用户名: 密码: 验证码:
用于提高自适应光学系统空间校正能力的组合变形镜波前校正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学技术通过实时校正大气湍流等引起的波前动态误差,使光学系统可以适应外界环境的变化,始终保持最佳工作状态。波前校正器是自适应光学系统中的核心部件,如何提高波前校正器的空间校正能力是自适应光学理论和实验研究的重要内容之一。本文提出了利用光学共轭关系构造成组合变形镜实现波前校正的技术,可以在现有变形镜器件的基础上,使多个少驱动单元变形镜组合成一个等效的多驱动单元变形镜,从而有效的提高自适应光学系统的空间校正能力。论文围绕变形镜的空间特性,以连续表面分立压电驱动变形镜为对象,对组合变形镜波前校正技术的原理、特点和空间校正能力等进行了系统的理论和实验研究。
     首先,系统的研究了连续表面分立压电驱动变形镜的空间特性。分析了变形镜面形的求解方法,指出利用高斯型影响函数独立加权叠加方法描述面形存在一定的近似性。研究了变形镜结构参数和空间拟合能力的关系,结果表明:增加驱动器密度、选择适当的高斯指数和交连值,有利于提高变形镜的空间校正能力。进一步,应用空间滤波器模型研究了变形镜对畸变波前的校正过程,从空间频域验证了变形镜特性和波前校正能力的关系。此外,论文尝试使用随机并行梯度下降(SPGD)优化算法求解针对特定像差的变形镜驱动器的优化排布方式,获得了有规律的图形,结果说明:适当增加有效孔径边缘的驱动器数量有利于变形镜空间校正能力的提高。
     其次,提出了组合变形镜的系统结构,利用光学共轭关系可以将两个正方形排列或三个三角形排列的变形镜构成一个组合变形镜进行波前校正,甚至可以实现将不同种类的变形镜进行组合。分析了组合变形镜波前校正的原理,给出了以连续表面分立压电驱动变形镜构成的组合变形镜的整体面形表达式。仿真计算证明组合变形镜可以等效为一个单一变形镜,由于有效的增加了驱动单元数和交连值,因此可以明显的提高系统的空间校正能力。
     进一步,分析了应用组合变形镜进行波前校正时引入的轴向和横向匹配误差对空间校正能力的影响。一方面,通过几何光学和物理光学计算,说明理想4F系统可以实现波前再现,同时也看到小像差畸变波前在大菲涅尔数情况下自由传播的变化很小,因此实验室条件下使用组合变形镜时可以省去4F系统连接。另一方面,通过仿真计算表明:闭环情况下组合变形镜校正能力对各镜之间横向空间匹配误差并不敏感,这将有利于系统的实现。
     此外,分析和总结了各类多变形镜自适应光学系统中波前校正器的控制解耦方式,指出组合变形镜可以直接应用单变形镜的方法来控制,并具体分析了配合哈特曼波前传感器使用直接斜率法的控制方法。最后讨论了组合变形镜的应用前景。
     在实验验证方面,首先使用平面干涉仪验证了组合变形镜波前校正的原理,生成了指定的像差面形,然后搭建了应用组合变形镜的完整的自适应光学系统,实现了系统的闭环校正。对静态像差的良好校正结果从实验上证明了组合变形镜波前校正技术在提高系统空间校正能力方面的可行性和优越性。
     通过简单的方法,组合变形镜可以在现有器件上实现变形镜驱动单元密度的增加和排布方式的改变,从而提高自适应光学系统的校正能力。本文的研究结果将为变形镜的设计和组合变形镜系统的实际应用提供一定的理论参考和工程应用经验。
By compensating random optical wavefront distortions real-timely, the adaptive optics (AO) system can hold the best working state in despite of the variable ambient. The wavefront corrector is one of the key elements of AO system. And improvement of the spatial correction capability of correctors is the primary coverage of AO theory and experiment research. In this dissertation, a kind of new adaptive optics configuration, in which several existing deformable mirrors (DMs) with optical conjugation relationships are equivalent to a new single corrector with more actuators to compensate high-order aberrations, is proposed. It is proofed that the combinational deformable mirror (CDM) technique can improve the spatial compensation capability of current AO system effectively. Based on the continuous surface DM with discrete axial piezoelectric actuators, the principles, the characters and the spatial compensation capability of CDM technique are studied in theory and experiment.
     First, the spatial character of continuous surface DM with discrete actuators is analyzed. The description of the surface displacement of DM is deduced and the limitation in linear superposition of Gauss influence functions is indicated. The relations between constructional parameter of DM and its spatial correction capability are analyzed. Results show that, with the increasement of the density of actuators, optimization of the Gauss index and the coupling coefficient, the correction capability can be effectively improved. And this result is verified in spatial frequency based on the principle of spatial filter. In addition, the stochastic parallel gradient (SPGD) algorithm is introduced into our work to optimize the actuator distribution of DM. And the optimized distributions for each order of 3-20 Zernike wavefront have been obtained, the results show that it is advisable to arrange some of the actuators around the out edge of the effective aperture.
     The configuration of combinational deformable mirror (CDM) is introduced in detail. Two DMs with square-array actuators or three DMs with triangle-array ones, even different kinds of DMs can be combined by 4F optical system to correct waverfront aberrations. The wavefront correction principle of CDM is analyzed and the analytic expression of its displacement has been deduced. Numerical calculation results show that the CDM is equivalent to one single DM with more actuators and larger coupling coefficient. Thus, the spatial compensation capability of CDM AO system can be improved effectively.
     The influence on spatial correction capability caused by axial and transversal matching errors of the CDM technique is analyzed. According to the theory of geometrical optics and diffraction optics it can be obtained that, the wavefront changes inconspicuously when a small aberration propagates with a large Fresnel Number and the 4F optical system can be left out from the CDM AO system, which is setup in laboratory. The analysis also proves that the CDM AO system is not sensitive to the spatial matching errors of DMs.
