International Meeting on Organic Geochemistry, edited by Joan O. Grimalt and Carmen Dorronsoro). A.I.G.O.A., Spain. 539-541.
    15 Brand W. A., Tegtmeyer A. R., and Hilkert A. (1994) Compound-specific isotope analysis: extending toward 15N/14N and 18O/16O. Org. Geochem. 21, 585-594.
    16 Carman J. (1974) Time-temperature relation in oil genesis. AAPG Bulletin 58,2516-2521.
    17 Carpentier B., Ungerer P., Kowalewske I., Magnier C., Courcy J. P., and Hue A. Y. (1996) Molecular and isotopic fractionation of light hydrocarbons between oil and gas phases. Org. Geochem. 24, 1115-1139.
    18 Cassani A. and Eglinton G. (1986) Pyrolysis of asphaltenes: a technique for the correaltion and maturity evaluation of crude oils. Chem. Geol. 56, 167-183.
    19 Chen H. H., Li S. T., Sun Y. C., and Zhang Q. M. (1998) Two petroleum systems charge the Yal3-l gas field in Yinggehai and Qiongdongnan basin, South China Sea. AAPG Bull. 82,757-772.
    20 Chen J. H. (1995) The investigation of thermal maturity of oils & gases in the Ying-Qiong basins, in Fu, J. M. ed., Studies on Tertiary source rocks in the Yinggehai and Qiongdongnan basins, South China Sea: CNOOC Research Report (In Chinese), 181-193.
    21 Chen W. H. (1990) Natural gas resource prediction in major sedimentary basins in the north continental shelf of the South China Sea: CNOOC Research Report (In Chinese), 238.
    22 Chung H. M. and Sackett W. M. (1979) Use of stable carbon isotope compositions of pyrolytically derived methane as maturity indices for carbonaceous material. Geochim. Cosmochim. Acta 43,1979-1988.
    23 Chung H. M., Claypool G. E., Rooney M. A., and Squires R. M. (1994) Source characteristics of marine oils as indicated by carbon isotopic ratios of volatile hydrocarbons. AAPG Bull. 78, 396-408.
    24 Chung H. M., Walters C. C., Buck S., and Bingham G. (1998) Mixed signals of the source and thermal maturity for petroleum accumulations from light hydrocarbons: an example of the Beryl field. Org. Geochem. 29,381-396.
    25 Chung H. M., Gormly J. R., and Squires R. M. (1988) Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chem. Geol. 71,97-103.
    26 Clayton C. (1991) Carbon isotope fractionation during natural gas generation from kerogen. Mar. Pet. Geol. 8,232-240.
    27 Collister J. W., Summons R. E., Lichtfouse E., et al. (1992) An isotopic biogeochemical
    
    study of the Green River oil shale. Org. Geochem. 19, 265-276.
    28 Collister J. W., Lichtfouse E., Hieshima G., and Hayes J. M. (1994) Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado). Org. Geochem. 21, 645-659.
    29 Cramer B., Krooss B. M., and Littke R. (1998) Modeling isotope fractionation during primary cracking of natural gas: A reaction kinetic approach. Chem. Geol. 149, 235-250.
    30 Duan Y, Wen Q. B., Zheng G. D., Luo B. J., and Ma L. H. (1997) Isotopic composition and probable origin of individual fatty acids in modern sediments from Ruoergai Marsh and Nansha Sea, China. Org. Geochem. 27, 583-589.
    31 Ekweozor C. M. (1984) Tricyclic terpenoid derivatives from chemical degradation reactions of asphaltenes. Org. Geochem. 6, 51-61.
    32 Fang J., Abrajano T. A., Comet P., Brooks J. M., and MacDonald I. (1993) Gulf of Mexico hydrocarbon seep communities: XI-Carbon isotopic fractionation during fatty acid biosynthesisof seep organisms and its implication for chemosynthetic processes. Chem. Geol. 109,217-279.
    33 Freeman K. H., Hayes J. M., Trendel J. M., and Albrecht P. (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343, 254-256.
    34 Geng A. S., Zhou Y., Fu J. M., Sheng G. Y, and Zhang Q. M. (1998) The generation and expulsion of gases in Ya131 gas field, South China Sea: implication of laboratory pyrolysis results. Journal of Asian Earth Sciences, 16, 429-436.
