用户名: 密码: 验证码:
全光路像差校正自适应光学技术和双变形镜自适应光学技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对全光路像差校正自适应光学技术和双变形镜自适应光学技术两方面作了全面而系统的理论研究和实验验证。
     自适应光学对光束大气传输波前畸变校正时,要求系统必须能同时校正激光束自身像差和大气湍流扰动造成的像差,并且能够同时有效地克服出射系统的制造误差、重力变形、光学元件工作过程的受热变形以及光路内部气体扰动的影响,得到接近衍射极限的输出激光光束。常规自适应光学系统仅能有针对性地校正其中一部分,而全光路像差校正自适应光学系统可以实现全光路像差的探测与校正。全光路像差校正自适应光学技术与常规自适应光学技术相比,不仅具有全光路像差校正的特点,而且可以提高系统的集成性和可靠性。
     论文首先阐述了光波在介质中的传播规律,然后在此基础上,详细推导了全光路像差校正自适应光学系统的工作过程,明确了出射信标经全系统校正后,到达目标的是角锥棱镜阵列本身像差的远场光斑,这个像差是系统的原理性误差。随后,提出了一套波前校正器全光路像差校正自适应光学系统和两套波前校正器全光路像差校正自适应光学系统的两种工作方式,它们分别是:“使用两束标准平行光分别标定共模哈特曼传感器”和“使用两种信标光之一的标准光标定共模哈特曼传感器”。在“使用两束标准平行光分别标定共模哈特曼传感器”工作方式中,全系统校正后到达目标的远场光斑与标定光的光束质量相关,在“使用两种信标光之一的标准光标定共模哈特曼传感器”工作方式中,全系统校正后到达目标的远场光斑与角锥棱镜阵列本身的像差相关。然后根据两种工作方式标定哈特曼传感器的繁简程度,认为“使用两束标准平行光分别标定共模哈特曼传感器”是一种耗时且耗力的工作方式,“使用两种信标光之一的标准光标定共模哈特曼传感器”可以在系统光路中随时对其标定,是一种节省时间的优选工作方式。因为全系统校正后的残差与角锥棱镜阵列的像差有关,所以论文对角锥棱镜阵列的像差进行了相应分析,认为影响角锥棱镜阵列像差的主要因素是综合角误差,这种综合角误差将导致角锥棱镜阵列像差的高阶化,因此控制单个角锥棱镜的综合角误差是减少角锥棱镜阵列像差的关键因素。论文从仿真和实验的角度,验证了对于0.6328μm波长的系统,单个角锥棱镜的综合角误差在1″左右时,角锥棱镜阵列的像差可以忽略不计。论文还分析了角锥棱镜阵列与哈特曼传感器的误差匹配问题,认为角锥棱镜阵列与哈特曼传感器必须严格对准,才能保证哈特曼传感器探测的准确性,从而保证系统校正的有效性。
     除此之外,论文还从工程应用的角度,分析了一套波前校正器全光路像差校正自适应光学系统和两套波前校正器全光路像差校正自适应光学系统采用的数据融合方法,前者可以采用直接斜率数据差分融合方法,后者可以采用把两套波前校正器探测的像差各自交给两套波前校正器校正的方法,不需要进行数据差分融合。最后成功实现了全光路像差校正自适应光学系统的室内闭环实验。
     论文研究的另一方面是双变形镜自适应光学技术。目前,在功率不断提高的激光器、天文观测、人眼像差校正、惯性约束聚变(Inertial Confinement Fusion)等领域,自适应光学要校正的像差可能同时包含大尺度低阶像差和小尺度高阶像差。这些像差对变形反射镜提出了较高要求,要求变形反射镜需要同时具有大行程和高空间频率两个特征。但是由于变形镜加工工艺等原因造成的物理限制,要求同一个变形镜同时具有较大行程和高空间频率是非常苛刻的要求。因此论文采用了双变形镜自适应光学技术,即在一套自适应光学系统中,采用两个变形镜对待校正像差进行校正,其中的一个变形镜是大行程低空间频率变形反射镜,另一个是高空间频率变形反射镜。
     但是由于系统中存在的两个变形反射镜均具有校正像差的功能,如果两个变形镜的解耦不好,可能造成校正过头或校正紊乱。因此论文提出了两种双变形镜的解耦算法,分别是分离模式系数校正算法和限定校正算法,论文对这两种校正算法均作了详细的理论推导和数值仿真;两种校正算法中,通过对离焦限定和像散限定的仿真,证明两个变形镜可以各司其职,大行程变形镜可以只校正大行程的低阶像差,高空间频率变形镜可以只校正除低阶像差以外的其他像差。最后,根据实际变形反射镜的驱动器由于材料和加工等原因造成的响应不一致,论文进一步作了详细的理论推导。最终用实验证明了系统中的两个变形反射镜可以按照期望分别校正大的低阶像差和相对较小的高阶像差,同时也验证了系统的校正效果,双变形镜自适应光学系统可以把大约10.6倍衍射极限的开环远场光斑校正到4.8倍衍射极限,这与采用双变形镜自适应光学系统中的高空间频率变形镜的常规自适应光学系统的校正效果相当。
The principle and workings of the adaptive optics system for all path aberration correction and the double deformable mirrors (DMs) adaptive optics system are studied theoretically, numerical simulation and experiment are also conducted in this dissertation.