     Various existing control algorithms in multi-DM AO systems are compared. It is concluded that the direct-gradient control algorithm, which is widespreadly used in single DM AO system, is also suitable for CDM AO systems. Finally, the application prospect of CDM is discussed.
     The first CDM AO experimental system for wavefront correction is built up, which consists of two 32-element continuous surface discrete axial piezoelectric DMs with the square-array actuators. In the open-loop state, a definite surface displacement can be reconstructed. When this system works in closed-loop, static aberrations are compensated better than only by using one DM. The feasibility and advantage at improving spatial compensation capability of CDM AO systems are proved.
     In summary, the CDM AO system can improve the wavefront spatial compensation capability by increasing the actuators density or changing their distribution. This dissertation will provide some reference and experience for the design of DM and applications of CDM AO system.
引文
[1]姜文汉,自适应光学技术,自然杂志,2006,28(1):7
    [2]周仁忠,自适应光学,北京,国防工业出版社,1996
    [3] Babcock H. W. The possibility of compensating astronomical seing, Publ Astron Soc Pac, 1953, 65:229.
    [4] J. W. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford University Press, New York, 1998
    [5] J. W. Hardy, Active optics: A new technology for control of light, Proc. IEEE, 1978, 66(6), 651
    [6]李新阳,自适应光学系统模式复原算法和控制算法的优化研究,成都:中国科学院光电技术研究所博士学位论文,2000
    [7] R. K. Tyson, Principles of adaptive optics. Academic Press Inc, San Diego, 1991
    [8] D. M. Pepper, Special issue on nonlinear optical phase conjugation, IEEE J. Quant. Electron, 1989, 25:312
    [9] B. Y. Zeldovich, et al., JETP Lett, 1972, 15:109
    [10] J. Prinmot, et al., Deconvolution from wavefront sensing: a new technique for compensating turbulence-degraded images, J. Opt. Soc. Am, 1990, 17:1598
    [11]俞信,自适应光学进展及展望,光学技术,1993,3:2
    [12]侯静,自适应光学波前探测新概念研究,长沙:国防科学技术大学博士学位论文,2002
    [13] A. N. Kolmogorov, The local structure of Turbulence in Incompressible Viscous Fluid for Very large Reynold’s Numbers, Doklady Akad. Nauk SSSR, 1941, 30:301
    [14] V. L. Tatarski, Wave Propagation in a Turbulent Medium, New York Dover Publication, 1967
    [15] D. L. Fried, Statistics of a geometric representation of wavefront distortion, J. Opt. Soc. Am. A., 1965, 55:1427
    [16] D. L. Fried, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures, J. Opt. Soc. Am. A., 1966, 56:1372
    [17] D. P. Greenwood and D. L. Fried, Power spectra requirement in adaptive optics system, J. Opt. Soc. Am. A., 1976, 66(3): 193
    [18] D. P. Greenwood, Bandwidth specification for adaptive optics system, J. Opt. Soc. Am. A., 1977, 67(3): 390
    [19] G. A. Tyler, Turbulence induced adaptive optics performance degradation: evaluation in the time domain, J. Opt. Soc. Am. A., 1984, 1(3): 251
    [20] G. A. Tyler, Bandwidth considerations for tracking through turbulence, J. Opt. Soc. Am. A., 1994, 11(1): 358
    [21] G. D. Boreman and C. Dainty, Zernike expansions for non-Kolmogorov turbulence, J. Opt. Soc. Am. A., 1996, 13(3): 517
    [22] D. L. Fried and J. L. Vaughn, Branch cuts in the phase function, Applied Optics, 1992, 31:2865
    [23] J. M. Beckers,Increasing the size of the isoplanatic patch with muhiconjugate adaptive optics, Conference on Very Large Telescopes and Their Instrumentation 1988, 693
    [24] J. M. Beckers, ESO. Conference on Very Large Telescopes and Their Instrumentation, 1989
    [25]张晓芳,俞信等,多层共轭自适应光学的进展与展望,纳米技术与精密工程,2004,2(1):76
    [26] R. Foy and A. Labeyrie, Ast Astrophys, 1985,152:129
    [27] R. Parenti and R. J. Sasiela, Laser-guide-star systems for astronomical applications, J. Opt. Soc. Am. A., 1994, 11(1): 288
    [28]吴健,乐时晓,随机介质中的光传播理论,成都,成都电讯工程学院出版社,1988
    [29]宋正方,应用大气光学基础,北京,气象出版社,1990
    [30]张逸新,随机介质中光的传播与成像,北京,国防工业出版社,2002
    [31]饶瑞中,光在湍流大气中的传播,合肥,安徽科学技术出版社,2005
    [32] D. L. Fried, Least squares fitting a wavefront distortion estimate to an array of phase-difference measurements, J. Opt. Soc. Am. A., 1977, 67(3): 370
    [33] R. H. Hudgin, Waverfront reconstruction for compensated imaging, J. Opt. Soc. Am. A., 1977, 67(3): 375
    [34] J. Herrmann, Least squares wavefront errors of minimum norm, J. Opt. Soc. Am. A., 1980, 70(1): 28
