用户名: 密码: 验证码:
脑卒中预防的新策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:寻找预防脑卒中的新的作用靶点,探讨其可能的作用机制,在此基础上为脑卒中的预防提供新的治疗策略。结果和结论:(1)动脉压力感受性反射(ABR)功能作为一个独立的因子,可以预测高血压性脑卒中的发生。小剂量酮色林单纯地通过改善ABR功能,显著地延缓脑卒中的发生。(2)热量限制可以显著地延缓SHR-SP脑卒中的发生。这一作用与血压改变无关。ABR功能的改善、长寿蛋白SIRT1表达的增加可能参与这一作用。SIRT1激动剂白藜芦醇长期治疗可以延缓SHR-SP脑卒中的发生。(3)破坏ABR功能导致SD大鼠心肾组织的SIRT1表达降低,并减弱热量限制对SIRT1的增加作用。另外,破坏ABR功能减弱限制热量摄入延缓SHR-SP脑卒中死亡的作用。热量限制延缓SHR-SP脑卒中发生的作用至少部分地由ABR功能介导。
Object: To investigate the new targets for the preventing of stroke in hypertension and its mechanism, and propose the new strategies for it. Results and Conclusion: Arterial baroreflex (ABR) function is a new independent predictor for stroke incident in hypertension, and restoration of impaired baroreflex sensitivity (BRS) alone with low dose of ketanserin delayed stroke death. Caloric restriction (CR) prevents the end organ damage, extends the life span of SHR-SP, and delays the occurrence of stroke. SIRT1 expression, arterial baroreflex function and apoptosis might involve in the effects of CR on stroke death. The expression of SIRT1 was inhibited by impared ABR function by sinoaortic denervation (SAD) operation. The prolonging of life span by CR was also inhibited by impared ABR function.
引文
1. He J, Gu D, Wu X, et al. Major causes of death among men and women in China. N Eng J Med. 2005;353:1124-1134.
    2. Mackay J, Mensah G.. The Atlas of Heart Disease and Stroke. Geneva, Switzerland: World Health Organization: 2004.
    3. Luepker RV, Arnett DK, Jacobs DR Jr, et al. Trends in blood pressure, hypertension control, and stroke mortality: the Minnesota Heart Survey. Am J Med. 2006;119:42-49.
    4. Cechetto DF, Wilson JX, Smith KE, Wloski D, Silver MD, Hachinski VC. Autonomic and myocardial changes in middle cerebral artery occlusion: stroke models in the rat. Brain Res. 1989;502:296-305.
    5. Wolf-Maier K, Cooper RS, Banegas JR, et al.Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA. 2003;289:2363-2369.
    6. Editorial. Reducing the burden of stroke. Lancet. 2005;366:1752.
    7. La Rovere MT, Pinna GD, Hohnloser SH, et al.Autonomic tone and reflexes after myocardial infarction. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation. 2001;103:2072-2077.
    8. La Rovere MT, Bigger JT, Marcus FI, et al.Baroreflex sensitivity and heart rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet. 1998;351:478-484.
    9. Doba N, Reis DJ. Role of central and peripheral adrenergic mechanisms in neurogenic hypertension produced by brainstem lesions in rat. Circ Res. 1974;34: 293-301.
    10. Appenzeller O, Descarries L. Circulatory reflexes in patients with cerebrovascular disease. N Engl J Med. 1964;271:820-823.
    11. Gross M, Circulatory reflex in cerebral ischaemia involving different vascular territories. Clin Sci. 1970;38:491-502.
    12. Robinson T, James M, Youde J, Panerai R, Potter J. Cardiac baroreceptor sensitivity is impaired after acute stroke. Stroke. 1997;28:1671-1676.
    13. Robinson TG, Dawson SL, Eames PJ, Panerai RB, Potter JF. Cardiac baroreceptor sensitivity predicts long-term outcome after acute ischemic stroke. Stroke. 2003; 34:705-712.
    14. Fu YJ, Shu H, Miao CY, Wang MW, Su DF. Restoration of baroreflex function by ketanserin is not blood pressure dependent in conscious freely moving rats. J Hypertens. 2004;22:1165-1172.
    15. Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430: 686-689.
    16. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390-392.
    17. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004; 116: 551-63.