    35 Gong Z. S., Li S. T., Xie T. J., and Zhang Q. M. (1997) Continental margin basin analysis and hydrocarbon accumulation of the northern South China Sea. Beijing: Science Press. (In Chinese)
    36 Graas G. V. (1986) Biomarker distributions in asphaltenes and kerogens analysed by flash pyrolysis-gas chromatography-mass spectrometry. Org. Geochem. 10, 1127-1135.
    37 Hao F., Li S. T., Sun Y C., and Zhang Q. M. (1996) Characteristics and origin of the gas and condensate in the Yinggehai Basin, offshore South China Sea: evidence for effects of overpressure on petroleum generation and migration. Org. Geochem. 24, 363-375.
    38 Hao F., Li S. T., Sun Y. C., and Zhang Q. M. (1998) Geology, composition heterogeneities, and geochemical origin of the Yacheng gas field, Qiongdongnan basin, South China Sea. AAPG Bull. 82, 1372-1384.
    39 Harris S. A., Whiticar M. J., and Eek M. K. (1999) Molecular and isotopic analyses of oils by solid phase microextraction of gasoline-range hydrocarbons. Org. Geochem. 30, 721-738.
    40 Harris S. A. and Whiticar M. J. (1999) Factors influencing the isotopic composition of gasoline range hydrocarbons in Duvernay sourced oils as revealed by Compound Specific Isotope Correlation (CSIC). Chem. Geol. (submitted)
    
    
    41 Hayes J. M., Freeman K. H., Popp B. N., and Hoham C. H. (1990) Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biochemical processes. Org. Geochem. 16, 1115-1128.
    42 Horsfield B., Schenk H. J., Mills N., and Welte D. H. (1992) An investigation of the in-reservoir conversion of oil to gas: compositional and kinetic findings from closed-system programmed-temperature pyrolysis. Org. Geochem. 19, 191-204.
    43 James J. T. (1983) Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. AAPG Bull. 67,1176-1191.
    44 Jones A. M., Iacumin P., and Young E. D. (1999) High-resolution δ18O analysis of tooth enamel phosphate by isotope ratio monitoring gas chromatography mass spectrometry and ultraviolet laser fluorination. Chem. Geol. 153, 241-248.
    45 Jones D. M., Douglas A. G., and Connan J. (1988) Hydrous pyrolysis of asphaltenes and polar fractions of biodegraded oils. Org. Geochem. 13,981-993.
    46 Le Tran K. and Philippe B. (1993) Oil and rock extract analysis. In Applied petroleum geochemistry (Edited by Bordenave M. L.), 72-394. Edition Technip, Paris.
    47 Lewan M. D., Winters J. C., and McDonald J. H. (1979) Generation of oil-like pyrolysates from organic-rich shales. Science 203, 896-899.
    48 Leythaeuser D., Mackenzie A., Schaefer R. G. et al. (1984) A novel approach for recognition and quantification of hydrocarbon migration effects in shale-sandstone sequences. AAPG Bull. 68, 196-219.
    49 Li M. W., Larter S., Mei B. W. and Bjor(?)y M. (1995) Compound specific isotopic compositions for end members of crude oils and related source rocks from the Liaohe Basin: Paleoenvironmental implications. In: Organic Geochemistry: Development and application to energy, climate and human history (Poster sessions from the 17th International Meeting on Organic Geochemistry, edited by Joan O. Grimalt and Carmen Dorronsoro). 38-40.
    50 Lichrfouse E., Budzinski H., Garringues P., and Eglinton T. I. (1997) Ancient polycyclic aromatic hydrocarbons in modern soils: 13C, 14C and biomarker evidence. Org. Geochem. 26, 353-359.
    51 Lorant F., Prinzhofer A., Behar E, and Hue A. Y. (1998) Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases: Chem. Geol. 147,240-264.
    52 MacCaffrey M. A., Dahl J. E., Sundararaman P., Moldowan J. M., and Schoell M. (1994) Source rock quality determination from oil biomarkers Ⅱ: a case study using Tertiary-reservoired Beaufort Sea oils. AAPG Bull. 78,1527-1540.