    [35] T. R. O’Meara, The multidither principle in adaptive optics, J. Opt. Soc. Am. A., 1977, 67(3): 306
    [36] J. W. Hardy, J. E. Lefebvre and C. L. Koliopoulos, Real-time atmospheric compensation, J. Opt. Soc. Am. A., 1977, 67(3): 360
    [37] W. H. Jiang and H. G. Li, Hartman–Shack wavefront sensing and wavefront control algorithm, Proc. SPIE 1990,1271:103
    [38] B. L. Ellerbroek and T. A. Rhoadamer, Optimizing the performance of closed-loop adaptive-optics control systems on the basis of experimentally measured performance data, J. Opt. Soc. Am. A., 1997, 14(8): 1975
    [39] D. J. Sandler, et al., Recovery of atmospheric phase distortion from stellar images using an artificial neural network, Proc. SPIE 1991, 1543:491
    [40] M. A. Vorontsov and G. W. Carhart, Adaptive phase-distortion correction based on parallel gradient-descent optimization, Optics Letter, 1997, 22(12): 907
    [41] S. Zommer, et al., Simulated annealing in ocular adaptive optics, Optics Letters, 2006, 31(7): 1
    [42]杨平,许冰等,遗传算法在自适应光学系统中的应用,光学学报,2007, 27(9):1628
    [43] J. E. Pearson, W. B. Bridges, et al., Coherent optical adaptive techniques: Design and performance of an 18-element visible multi-dither COAT system, Applied Optics, 1976, 15:611
    [44] D. P. Greenwood and C. A. Primmerman, Adaptive optics research at Lincoln Laboratory, the Lincoln Laboratory journal, 1992, 5(1): 3
    [45]姜文汉,高分辨率自适应望远镜,国家高技术计划信息领域信息获取与处理技术十周年汇报——自适应光学望远镜技术,1996,1
    [46] F. Merkle and N. Hubin, Adaptive optics for the European very large telescope, Proc. SPIE 1991, 1542:283
    [47] E. Genetron, et al., Come-On-Plus project: an upgrade of the Come-On adaptive optics prototype system, Proc. SPIE 1991, 1542:297
    [48] P. J. Lena, Astrophsical results with the Come-on Adaptive Optics System, Proc. SPIE 1994, 2201:1099
    [49] R. R. Parenti, Recent advances in adaptive optics methods and technology, Proc. SPIE 1988, 1000:101
    [50] J. W. Hardy, Adaptive optics: a progress review, Proc. SPIE 1991, 1542:2
    [51] J. W. Hardy, Twenty years of active and adaptive optics, ICO-16 conference on active and adaptive optics, 1993, 29
    [52]姜文汉,自适应光学技术进展-1991年SPIE国际光学应用科学和工程讨论会综述,光电工程,1992, 19(4):49
    [53] R. K. Tyson, Adaptive optics compensation of atmospheric turbulence: the past, the present, and the promise, Proc. SPIE 1994, 2222:404
    [54]姜文汉,光电技术研究所的自适应光学技术,光电工程,1995,22(1):1
    [55] C. Ting, D. G. Voelz, et al., Laser satellite communications with adaptive optics, Proc. SPIE 2005, 5892
    [56]李芳,荣健,丁学科,自适应光学校正空地光通信到达角起伏的研究,激光杂志,2007,28(5):57
    [57]黄英奇,程兆谷等,自适应变形镜激光应用技术,激光与光电子学进展,2003,40(1):46
    [58] J. Liang, B. Grimm, et al., Objective measurement of wave aberration of human eye with the use of a Hartmann-Shack wavefront sensor, J. Opt. Soc. Am. A., 1994, 11(6): 1949
    [59]张雨东,姜文汉等,自适应光学的眼科学应用,中国科学,2007,37:68
    [60]段海峰,自适应光学技术在激光光束像差控制与参数测量中的应用研究,成都:中国科学院光电技术研究所博士学位论文,2003
    [61] E. Prieto, P. Corporon, et al., Performance of the ESO AO system, ADONIS, at the La Silla 3.6-m telescope, Proc. SPIE 1997, 3126:589
    [62] R. Arsenault, D. A. Salmon, et al., PUEO: the Canada- France-Hawaii Telescope adaptiveoptics bonnette I: system description, Proc. SPIE 1994, 2201:833
    [63] F. J. Rigaut, R. Arsenault, et al., the Canada- France-Hawaii Telescope adaptive optics bonnette II: simulation and control, Proc. SPIE 1994, 2201:149
    [64] A. Tokovinin, B. Gregory, et al., A visible-light AO system for the 4.2 m SOAR telescope, Proc. SPIE 2003, 4839:673
    [65] T. S. Mast, et al., W.M. Keck observatory adaptive optics program. Proc. SPIE 1994, 2201:22
    [66] A. D. Scott, P. L. Wizinowich, et al., Lessons learned in the design, construction, and implementation of the W.M. Keck Observatory AO system, Proc. SPIE 2000, 4007:14
    [67] J. P. Veran, L. K. Saddlemyer, et al., Design and current status of the reconstructor for altair: the gemini north adaptive optics system, Proc. SPIE 2000, 4007:649
    [68] C. Mark, R. D'Orgeville, et al., Curvature-based laser guide star adaptive optics system for gemini south, Proc. SPIE 2000, 4007:142
    [69] H. Takami, Membrane deformable mirror for SUBARU adaptive optics, Proc. SPIE 1994, 2201:762
    [70] H. Takami, et al., First results from the subaru AO system. Proc. SPIE 2002,4494:30