    18. Gasser SM, Cockell MM. The molecular biology of the SIR proteins. Gene. 2001; 279:1-16.
    19. Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000; 14: 1021-1026.
    20. Yamori Y, Horie R, Handa H, Sato M, Fukase M. Pathogenic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke. 1976;7:46-55.
    21. Miao CY, Xie HH, Zhan LS, Su DF. Blood pressure variability is more important than blood pressure level in determination of end-organ damage in rats. J Hypertens. 2006; 24:1125-1135.
    22. Xie HH, Shen FM, Miao CY, Su DF.Blood pressure, baroreflex sensitivity, and end organ damage in hybrid offspring of spontaneously hypertensive rats and Sprague-Dawley rats. Acta Pharmacol Sin. 2005; 26:1049-1056.
    23. Smyth HS, Sleight P, Pichering GM. Reflex regulation of arterial pressure during sleep in man:a quantitative method of assessing baroreflex sensitivity. Circ Res.1969, 24:109-114.
    24. Su DF, Chen L, Kong XB, Cheng Y. Determination of arterial baroreflex-blood pressure control in conscious rats. Acta Pharmacol Sin. 2002; 23:103-109.
    25. Van Vliet BN, Hu L, Scott T, Chafe L, Montani JP. Cardiac hypertrophy and telemetered blood pressure 6 wk after baroreceptor denervation in normotensive rats. Am J Physiol 1996; 271:R1759–R1769.
    26. Burrell LM, Risvanis J, Kubota E, et al. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 2005; 26:369–375.
    27. Liu JG, Xu LP, Chu ZX, Miao CY, Su DF. Contribution of blood pressure variability to the effect of nitrendipine on end-organ damage in spontaneously hypertensive rats. J Hypertens 2003; 21:1961–1967.
    28. Krieger EM. Neurogenic hypertension in the rat. Circ Res 1964; XV: 511-21.
    29. Wang J, Shen FM, Wang MW, Su DF. Effects of nine antihypertensive drugs on blood pressure variability in sinoaortic-denervated rats. Acta Pharmacol Sin. 2006; 27:1013-1017.
    30. Gu XW, Xie HH, Wang J, Shen FM, Su DF. Arterial baroreflex is not involved in salt preference in rats. Clin Exp Pharmacol Physiol. 2006;33:607-611.
    31. La Rovere MT, Specchia G, Mortara A, Schwartz PJ. Baroreflex sensitivity, clinical correlates and cardiovascular mortality among patients with a first myocardial infarction: a prospective study. Circulation 1988; 78: 816-824.
    32. Mortara A, La Rovere MT, Pinna GD, et al. Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation. 1997; 96: 3450-3458.
    33. Su DF, Miao CY. Arterial baroreflex function in conscious rats. Acta Pharmacol Sin. 2002; 23: 673-679.
    34. Shan ZZ, Dai SM, Su DF. Relationship between baroreceptor reflex function and end-organ damage in spontaneously hypertensive rats. Am J Physio.l 1999; 277; H1200-H1206.
    35. Su DF, Miao CY. Reduction of blood pressure variability: a new strategy for the treatment of hypertension.Trends Pharmacol Sci. 2005; 26:388-390.
    36. Shen FM, Guan YF, Xie HH, Su DF. Arterial baroreflex function determines the survival time in lipopolysaccharide-induced shock in rats. Shock. 2004; 21: 556-560.
    37. Cai GJ, Miao CY, Xie HH, Su DF. Arterial baroreflex dysfunction promotes atherosclerosis in rats. Atherosclerosis. 2005; 183: 41-47.
    38. Fang XH, Zhang XH, Yang QD, et al. Subtype hypertension and risk of stroke in middle-aged and older Chinese: a 10-year follow-up study. Stroke. 2006;37:38-43.
    39. Fang XH, Longstreth WT Jr, Li SC, et al. Longitudinal study of blood pressure and stroke in over 37,000 People in China. Cerebrovasc Dis. 2001;11:225-229.
    40. Fu YJ, Wang WZ, Cai GJ, Wang MW, Su DF. Action site of ketanserin enhancing baroreflex function is within the rostral ventrolateral medulla in anesthetized rats. Auton Neurosci. 2006;124:31-37.