    53 Macko S. A. (1990) Diagenesis of organic matter-a study using stable isotopes of individual carbohydrates. Org. Geochem. 16, 1129-1131.
    54 Magoon L. B. and Dow W. G. (1994) The petroleum system, in L. B. Magoon and W. G.
    
    Dow, eds., The petroleum system-from source to trap. AAPG Memoir 60, 3-24.
    55 Mansuy L., Philp R. P., and Allan J. (1997) Source identification of oil spills based on the isotopic composition of individual components in weathered oil samples. Environ. Sci. Technol. 31,3417-3425.
    56 McCarty H. B. and Felbeck Jr. G. T. (1986) High temperature simulation of petroleum formation, IV. Stable carbon isotope studies of gaseous hydrocarbons. Org. Geochem. 9, 183-192.
    57 McRae C., Sun C. G., Snape C. E., Fallick A. E., and Taylor D. (1999) δ13C values of coal-derived PAHs from different processes and their application to source apportionment. Org. Geochem. 30, 881-889.
    58 Mycke B., Hall K., and Leplat P. (1994) Carbon isotopic composition of individual hydrocarbons and associated gases evolved from micro-scale sealed vessel (MSSV) pyrolysis of high molecular weight organic material. Org. Geochem. 21, 787-800.
    59 O'Malley Jr V. P., Abrajano T. A., and Hellou J. (1994) Determination of the 13C/12C ratios of individual PAH from environmental samples: can PAH sources be apportioned? Org. Geochem. 21,809-822.
    60 O'Malley Jr V. P., Burke R. A., and Schlotzhauer W. S. (1997) Using GC-MS/Combustion/ IRMS to determine the 13C/12C ratios of individual hydrocarbons produced from the combustion of biomass materials: application to biomass burning. Org. Geochem. 27, 567-581.
    61 Odden W., Patience R. L., and van Graas G. W. (1998) Application of light hydrocarbons (C4-C13) to oil/source rock correlations: a study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway. Org. Geochem. 28, 823-847.
    62 Payne J. D., Engel M. H., and Macko S. A., (1999) Stable carbon and nitrogen isotope fractionation associated with the biosynthesis of DNA. Abstracts from the 19th International Meeting on Organic Geochemistry. 75-76.
    63 Pelet R., Behar F., and Monin J. C. (1986) Resins and asphaltenes in the generation and migration of petroleum. Org. Geochem. 10, 481-498.
    64 Philp R. P. and Gilbert T. D. (1985) Source rock and asphaltene biomarker characterization by pyrolysis-gas chromatography-mass spectrometry-multiple ion detection. Geochimica et Cosmochimica Acta 49, 1421-1432.
    65 Prinzhofer A. and Huc A. Y. (1995) Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chem. Geol. 126, 281-290.
    66 Rieley G., Collier R. J., Jones D. M., Eglinton G., Eakin P. A., and Fallick A. E. (1991) Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352, 425-427.
    67 Rogers K. M. and Savard M. M. (1999) Detection of petroleum contamination in river sediments from Quebec City region using GC-IRMS. Org. Geochem. 30,1559-1569.
    
    
    68 Rooney M. A. (1995) Carbon isotope ratios of light hydrocarbons as indicators of thermochemical sulfate reduction. In: Grimalt J O, Dorronsoro C (Eds), Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History. Selected papers from the 17th Internationa] Meeting on Organic Geochemistry, EAOG, Donostic-San Sebastian, 523-525.
    69 Rooney M. A., Claypool G. E., and Chung H. M. (1995) Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem. Geol. 126, 219-232.
    70 Rooney M. A., Vuletich A. K., and Griffith C. E. (1998) Compound specific isotope analysis as a tool for characterizing mixed oils: an example from the West of Shetlands area. Org. Geochem. 29, 241-254.
    71 Rubinstein I., Spyckerelle C., and Strausz O. P. (1979) Pyrolysis of asphaltenes:a source of geochemical information. Geochimica et Cosmochimica Acta 43,1-6.