    [71] C. Marcel, C. Serge, et al., Adaptive optics simulations for imaging with the large binocular telescope interferometer: a first application, Proc. SPIE 2000, 4007:155
    [72] A. Nancy, L. Rainer, et al., Polarization with adaptive optics at ESO very large telescope, Proc. SPIE 2003, 4843:212
    [73] A. Segurson and G. Angeli, Computationally efficient performance simulations for a Thirty Meter Telescope (TMT) point design, Proc. SPIE 2004, 5497:329
    [74] A. V. Goncharov, Owner-Petersen, T. Andersen, Adaptive optics schemes for future extremely large telescopes, Opt. Eng. 2002, 41(5): 1065
    [75] N. Hubin, M. L. Louarn, et al., New challenges for adaptive optics: the OWL 100m telescope, Proc. SPIE 2000, 4007:1100
    [76] R. Ragazzoni, J. Farinato, E. Marchetti, Adaptive optics for 100m class telescopes: New challenges requires new solutions, Proc. SPIE 2000, 4007:1076
    [77]李芝萍,拟议中的21世纪光学望远镜,现代物理知识,15(3):34
    [78]陈丹,“哈勃”的辉煌十年,科技潮,2000(6):124
    [79]郭锐,自适应光学在月球激光测距中的应用研究,昆明:中国科学院国家天文台云南天文台博士学位论文,2007
    [80]熊耀恒,白金明,应用自适应光学望远镜所取得的天文观测成果,云南天文台台刊,2000,2:48
    [81] D. E. Spreen and C. B. Hogge, Characterizing high-altitude horizontal path optical propagation, Proc. SPIE 1994, 2120:2
    [82] T. D. Steiner, P. H. Merritt edited, Airbome laser advanced technology, Proc. SPIE 1998, 3381
    [83]胡绍云,钟鸣等,自适应光学在固体战术激光武器中的应用,激光与光电子学进展,2006,43(2):25
    [84]范品忠,廉价多用途自适应光学器件,激光与光电子学进展,2000,12:12
    [85] J. T. Salmon, et al., Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor, Proc. SPIE 1991, 1542: 459
    [86] A. V. Kudryashov, V. V. Samarkin, Control of high power CO2 laser beam by adaptive optical elements, Optics Communications, 1995,118: 317
    [87]张强,氧碘化学激光器光束净化,成都:四川大学博士学位论文,1999
    [88] U. J. Greiner, H. H. klingenberg, Thermal lens correction of a diode-pumped Nd:YAG laser of high TEM00 power by an adjustable-curvature mirror, Optics Letters, 1994,19(16): 1207
    [89] T. Yu. Cherezova, L. N. Kaptsov, et al., Cw industrial rod YAG:Nd3+ Laser with an intracavity active bimorph mirror, Applied Optics, 1996, 35(15): 2554
    [90] W. Lubeigt, G. Valentine, et al., Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror, Optics Express, 2002,10(13): 550
    [91] G. Vdovin, V. Kiyko, Intracavity control of a 200-W continuous-wave Nd:YAG laser by a micromachined deformable mirror, Optics Letters, 2001, 26(11): 798
    [92] F. Druon, G. Cheriaux, et al., Wave-front correction of femtosecond terawatt lasers by deformable mirrors, Optics Letters, 1998, 23(13): 1043
    [93] E. Zeek, K. Maginnis, et al., Pulse compression by use of deformable mirrors, Optics Letters, 1999, 24(7): 493
    [94] E. Zeek, R. Bartels, et al., Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation, Optics Letters, 2000, 25(8): 587
    [95] M. R. Armstrong, P. Plachta, et al., Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics, Optics Letters, 2001, 26(15): 1152
    [96] G. Chriaux, O. Albert, et al., Temporal control of amplified femtosecond pulses with a deformable mirror in a stretcher, Optics Letters, 2001, 26(3): 169
    [97]邹华,周常河,飞秒脉冲时空变换整形技术,激光与光电子学进展,2005, 42(2):2
    [98] R. Sacks, et al., Application of adaptive optics for controlling the NIF laser performance and spot size, Proc. SPIE 1998, 3492:344
    [99] Williams, H. Wade, Simulations of a phase corrector plate for the National Ignition Facility, Proc. SPIE 1998, 3492:355
    [100] R. Zacharias, E. Bliss, et al., The National Ignition Facility (NIF) wavefront Control System, Proc. SPIE 1998, 3492:678
    [101] B. Xavier, M. Y. Renaud, et al., Preliminary design of the cavity-end deformable mirror of the megajoule laser, Proc. SPIE 1998, 3492:693
    [102] C. A. Haynam, P. J. Wegner, National Ignition Facility laser performance status, Applied Optics, 2007, 46(16): 3276
    [103] Claire Grosset-Grange, et al., Design principle and results obtained on the LMJ deformable mirror prototype, Proc. SPIE 2007, 6584:658403
    [104] Hiroshi Azechi, Present status of the FIREX programme for demonstration of ignitionand burn, Plasma Physics and Controlled Fusion, 2006, 48:B267
    [105] Y. D. Zhang, N. Ling, et al., An adaptive optics system for ICF application, Proc. SPIE 2002, 4494:96
    [106] Y. D. Zhang, Z. P. Yang, Characteristics of wavefront aberration in the single beam principle prototype of the next generation ICF system, Proc. SPIE 2002, 4825: 249