     Adaptive Optics guarantees the beam quality of laser projecting system, atmospheric turbulence compensation, correction of any disturbance and fabrication error. But conventional adaptive optics system can only correction one of them. The adaptive optics system for all path aberration correction is the new way to fulfill the correction of them all.
     The adaptive optics system for all path aberration correction is a new direction of adaptive optics technology. Apart from the all path aberration correction, highly integration and reliability lie in this system. Based on the previous research, the principle, error resulting from the principle and workings of the adaptive optics system for all path aberration correction are deeply studied theoretically and experimentally.
     According to the theory of wavefront propagating in optics medium, the principle of the adaptive optics system for all-path aberration correction was analyzed in detail, and the principle error of this system was clear, which is that the aberration on aim is the aberration of the retroreflector array. Based on the principle and the principle error of this system, two kinds of workings of adaptive optics for all path aberration correction are proposed, one is calibraiting two wavefront sensors using two normal parallel beam respectively, the other is calibrating two wavefront sensors using one of two normal parallel beam. While using the first working, the farfield on aim is the aberration of the normal parallel beam after adaptive optics correct the aberration. While using the second working, the farfield on aim is the the abeeration of the retroreflector array after adaptive optics correct the aberration. According to the operation of two working, we think that the second wording is the best method.
     The residual error after the adaptive optics correct the aberration is connected with the aberration of the retroreflector array, so the aberration was analyzed in this dissertation. The main factor of aberration of the retroreflector array is the all angle error, which will make the aberration of the retroreflector array be high order. In order to reduce the aberrtion of the retroreflector array, we must control the all angle error of the single retroreflector. In this dissertation simulation and experiment of the aberration of the retroreflector array were achived. The result indicates while the all angle error of the single retroreflector is 1", the aberration of the retroreflector array can be neglected.
     Meanwhile the error matching between the retroreflector array and wavefront sensor was analyzed in this dissertation. In order to guarantee the precision of the wvefront sensor detecting wavefront and the effect of the system, the error must be zero between the retroreflector array and wavefront sensor.
     Then the data fusion methods for single wavefront corrector AO system and double wavefront correctors AO system are analyzed theoretically. The result indicates that the direction slope data fusion can be use in the single wavefront corrector AO system for all-path aberration correction, and the data fusion can not be use in two wavefront correctors AO system for all-path aberration correction. At last a close-loop experiment of the system is realized successfully.
     Now in many fields, such as high power laser, correction of aberration of human being’s eyes, and Inertial Confinement Fusion(ICF), large scale low order aberration and small scale high order aberration may lie in the aberration to be corrected by adaptive optics system simultaneously. This kind of aberration requires the deformable mirror in adaptive optics have large stroke and high spatial frequency simultaneously. But it is very difficult that the the deformable mirror in adaptive optics have large stroke and high spatial frequency simultaneously. So double DMs adaptive optics technology was proposed in this dissertation, in which one DM’s stroke is large and another’s spatial frequency is high. Double DMs adaptive optics technology aims to correct the aberration with large scale low order aberration and small scale high order aberration simultaneously. It is not necessary that there are large stroke and high spatial frequency in single DM. Two kinds of decoupling algorithm of two DMs, that is separating model coefficient correction algorithm and confined correction algorithm, are presented. Two kinds of algorithms are deduced in detail, and numerical simulation is gived. Defocus limitation and astigmatism limitation in confined correction algorithm are simulated respectively. At last experiments were achived in this dissertation. The result indicates that two deformable mirrors can correct the large scale low order aberration and high order aberration respectively.