    72 Rubinstein I., Strausz O. P., Spyckerelle C., et al. (1977) The origin of the oil sand formations of Alberta: a chemical and a microbiological simulation study. Geochimica et Cosmochimica Acta 41,1341-1353.
    73 Ruble T. E., Bakel A. J., and Philp R. P. (1994) Compound specific isotopic variability in Uinta Basin native bitumens: paleoenvironmental implications. Org. Geochem. 21, 661-671.
    74 Sano M., Yotsui Y, Abe H., and Sasaki S. (1976) A new technique for the detection of metabolites labelled by the isotope 13C using mass fragmentography. Biomed. Mass Spectrum. 3(1) ;1-3.
    75 Sackett W. M. (1978) Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochim. Cosmochim. Acta 42, 571-580.
    76 Schoell M., McCaffrey M. A., Fago F. J., et al. (1992) Carbon isotope compositions of 28,30-bionorhopanes and other biological markers in a Monterey crude oil. Geochim. Cosmochim. Acta 56, 1391-1399.
    77 Schoell M. (1983) Genetic characterization of natural gases. AAPG Bull. 67, 2225-2238.
    78 Schoell M., Schouten S., Sinninghe Damste J. S., de Leeuw J. W., and Summons R. E. (1994) A molecular organic carbon isotope record of Miocene climate changes. Science 263,1122-1125.
    79 Seifert W. K. (1978) Steranes and terpanes in kerogen pyrolysis for correlation of oils and source rocks. Geochimica et Cosmochimica Acta 42,473-484.
    80 Sessions A. L., Burgoyne T. W., Schimmelmann A., and Hayes J. M. (1999) Fractionation of hydrogen isotopes in lipid biosynthesis. Org. Geochem. 30,1193-1200.
    81 Silfer et al., (1991) Stable carbon isotope analysis of amino acid enantiomers by conventional isotope ratio mass spectrometry and combined gas chromatography/isotope
    
    ratio mass spectrometry. Anal. Chem. 65, 370-374.
    82 Sofer Z., Bjoroy M., and Hustad E. (1991) Isotopic composition of individual n-alkanes in oils. In: Manning D A C (Ed.) Organic Geochemistry: Advances and Applications in Energy and the Natural Environment, 5 Meeting of the European Association of Organic Geochemistrys. Poster Abstracts, 207-211.
    83 Sun Y. G., Sheng G. Y., Peng P. A., and Fu J. M. (2000) Compound-specific stable carbon isotope analysis as a tool for correlating coal-sourced oils and interbedded shale-sourced oils in coal measures: an example from Turpan basin, north-western China. Org. Geochem. 31, 1349-1362.
    84 Tang Y., Perry J. K., Jenden P. D., and Schoell M. (2000) Mathematical modeling of stable carbon isotope ratios in natural gases. Geochim. Cosmochim. Acta 64, 2673-2687.
    85 Taylor J., Young C., Parkes R. J., Eglinton T, and Douglas A. G. (1984) Structural relationships in protokerogens and other geopolymers from oxic and anoxic sediments. Org. Geochem. 6,279-286.
    86 Tobias H. J. and Brenna J. T. (1997) On-line pyrolysis as a limitless reduction source for high-precision isotopic analysis of organic-derived hydrogen. Anal. Chem. 69, 3148-3152.
    87 Lingerer P. and Pelet R. (1987) Extrapolation of oil and gas formation kinetics from laboratory experiments to sedimentary basins. Nature 327, 52-54.
    88 Waples D. W. (1980) Time and temperture in petroleum exploration: application of Lopatin's method to petroleum exploration. AAPG Bull. 64,916-926.
    89 Whiticar M. J. and Snowdon L. R. (1999) Geochemical characterization of selected Western Canada oils by C5-C8 compound specific isotope correlation (CSIC). Org. Geochem. 30, 1127-1161.
    90 Wilhelms A., Larter S. R., and Hall K. (1994) A comparative study of the stable carbon isotopic composition of crude oil alkanes and associated crude oil asphaltene pyrolysate alkanes. Org. Geochem. 21, 751-759.
    91 Winters J. C., Williams J. A., and Lewan M. D. (1983) A laboratory study of petroleum generation by hydrous pyrolysis. In: Bjoray M et al. Advances in Organic Geochemistry 1981. Chichester: Wiley, 524-533.