    [107] K. Mima,罗山编译,惯性聚变能研究现状,激光与光电子学进展,2004,41(1):3
    [108] J. Liang, D. R. Williams, et al., Supermormal vision and high-resolution retinal imaging through adaptive optics, J. Opt. Soc. Am. A., 1997, 14(11): 2884
    [109] G. D. Love, Wavefront correction and production of Zernike modes with a liquid crystal spatial light modulator, Applied Optics, 1997, 36(7): 1517
    [110] F. Vargas-Martin, P. M. Prieto, et al., Correction of the aberrations in the human eye with liquid-crystal spatial light modulator: limit to performance, J. Opt. Soc. Am. A., 1998, 15(9): 2552
    [111] E. J. Fernndez, I. Iglesias, P. Artal, Closed-loop adaptive optics in the human eye, Optics Letters, 2001, 26(10): 746
    [112] N. Doble, G. Yoon, et al., Use of a microelectromechanical mirror for adaptive optics in the human eye, Optics Letters, 2002, 27(17): 1537
    [113]邓国庆,余吟山等,自适应光学在眼科屈光手术中的应用,中国医学物理学杂志,2004,21(6):329
    [114]梁春,廖文和等,自适应光学在眼科医疗中的应用,应用激光,2007,27(3):237
    [115]凌宁,张雨东等,用于活体人眼视网膜观察的自适应光学成像系统,光学学报,2004,24:1153
    [116] G. Vdovin, P. M. Sarro, et al., Recent progress in technology and applications of membrane micromachined deformable mirrors, Proc. SPIE 1999,3760: 2
    [117] F. Gonte, A. Couteville, Optimization of single-mode fiber coupling efficiency with an adaptive membrane mirror, Opt. Eng., 2002, 41(5): 1073
    [118] F. Gonte, Y. Peter, et al., Massive free-space optical 1xN fiber switch using an adaptive membrane mirror, Proc. SPIE 2002, 4493: 64
    [119] C. Marxer, N. F. Rooij, Micro-opto-mechanical 2x2 switch for single mode fibers based on plasma etched silicon mirror and electrostatic actuations, IEEE J. Light. Tech., 1999, 17: 2
    [120] F. Gonte, R. Dandliker, Phase coding for holographic memory using a deformable membrane mirror, Proc. SPIE 2002, 4493: 46
    [121] M. Duban, Theory of spherical holographic gratings recorded by use of a multimode deformable mirror, Applied Optics, 1999, 37(31): 7209
    [122] M. Toyoda, K. Araki, et al., Wave-front tilt sensor with two quadrant detectors and its application to a laser beam pointing system, Applied Optics, 2002, 41(12):2219
    [123] J. Gourlay, T. Yang, et al., Low-order adaptive optics for free-space optoelectronic interconnects, Applied Optics, 2000, 39(5): 714
    [124] R. K. Tyson, Bit-error rate for free-space adaptive optics laser communications, J. Opt. Soc. Am. A., 2002, 19(4): 753
    [125] T. Weyrauch, M. A. Vorontsov, Atmospheric compensation over a 2.3 km propagation path with a multi-conjugate (piston-MEMS/modal DM) adaptive system, Proc. SPIE 2004, 5552:730
    [126] S. Avino, F. Barone, et al., Adaptive optics correction of geometrical fluctuations of Virgo input laser beam: preliminary results, Proc. SPIE 2002, 4493: 156
    [127] J. D. Mansell, S. Sinha, et al., Deformable mirror development at stanford university, Proc. SPIE 2002, 4493: 1
    [128] O. Albert, L. Sherman, et al., Smart microscope:an adaptive optics learning system for aberration correction in multiphoton confocal microscopy, Optics Letters, 2000, 25(1): 52
    [129]中科院光电技术研究所自适应光学技术专辑(上、下),光电工程,1995,1-2
    [130] W. H. Jiang, et al., Adaptive optical image compensation experiments on stellar objects, Opt. Eng., 1995, 34(1): 7
    [131] W. H. Jiang, et al., A 37 element adaptive optics system with H-S wavefront sensor, ICO-16 Satellite Conf. On Active and Adaptive Optics, Proc ESO. 1993,48: 127
    [132] W. H. Jiang, et al., 21-element infrared adaptive optics system at 2.16m telescope, Proc. SPIE 1999, 3762: 142
    [133]饶长辉,姜文汉,2.16米望远镜红外自适应光学系统的误差和性能分析,天体物理学报,1996,15(4):428
    [134]姜文汉等,61单元自适应光学系统,量子电子学报,1998,15(2): 193
    [135] W. H. Jiang, N. Ling, et al., 61-element adaptive optical system for 1.2m telescope of Yunnan Observatory, Proc. SPIE 1998,3353: 696
    [136] G. M. Tang, C. H. Rao, et al., Performance and test results of a 61-element adaptive optics system on the 1.2m telescope of Yunan Observatory, Proc. SPIE 2002,4926: 13
    [137] C. H. Rao, W. H. Jiang, et al., Upgrade on 61-element adaptive optical system for 1.2m telescope of Yunan Observatory, Proc. SPIE 2004, 5490: 943
    [138] C. H. Rao, W. H. Jiang, et al., Performance on the 61-element upgrade adaptive optical system for 1.2m telescope of Yunan Observatory, Proc. SPIE 2004, 5639: 11
    [139]饶长辉,姜文汉,云南天文台1.2米望远镜61单元自适应光学系统,量子电子学报,2006,23(3):295