引文
[1]梁廷全.物理光学.北京:机械工业出版社,1983
    [2] F. Rodder. The effects of atmosphereic turbulence in optical astronomy. Progress in Optics,1981, 19(5): 281-376.
    [3] V. I. Tatarski.湍流大气中的光波传输理论.北京:科学出版社,1987.
    [4]周仁忠,阎吉祥.自适应光学理论.北京:北京理工大学出版社,1996
    [5] H. W. Babcock. The possibility of compensating astronomical seeing. Publ.Astron Soc.Pac., 1953, 65(7): 229-238
    [6] Special issue of the collected papers on adaptive optics. J.Opt.Soc.Am., 1977, 67(3): 322-330
    [7] J. W. Hardy. Active optics: A new technology for the control of light. Proc. IEEE, 1978, 66(6): 651-697
    [8]李新阳.《自适应光学系统模式复员算法和控制算法的优化研究》.中科院光电技术研究所博士学位论文,2000
    [9] R. K. Tyson. Principles of adaptive optics. San Diego USA: Academic Press Inc, 1991
    [10] Walter J. Wild, Lyapunov stabilitycriteria for zonal adaptive-optics systems, Optics Letters, 1998 , 23(8): 570-572
    [11] R. K. Tyson. Principles of adaptive optics. San Diego USA: Academic Press Inc, 1991
    [12]周仁忠,阎吉祥.自适应光学理论.北京:北京理工大学出版社,1996
    [13]凌宁.微位移驱动器.光学工程,1998,Vol.5: 39-43
    [14]姜文汉.自适应光学技术进展――1991年SPIE国际光学应用科学和工程讨论会综述.光电工程,1992,19(2): 50-60
    [15]李新阳,姜文汉.自适应光学控制系统的有效带宽分析.光学学报,1997, 17(9): 1697-1702
    [16]李新阳,姜文汉.自适应光学系统中的自适应控制算法研究.光学学报,2001,21(9): 283-289
    [17]胡朝晖,姜文汉.波前校正器和波前传感器的匹配.强激光与粒子束,1996, 8(8): 327-332
    [18]姜文汉,王春红. 61单元自适应光学系统.量子电子学报,1998,15(4): 193-199
    [19] Zhang Yudong, Ning Ling, Yang Zeping, Duan Haifeng, Jiao Shilong, Jiang Wenhan. Adaptive optical system for ICF application. SPIE, 2001, Vol. 4494: 96-103
    [20] R. K. Tyson. Adaptive optics engineering handbook. New York USA: Marcel Dekker Inc, 1999
    [21] G. Artzner. Microlens arrays for Shack-Hartmann wavefront sensors. Optical Engineering, 1992, 31(8): 1311-1322
    [22] Marcos A. Van Dam, Richard G. Lane. wave-front slope estimation. J. Opt. Soc. Am. A, 2000 , 17(6): 1319-1324
    [23] Jiang Wenhan, et al.. A 37 element adaptive Optics system with H-S wavefront sensor. Proc. ICO-16 Satellite Conference On Active and Adaptive Optics, ESO Conference and Workshop, 1993, Vol. 48: 127-134 [ 24 ]Lihuagui, Jiang wenhan . Atmospheric turbulence parameter measurement using Hartmann-Shack wavefront sensor[A]. ESO Pro[C], 1993, Vol.48: 21-28
    [25] G. Lane, M. Tallon.Wave-front reconstruction using a Shack-Hartmann sensor,.Applied Optics, 1992, 31(9): 6902-6908
    [26] David Dayton, Bob Pierson, Brian Spielbusch, John Gonglewski, Atmospheric structure function measurements with a Shack - Hartmann wave-front sensor, Optics Letters, 1992, 17(7): 1737-1739
    [27] Richard Zacharias, Erlan Bliss, et. al..The National Ignition Facility(NIF) wavefront Control System.SPIE ,1998, Vol. 3492: 678-691
    [28] H. Baumhacker, G. Pretzler, K.J. Witte, M. Hegelich, M. Kaluza, et al. Correction of phase and amplitude modulations by two deformable mirrors in a multistage Ti:sapphire laser. Optics Letters, 2002, 27(6): 1570-1572