    92 Yu Z. Q., Sheng G. Y, Fu J. M., and Peng P. A. (2000) Determination of porphyrin carbon isotopic composition using gas chromatography-isotope ratio monitoring mass spectrometry. Journal of Chromatography A, 903, 183-191.
    93 Xiong Y. Q. and Geng A. S. (2000a) Carbon isotopic composition of individual n-alkanes in asphaltene pyrolysates of biodegraded crude oils from the Liaohe Basin, China. Org. Geochem. 31, 1441-1449.
    94 Xiong Y. Q. and Geng A. S. (2000b) Carbon isotopic composition of individual light hydrocarbons evolved from pyrolysis of source rocks from Ying-Qiong Basin, China. Marine and Petroleum Geology 17, 1041-1051.
    
    
    95 Zhang Q. M. and Hu Z. L. (1993) High-temperature and high-pressure conditions and migration of hydrocarbons in Yinggehai-Qiongdongnan basins, in Zhang Q. M. ed., A collection on petroleum geology of Yinggehai Basin, South China: Beijing, Seismic Press,78-84. (In Chinese)
    96 Zhang Q. M. and Kou C. X. (1993) Petroleum geology of Cenozoic sedimentary basins in western part of northern shelf of the South China Sea, in Zhang Q. M. ed., A collection on petroleum geology of Yinggehai Basin, South China: Beijing, Seismic Press, 1-9. (In Chinese)
    97 Zhang Q. X.. and Zhang Q. M. (1987) The characteristics of the oil and gas migration of Ya131 gas field, China Offshore Oil and Gas (Geology), 1(2), 35-42. (In Chinese)
    98 Zhang Q. X. and Zhang Q. M. (1991) Evidence of primary migration of condensate by molecular solution in aqueous phase in Yacheng Field, offshore South China. Journal of Southeast Asian Earth Sciences. 5, 101-106.
    99 Zhang Q. X., Li L., and Huang B. J. (1993) Discrimination of hydrocarbon source rocks in gas field Ya13-1 using GC-MS data, in Zhang Q. M. ed., A collection on petroleum geology of Yinggehai Basin, South China: Beijing, Seismic Press, 37-43. (In Chinese)
    100 Zhou Y. and Sheng G. Y. (1995) Crude oil geochemistry and oil-source correlation in the Yinggehai and Qiongdongnan basins, in Fu, J. M. ed., Studies on Tertiary source rocks in the Yinggehai and Qiongdongnan basins, South China Sea: CNOOC Research Report,107-146. (In Chinese)
    101 崔鳞典等.(1997)西部凹陷西斜坡中段油气富集规律研究.辽河石油勘探局勘探开发研究院.
    102 戴鸿鸣,王顺玉,王海清,等.(1999)四川盆地寒武系-震旦系含气系统成藏特征及有利勘探区块.石油勘探与开发.26(5):16-20.
    103 戴金星,李鹏举.(1994)中国主要含油气盆地天然气的C_5-C_8轻烃单体系列碳同位素研究.科学通报.39(22):2071-2073.
    104 丁安娜,惠荣耀,张中宁,段毅.(1996)准噶尔盆地液态烃分子碳同位素组成特征及其应用.沉积学报.14(1):135-142.
    105 董爱正,张林晔,黄第藩,王铁冠,张大江.(1996)饱和烃单体化合物稳定碳同位素测定方法.石油勘探与开发.23(2):111-115.
    106 傅家谟,刘德汉,盛国英.(1990)煤成烃地球化学.北京:科学出版社.43.
    107 耿安松,傅家谟,盛国英等.(1993)排烃对原油成分分异作用的实验研究.自然科学进展.3(4):377-380.
    108 耿安松,熊永强.(1999)辽河油田西部凹陷生物降解原油单体化合物碳同位素组成.自然科学进展.9(9):834-840.
    109 耿安松,刘德汉,陈能贵,等.(2000)碎屑岩有效气源岩的综合评价及其与形成大中型气田的关系.“九五”国家重点科技攻关项目成果报告.中国科学院广州地球化学研究所、杭州石油地质研究所和石油大学.