    [140] N. Ling, Y. D. Zhang, et al., High resolution mosaic image of capillaries of human retina by adaptive optics, Chinese Optics Letters, 2005, 3(4): 225
    [141] N. Ling, Y. D. Zhang, et al., Measurement and correction in time of high order aberrations, Optics and Optical Engineering -Prcoessing of Congratulation for Wang Daheng Academician’s 90 Birthday, Publishing House of Science, 2005, 73
    [142]阎吉祥,俞信等,分层校正自适应光学系统相位层析技术,光学技术,1996,5:5
    [143]卢新然,张洪涛等,分层共轭自适应光学系统扩大校正视场的方法研究,长春理工大学学报,2006,29(1):32
    [144]虞益挺,苑伟政等,分立活塞式MEMS微变形镜的系统级设计,传感器技术学报,2006,19(5):1761
    [145]饶伏波,乔大勇等,几种分立式微变形镜的性能模拟与比较,光学仪器,2005,27(5):60
    [146]关秀丽,基于液晶的波前校正器,机电产品开发与创新,2006,19(6):54
    [147]靳冬欢,基于随机并行梯度下降算法的波前校正技术研究,长沙:国防科学技术大学博士学位论文,2006
    [148]龙学军,基于像质评价函数最优化的自适应波前控制技术研究,长沙:国防科学技术大学博士学位论文,2006
    [149]杨振刚,陈海清等,内腔自适应光学系统校正激光器畸变,光学学报,2007,27(12):2205
    [150]余洪斌,陈海清等,星载自适应光学系统新型可变反射镜的研究,压电与声光,2005,27(4):352
    [151]叶嘉雄,余永林编著,自适应光学,武汉,华中理工大学出版社,1992
    [152]周仁忠,阎吉祥编著,自适应光学理论,北京,北京理工大学出版社,1996
    [153] W. H. Lowrey, J. L. Wynia, et al., Characterization of three advanced deformable mirrors, Proc. SPIE 1998, 3433: 388
    [154] L. C. Roberts,et al., Characterization of the AEOS Adaptive Optics System, Publications of the Astronomical Society of the Pacific, 2002, 114:1260
    [155]凌宁,官春林等,61单元分立压电式变形镜反射镜的研制,强激光与粒子束, 1998,10(4):527
    [156]王吉福,阎吉祥等,多层共轭自适应光学系统中等晕角的计算,光学技术,2004,30(2):193
    [157]阎吉祥,俞信,单层共轭校正宽视场自适应光学,北京理工大学学报,1999,19(1):58
    [158]李新阳,姜文汉,两个自适应光学系统串联校正的控制性能分,光学学报,2001,21(9):1059
    [159] M. C. Roggemann, D. J. Lee, A two deformable mirror concept for correcting scintillation effects in laser beam projection, Proc. SPIE 1998, 3381: 66
    [160] M. C. Roggemann, D. J. Lee, A two deformable mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere, Applied Optics, 1998, 37(21): 4577
    [161] V. P. Sivokon, M. A. Vorontsov, High-resolution adaptive phase distortion suppression based solely on intensity information. J. Opt. Soc. Am. A, 1998, 15(1): 234
    [162] T. J. Karr, Instabilities of atmospheric laser propagation, Proc. SPIE 1990, 1221:26
    [163] F. Y. Kanev, et al., Amplitude phase beam control in a two mirror adaptive system, Proc. SPIE 2004, 5572: 310
    [164] C. C. Diana, S. M. Johns, et al., High-resolution adaptive optics scanning laserophthalmoscope with dual deformable mirrors, J. Opt. Soc. Am. A, 2007, 24(5): 1305
    [165]胡诗杰,许冰等,双变形镜自适应光学系统像差解耦研究,光学学报,2005,25(12): 1687
    [166] S. J. Hu, B. Xu, et al., Double-deformable-mirror adaptive optics system for phase compensation, Applied Optics, 2006, 45(12): 2638
    [167]李有宽,陈栋泉等,双变形镜自适应光学全场补偿模拟,强激光与粒子束,2000,12(6):665
    [168]谢敬辉,赵尊达编著,物理光学教程,北京:北京理工大学出版社,2005
    [169] F. Roddier, Curvature sensing and compensation: a new concept in adaptive optics, Applied Optics, 1988, 27(7): 1223
    [170]余浩,基于光栅型波前曲率传感器的固体激光器热透镜效应测量,长沙:国防科学技术大学硕士学位论文,2006
    [171] P. M. Blanchard, A. H. Greenaway, Simultaneous multiplane imageing with a distorted with diffraction grating, Applied Optics, 1999, 38(32): 6692
    [172] S. C. Woods, A. H. Greenaway, Wavefront sensing by use of a Green’s function solution to the intensity transport equation, J. Opt. Soc. Am. A, 2003, 20(3): 508
    [173] W. H. Jiang, H. Xian and F. shen, Detecting error of shack-hartmann wavefront sensor, Proc. SPIE 1997, 3126: 534
    [174] G. Lane and M. Tallon, Wavefront reconstruction using a shack-hartmann sensor, Applied Optics, 1992,31(32): 6902
    [175]李超宏,白天条件下基于视场偏移的哈特曼波前传感器性能研究,成都:中科院光电技术研究所博士学位论文,2007
    [176] J. R. Fienup, Phase retrieval algorithms: a comparison, Applied Optics, 1982,21(5): 2758
    [177]李敏,李新阳,姜文汉,一种线性相位反演波前测量方法的实验研究,强激光与粒子束,2007,19(4):611
    [178] W. Zou, Z. Zhang, Generalized wave-front reconstruction algorithm applied in a Shack-Hartmann test, Applied Optics, 2000, 39(2): 250
    [179]鲜浩等,用Hartmann-Shack传感器测量激光光束的波前相位,光电工程,1995, 22(2): 38
    [180]王海英,杨泽平等,模式正交对哈特曼夏克传感器波前测量的影响,光学学报,2003,23(9):1143
    [181]张强,姜文汉等,利用Zernike多项式对湍流波前进行重构,光电工程,1998,25(6):15
    [182]李新阳,姜文汉,哈特曼夏克传感器的泽尼克模式波前复原误差,光学学报,2002,22(10):1236
    [183]李新阳,王春鸿等,自适应光学系统的实时模式复原算法,强激光与粒子束,2002,14(1):53
    [184] R. H. Freeman and J. E. Pearson, Deformable mirrors for all seasons and reasons,Applied Optics, 1982, 21(4): 580
    [185]凌宁,官春林,变形反射镜的发展,光电工程,1995,22(1):14