    41. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature.2000; 408:255–262.
    42. Everitt AV. Food restriction, pituitary hormones and ageing. Biogerontology. 2003; 4:47–50.
    43. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. Nutrition. 1935; 5:155–171.
    44. Koubova J, Guarente L. How does calorie restriction work? Genes Dev. 2003; 17:313–321.
    45. No authors. Cholesterol, diastolic blood pressure, and stroke: 13,000 strokes in 450,000 people in 45 prospective cohorts. Prospective studies collaboration. Lancet. 1995;346:1647-1653.
    46. Leipe DD, Landsman D. Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily.Nucleic Acids Res. 1997; 25:3693-3697.
    47. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis.J Mol Biol. 2004;338:17-31.
    48. Gasser SM, Cockell MM. The molecular biology of the SIR proteins. Gene. 2001; 279:1-16.
    49. Guarente L. Sir2 links chromatin silencing, metabolism, and aging.Genes Dev.2000;14:1021-1026.
    50. Rogina B, Helfand SL, Frankel S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science. 2002; 298:1745.
    51. Kaeberlein M, Andalis AA, Fink GR, Guarente L. High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 2002; 22:8056–8066.
    52. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13:2570–2580.
    53. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001; 410:227–230.
    54. Hekimi S, Guarente L. Genetics and the specificity of the ageing process. Science. 2003; 299:1351–1354.
    55. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for lifespan extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000; 289:2126–2128.
    56. Baur JA, Pearson KJ, Price NL, et al. Resveratrol improve health and survival of mice on high-calorie diet. Nature. 2006; 444:337-342.
    57. Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell. 2004; 117:441–453.
    58. Sinclair DA, Guarente L. Extrachromosomal rDNA circles–a cause of aging in yeast. Cell. 1997; 91:1033–1042.
    59. Ando K, Higami Y, Tsuchiya T, Kanematsu T, Shimokawa I. Impact of aging and life-long calorie restriction on expression of apoptosis-related genes in male F344 rat liver. Microsc Res Tech. 2002; 59:293–300.
    60. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2a promotes cell survival under stress. Cell.2001; 107: 137–148.
    61. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107: 149-159.
    62. Valos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell. 2002; 10: 523-535.
    63. Muth V, Nadaud S, Grummt I, Voit R. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J. 2001; 20: 1353-1362.
    64. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD(R)-dependent tubulin deacetylase. Mol Cell.2003; 11: 437-444.
    65. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004; 23: 2369–2380.
    66. Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003;12:51-62.
    67. Picard F, Kurtev M, Chung N, et al.Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature.2004;429:771-776.
    68. Higami Y, Shimokawa I. Apoptosis in the aging process. Cell Tissue Res. 2000; 301:125–132.
    69. Ferguson LR. Role of plant polyphenols in genomic stability. Mutat Res. 2001; 475:89–111.
    70. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000; 52:673–751.
    71. Jang M, Cai L, Udeani GO, et al.. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997; 275:218–220.
    72. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425:191–196.
    73. Wu Z, Smith JV, Paramasivam V, et al. Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol. 2002;48:725–731.
    1. Gasser SM, Cockell MM. The molecular biology of the SIR proteins. Gene. 2001; 279:1-16.
    2. Guarente L. Sir2 links chromatin silencing, metabolism, and aging.Genes Dev. 2000;14:1021-1026.
    3. Rogina B, Helfand SL, Frankel S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science. 2002; 298:1745.
    4. Leipe DD, Landsman D. Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily.Nucleic Acids Res. 1997; 25:3693-3697.
    5. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis.J Mol Biol. 2004;338:17-31.
    6. Min J, Landry J, Stemglanz R, Xu RM. Crystal structure of a SIR2 homolog- NAD complex. Cell. 2001;105: 269–279.
    7. Chang JH, Kim HC, Hwang KY, et al. Structural basis for the NAD dependent deacetylase mechanism of Sir2. J. Biol. Chem.2002; 277: 34489–34498.
    8. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell. 2002;10: 523–535.
    9. Finnin MS, Donigian JR, Pavletich NP. Structure of the histone deacetylase SIRT2. Nat. Struct. Biol. 2001;8: 621–625.
    10. Denu JM. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylase. Trends Biochem Sci. 2003; 28:41-48.
    11. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390-392.