    
    
    110 韩永辉,吴春生.(1993)四川盆地地温梯度及几个深井的热流值.石油与天然气地质.14(1):80-84.
    111 李志生,蒋助生,罗霞,李剑,张英.(2000)甲苯碳同位素值随成熟度变化探讨.第八届有机地球化学学术会议论文摘要汇编.325.
    112 刘金钟,唐永春.(1998)用干酪根生烃动力学方法预测甲烷生成量之一例.科学通报.43(1):1187-1191.
    113 柳广弟,黄志龙,郝石生.(1997)烃源岩生排烃组分法模型研究与应用.沉积学报.15(2):130-133.
    114 邵波,文启彬,张同伟,等.(1996)GC/C/MS碳同位素在线分析及济阳坳陷天然气中碳同位素研究.科学通报.41(17):1597-1600.
    115 盛国英,耿安松,赵必强,傅家谟.(1991)正烷烃单个化合物碳同位素分布初探.沉积学报(增刊).21-25.
    116 四川油气区石油地质志编写组编.中国石油地质志.(1989)卷十,四川油气区.北京:石油工业出版社.
    117 汪本善,史继扬,张丽洁等.(1986)东濮盆地生油层排烃过程中某些生物标志化合物的特征.见:史继扬主编.中国科学院地球化学研究所有机地球化学开放研究实验室研究年报.162-171.
    118 王春江,傅家谟,盛国英,等.(1998)曙光-欢喜岭潜山带原油成因及成藏的地球化学研究,中国科学院广州地球化学研究所.
    119 王钧,黄尚瑶,黄歌山,等.(1990)中国地温分布的基本特征.北京:地震出版社.
    120 王兰生,张中华,1994四川盆地主要气田天然气稳定同位素的地球化学特征研究.四川石油管理局地质勘探开发研究院.
    121 王启军,陈建渝编著.(1988)油气地球化学.武汉:中国地质大学出版社.280.
    122 王世谦,罗启后.(2000)四川盆地中西部上三叠统煤成烃地球化学特征.In:煤成烃国际学术研讨会论文集.戴金星,傅诚德,夏新宇编.103-111.
    123 王一刚,余晓锋,杨雨,等.(1998)流体包裹体在建立四川盆地古地温剖面研究中的应用.地球科学.23(3):285-288.
    124 伍大茂,吴乃苓,郜建军.(1998)四川盆地古地温研究及其地质意义.石油学报.19(1):18-23.
    125 熊永强,耿安松,王春江,盛国英,傅家谟.(2000)实验温度对沥青质热解的影响.石油实验地质.22(1):85-89.
    126 熊永强,耿安松,王春江等.(1999)辽河油田曙光-欢喜岭潜山带烃源岩生排烃模拟实验研究.地球化学.(3):257-264.
    127 熊永强,耿安松.(1998)辽河油田生物降解原油沥青质热解产物中单体化合物碳同位素组成.地球化学,27(6):532-536.
    128 徐永昌,张晓宝,沈平,等.(1998)储层解析气研究的突破及其意义.科学通报.43(17):1895-1897.
    129 张丽洁,汪本善,史继扬等.(1987)从模拟实验结果讨论石油地球化学中几个重要问题.地球化学.(2):113-122.
    
    
    130 张文正,关德师.(1997)液态烃分子系列碳同位素地球化学.北京:石油工业出版社.
    131 张文正,裴戈,关德师.(1992a)鄂尔多斯盆地中、古生界原油轻烃单体系列碳同位素研究.科学通报.37(3):248-251.
    132 张文正,裴戈,关德师.(1992b)液态烃正构烷烃系列、姥鲛烷、植烷碳同位素初步研究.石油勘探与开发.19(4):32-41.
    133 赵孟军,黄第藩.(1995a)不同沉积环境生成的原油单体烃碳同位素分布特征.石油实验地质.17(2):171-179.
    134 赵孟军,黄第藩.(1995b)初论原油单体烃系列碳同位素分布特征与生油环境之间的关系.地球化学.24(3):254-260.
    135 赵孟军.(2000)原油裂解气的发现及其在勘探中的意义.第八届有机地球化学学术会议论文摘要汇编.112-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700