    [186] G. Vdovin, M. Loktev, et al., Low-cost deformable mirrors: technologies and goals, Proc. SPIE 2005, 5894: 58940B-1
    [187]杨强,朱健平等,双压电变形反射镜的优化设计,光学学报,1999,16(9):1163
    [188] A. V. Kudryashov, V. L. Shmalhousen, Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications, Opt. Engng. , 1996, 35(11): 3064
    [189] Y. Ning, W. H. Jiang, et al., Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors, Optics Express, 2007, 15(19): 12030
    [190] D. C. Dayton, J. D. Mansell, et al., Characterization and control of a novel micromachined membrane mirror for adaptive wavefront control, Proc. SPIE 2002, 4493:29
    [191] T. G. Bifano, J. Perreault, et al., Microelectromechanical Deformable Mirrors, IEEE, 1999, 5(1): 83
    [192] J. A. Perreault, P. A. Bierden, et al., Manufacturing of an Optical Quality Mirror System for Adaptive Optics, Proc. SPIE 2002, 4493:13
    [193] www.okotech.com
    [194] G. Vdovin, V. Kiyko, Intracavity control of a 200-W continuous-wave Nd:YAG laser by a micromachined deformable mirror, Optics Letters, 2001, 26(11): 798
    [195] L. Zhu, P. Sun, et al., Adaptive control of a micromachineded continuous membrane deformable mirror for aberration compensation, Applied Optics, 1999, 38(1): 168
    [196] M. L. Plett, P. R. Barbier, et al., Compact adaptive optical system based on blind optimization and a micromachined membrane deformable mirror, Applied Optics, 2001, 40(3): 327
    [197]陈珂,赵达尊,俞信等,微机械薄膜变形镜光学影响函数矩阵的测试与研究,高技术通讯,2000,10(9):22
    [198]闫金良,微机械连续薄膜变形反射镜,半导体光电,2005,26(3):187
    [199]方迪,陈海清等,微变形反射镜主要性能测试研究,光学仪器,2005,27(3):21
    [200]刘良清,袁孝,微变形镜内腔补偿激光模式畸变研究,强激光与粒子束,2007,19(5):718
    [201]李育林,傅晓理,空间光调制器及其应用,北京:国防工业出版社, 1996
    [202]王春红,荣志钧等,37单元自适应光学系统实时波前处理,光电工程,1995,22(1):46
    [203]王春红,李梅,李安娜,帧频2900HZ的高速实时波前处理机,光电工程,1998,25(增刊):25
    [204]王彩霞,李梅等,用脉动阵列实现实时波前复原处理,光电工程,2004,31(3):1
    [205]蒋咏梅,陈严等,自适应光学波前实时处理机结构设计,国防科技大学学报,1996,18(3):90
    [206]波恩,沃尔夫著,杨葭荪译,光学原理(第七版),北京:电子工业出版社,2007
    [207]郁道银,谈恒英著,工程光学,北京:机械工业出版社,2006
    [208] M. C. Roggemann, B.Welsh, Imaging through turbulence, CRC Press. New York, 1996
    [209] R. J. Noll, Zernike polynomials and atmospheric turbulence, J. Opt. Soc. Am. A., 1977, 67(8): 1065
    [210] N. Roddier, Atmospheric wavefront simulation using Zernike polynomials, Optical Engineering, 1990, 29(10):1174
    [211]吕百达,高能激光的传输与控制,北京:国防工业出版社,1999
    [212]杜祥琬,实际高能激光远场靶面上光束质量的评价因素,中国激光,1997,24(4):327
    [213] A. E. Siegman, New development in laser resonators, Proc. SPIE 1990, 1224: 1
    [214]钱列加等,有关光束质量的若干基本问题及其新进展,中国激光,1994,21(12):981
    [215]鲜浩,姜文汉,波像差与光束质量的关系,中国激光,1999,26(5):415
    [216]胡诗杰,许冰等,HS波前传感器在测量光束质量因子M2中的应用,光电工程,2002,29(2):6
    [217]李新阳,鲜浩等,波像差与光束质量β因子的关系,中国激光,2005,32(6):799
    [218] J. W. Goodman著,秦克诚等译,傅立叶光学导论(第三版),北京:电子工业出版社,2006
    [219]杨桂通,弹塑性力学,北京:人民教育出版社,1980
    [220] S. Timoshenko, Theory of plates and shells, New York: McGraw-Hill, 1959
    [221]杜庆华主编,工程力学手册,北京:高等教育出版社,1994
    [222]饶学军,凌宁,姜文汉,用数字干涉仪测量变形镜影响函数的实验研究,光学学报,1995,15(1):1446
    [223] L. H. Huang, C. H. Rao, W. H. Jiang, Modified Gaussian influence function of deformable mirror actuators, Optics Express, 2008,16(1): 108
    [224] S. Moaveni著,欧阳宇等译,有限元分析-ANSYS理论与应用,北京:电子工业出版社,2003
    [225] ALGOR-现代CAE技术(技术资料),北京英吉泰科工程技术有限公司,2005
    [226]曾志革,激光束焦斑形态控制的技术研究,上海:中国科学院上海光学精密机械研究所博士学位论文,1996
    [227]丁心志,变形反射镜拟合残余误差分析研究,成都:中国科学院光电技术研究所硕士学位论文,2007
    [228]张林波,任戈等,大口径望远镜结构的有限元分析,光学技术,2003,29(5):565
    [229]张耀平,许鸿等,变形镜薄膜应力与元件变形有限元研究,光电工程,2005,32(8):28
    [230]吴毅,王英俭,龚知本,变形镜波前校正非线性响应剩余位相方差分析,光学学报,1995,15(8):1028
    [231]凌宁,自适应光学波前校正器,光学技术,1998,3:12
    [232]易大义,蒋叔豪等著,数值方法,杭州:浙江科学技术出版社,1987
    [233]绍力,鲜浩,变形镜参数变化对湍流像差校正效果的影响,光电工程,2004,31(5):7
    [234] J. E. Harvey, G. M. Callahan, Wavefront error compensation capabilities of multi-actuator deformable mirrors, Proc. SPIE 1978, 141:50
    [235] R. K. Tyson, Using the deformable mirror as a spatial filter: application to circular beams , Applied Optics, 1982, 21(5): 787
    [236] W. H. Jiang, N. Ling, X. J. Rao, et al., Fitting capability of deformable mirror, Proc. SPIE 1991, 1542: 130
    [237]杨华峰,刘桂林等,变形镜波前补偿能力的空间频域分析,强激光与粒子束,2007,19(11):1845
    [238] M. A. Ealey, Active and Adaptive optical components: the technology and future trends, Proc. SPIE 1991, 1543: 2
    [239] J. T. Salmon, J. W. Bergum, et al., Wavefront correction system based on an equilateral arrangement of actuators, Proc. SPIE 1993, 1920: 20