    12. Alcendor RA, Kirshenbaum LA, Imai SI, Vaner SF, Sadoshima J. Silent information regulator 2α,a longevity factor and class Ⅲ histone deacetylase, is an essential endogenous apotosis inhibitor in cardiac myocyetes. Circ Res.2004; 95: 971-980.
    13. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2a promotes cell survival under stress. Cell.2001; 107: 137–148.
    14. Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002; 21: 2383–2396.
    15. Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine denucleotide-dependent deacetylase. J. Cell Biol.2002;158: 647–657
    16. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a humanSIR2 homologue, is an NAD dependent deacetylase localized to mitochondria. Proc. Natl Acad. Sci.USA. 2002; 99:13653–13658.
    17. Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature.2004;430:686-689.
    18. Porcu M, Chiarugi A. The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol Sci. 2005; 26: 94-103.
    19. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107: 149-159.
    20. valos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell 2002; 10: 523-535.
    21. Muth V, Nadaud S, Grummt I, Voit R. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J 2001; 20: 1353-1362.
    22. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD(R)-dependent tubulin deacetylase. Mol Cell 2003; 11: 437-444.
    23. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004; 23: 2369–2380.
    24. Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003;12:51-62.
    25. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature.2004;429:771-776.
    26. Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 2002; 296:148-151.
    27. Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science.2002; 298: 2390-2392.
    28. Hiratsuka M, Inoue T, Toda T, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun. 200;309:558-566.
    29. Tanner KG, Landry J, Stemglanz R, Denu JM. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl Acad. Sci. USA .97, 14178–14182
    30. Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004;306:2105–2108.
    31. Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science. 2002; 296: 148-151.
    32. Rosenberg MI, Parkhurst SM: Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell. 2002; 109:447-458.
    33. Courey AJ, Jia S. Transcriptional repression: the long and the short of it. Genes Dev.2001;15:2786-2796.
    34. Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell. 1989; 56:771-776.
    35. Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell. 2004; 117: 441–453.
    36. Sinclair DA, Guarente L. Extrachromosomal rDNA circles–a cause of aging in yeast. Cell. 1997; 91:1033–1042.
    37. Higami Y, Shimokawa I. Apoptosis in the aging process. Cell Tissue Res. 2000; 301:125–132.
    38. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004; 116: 551–563.
    39. Giannakou ME,Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol 2004;14:408-412.
    40. Koubova J, Guarente L. How does calorie restriction work? Genes Dev. 2003; 17: 313–321.
    41. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science.2000; 289: 2126–2128.
    42. Lin SJ, Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol. 2003;15: 241–246.
    43. Denu JM. Linking chromatin function with metabolic networks: Sir2 family of NAD(C)-dependent deacetylases. Trends Biochem Sci. 2003;28: 41–48.
    44. Nadal-Ginard B, Kajstura J, Anversa P, Leri A. A matter of life and death: cardiac myocyte apoptosis and regeneration. J Clin Invest.2003; 111: 1457-1459.
    45. Olson EN, Schneider MD. Sizing up the heart: development redux in disease. Genes Dev. 2003 Aug 15;17:1937-1956.
    46. Hayakawa Y, Chandra M, Miao W, et al. Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation. 2003;108: 3036-3041.
    47. Zern TL, West KL, Fernandez ML. Grape Polyphenols Decrease Plasma Triglycerides and Cholesterol Accumulation in the Aorta of Ovariectomized Guinea Pigs. J Nutr. 2003; 133:2268-2272.
    48. Yamakoshi J, Kataoka S, Koga T, Ariga T. Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis. 1999;145:421-422.
    49. Fukao H, Ijiri Y, Miura M, et al. Effect of trans-resveratrol on the thrombogenicity and atherogenicity in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Blood Coagul Fibrinolysis. 2004; 15:441-446.
    50. Wilson T, Knight TJ, Beitz DC, Lewis DS, Engen RL. Resveratrol promotes atherosclerosis in hypercholesterolemic rabbits. Life Sci. 1996; 59: 15-21.
    51. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005; 280:17038-17045.
    52. Bereshchenko OR, Gu W, Dalla-Favera R. Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 2002; 32: 606–613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700