    [240] S. K. Katsikas, D. Tsahalis, et al., A genetic algorithm for active noise control actuator positioning, Mechanical Systems and Signal Processing 1995, 9(6): 697
    [241] X. Bozec, J. L. Carel, et al., Optimization methods aimed at designing a force control active mirror II: actuator pattern optimization”, Proc. SPIE 1997, 3126: 366
    [242]杨强,曹根瑞,13单元双压电晶片变形镜控制电极的优化设计,光学技术,1996,5:15
    [243] H. F. Yang, C. H. Rao, et al., Designing the actuator distribution of DM based on SPGD optimization, Proc. SPIE 2007, 6722: 67222C
    [244] J. porter, A. Guirao, et al., Monochromatic aberration of the human eye in a large population, J. Opt. Soc. Am. A., 2001, 18(8): 1793
    [245]卢险峰,最优化方法应用基础,上海:同济大学出版社,2003
    [246]李民强,寇纪淞,林丹等,遗传算法的基本理论与应用,北京:科学出版社,2002
    [247]康立山,谢云,尤矢勇等,非数值并行算法-模拟退火算法,北京:科学出版社,2003
    [248]杨慧珍,李新阳,姜文汉,自适应光学技术在大气光通信系统中的应用进展,激光与光电子学进展,2007,44(10):61
    [249]胡朝晖,姜文汉,波前校正器和波前传感器的匹配,强激光与粒子束,1996,8(3):327
    [250] J. C. Spall, An overview of the simultaneous perturbation method for efficient optimization, JOHNS HOPKINS APL TECHNICAL DIGEST, 1998,19(4) :482
    [251] M. A. Vorontsov, G. W. Carhart, et al., Adaptive optics based on analog parallel stochasticoptimization: analysis and experimental demonstration, J. Opt. Soc. Am. A, 2000, 17(8): 1440
    [252] M. A. Vorontsov, G.W.Carhart, D. V. Pruidze, Adaptive imaging system for phase-distorted extended source/multiple distance objects, Appled Optics, 1997, 36: 3319
    [253] R. El-Agmy, H. Bulte, et al., Adaptive beam profile control using a simulated annealing algorithm, Optics Express, 2005, 13(16): 6085
    [254] R. Mukai, K. Wilson, V. Vilnrotter, Application of genetic and gradient descent algorithms to wave-front compensation for the deep-space optical communications receiver, The Interplanetary Network Progress Report, 42:161,Jet Propulsion Laboratory, Pasadena, California, May 15,2005
    [255] Ping Yang, Mingwu Ao, et al., Intracavity transverse modes control by an genetic algorithm based on Zernike mode coefficients, Optics Express, 2007,15:17051
    [256] M. S. Zakynthinaki, Y. G. Saridakis, Stochastic optimization for adaptive real-time wave-front correction, Numerical Algorithms, 2003, 33: 509
    [257] L. P. Murray, J. C. Dainty, L. Daly, Wavefront correction through image sharpness maximization, Proc. SPIE 2005, 5823: 40
    [258] A. J. Masino, D. J. Link, Adaptive optics without a wavefront sensor,Proc. SPIE 2005, 58950T-1
    [259]杨慧珍,李新阳,姜文汉,自适应光学系统随机并行梯度下降控制算法仿真与分析,光学学报,2007,27(8): 1355
    [260] M. A. Vorontsov, V. P. Sivokon, Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction, J. Opt. Soc. Am. A, 1998, 15(10): 2745
    [261] G. Cauwenbergerghs,A fast stochastic error-decent algorithm for supervised learning and optimization, in Advances in Neural Information Processing Systems, 1993 5:244 (SanMateo, CA: Morgan Kaufman Publishers)
    [262] R. H. Webb, M. J. Albanese, et al., Stroke amplifier for deformable mirrors, Applied Optics, 2004, 43(28): 5330
    [263] H. F. Yang, G. L. Liu, et al., Combinational-deformable-mirror adaptive optics system for compensation of high-order modes of wavefront, Chinese optics letters, 2007, 5(8): 435
    [264]刘桂林,基于共轭的组合变形镜的研究,成都:中国科学院光电技术研究所硕士学位论文,2007
    [265] L. T. Sachtleben, Extending the content and expanding the usefulness of the simple Gaussian Lens Equations, RCA Rev., 1978, 39:340
    [266] http://www.aor.com/
    [267] E. Gendron, Modal control optimization in an adaptive optics system, ICO-16 satellite conference on active and adaptive optics, 1993, 186
    [268] J. P. Gaffard, P. Gosselin, G. Ledanois, Adaptive optics: choices and optimizations, Proc. SPIE 1993, 1920: 29
    [269]严海星,陈涉等,自适应光学系统的模式法数值模拟,光学学报,1998,18(1):103
    [270]李新阳,姜文汉,自适应光学系统的最优斜率复原算法,光学学报,2003,23(6):756
    [271]陈善球,许冰等,直接斜率法复原矩阵误差分析,光电工程,2007,34(2):5
    [272]严海星,张德良,李树山,自适应光学系统的数值模拟:直接斜率控制法,光学学报,1997,17(6):758
    [273]李新阳,王春红等,直接斜率波前复原算法的控制效果分析,光电工程,1998,25(12):9
    [274] 6208/6216 Series Multi-channel Analog Output Cards User’s Guide, 2000, ADLINK Technology Inc.
    [275] G. L. Liu, H. F. Yang, et al., Experimental verification of combinational deformable mirror for phase correction, Chinese optics letters, 2007, 5(10): 559

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700