    [29] Nathan Doble, Geunyoung Yoon, Li Chen, Paul Bierden, Ben Singer, Scott Oliver, David R. Williams. Use of a microelectromechanical mirror for adaptive optics in the human eye, Optics Letters, 2002, 27(8): 1537-1539
    [30] Austin Roorda, Fernando Romero-Borja, William J. Donnelly III, Hope Queener. Adaptive optics scanning laser ophthalmoscopy. Optics Express, 2002, 10(9): 405-412
    [31] B. Martin Levine, Elizabeth A. Martinsen, Allan Wirth, et al. Horizontal Line-of-Sight Turbulence Over Near-Ground Paths and Implications for Adaptive Optics Corrections in Laser Communications. Applied Optics, 1998, 37(4): 4553-4560
    [32] G. Vdovin, P. M. Sarro, F. Gonte, et al., Recent progress in technology and applications of membrane micromachined deformable mirrors, SPIE, 1999, Vol.3760: 2-11
    [33]周仁忠.《自适应光学》.北京:国防工业出版社,1996
    [34] R. lludgin. Wavefront compensation error due to finite corrector-element size. J. Opt. Soc. Am. A, 1977, 67(5): 393-399
    [35] Wenhan Jiang, Ning Ling, Xuejun Rao, et al. Fitting capability of deformable mirror. SPIE, 1991, Vol.1542: 130-137
    [36] P. C. McGuie, T. A. Rhoadarmer. Construction and testing of the wavefront sensor camera for the new MMT adaptive optics system, Part of the SPIE conference on adaptive optics system and technology. Dener, Colorado, SPIE, 1999, Vol.3762: 269-282
    [37] Enrique J. Fernandez, Pablo Artal. Membrane deformable mirror for adaptive optics: performance limits in visual optics. Optics Express, 2003, 11(10): 1056-1069
    [38] R. Dou, M. K. Gile. losed-loop adaptive optics systems with a liquid crystal television as phase retarder. Optics Letter, 1995, 20(7): 1583-1585
    [39] David. C. Dyton, Stephen L.Browne. Theory and laboratory demonstrations on the use of a nematics liquid crystal phase modulator for controlled turbulence generation and adaptive optics. Applied Optics, 1998, 37(9): 5579-5584
    [40]宋正方.应用大气光学基础-光波在大气中的传输与遥感应用.北京:气象出版社,1990
    [41] S. R. Robinson, Editor. The infrared&electro-optical systems handbook, Volume 8, Emerging systems and technologies. Copublished by Infrared Information Analysis Center in Michigan and SPIE Optical Engineering Press in Washington USA.1993
    [42] Guangming Dai. Theoretical studies and computer simulations of post-dection atmospheric turbulence compensation. Lund Observatory, Lund University, Sweden, 1995
    [43] J. W. Hardy. Real-time wavefront correction system. U.S.Patent3, 923,400,1975
    [44] D. P. Greenwood, C. A. Primmerman. Adaptive optics research at Lincoln Laboratory. The Lincoln Laboratory Journal, 1992, 5(1):3-24
    [45] F. Merkle and N. Hubin. Adaptive Optics for the Euiropean very large telescope. Proc. SPIE, 1991,Vol. 1542: 283-292
    [46] C. Boyer, V. Michon, G. Rousset. Adaptive optics: Interaction matrix measurements and real time control algorithm for the COME-ON project. Proc.SPIE, Vol.1237: 64-72
    [47] Elise Viard, Miska Le Louarn, Norbert Hubin. Adaptive optics with four laser guide stars: correction of the cone effect in large telescopes. Applied optics,2002, 41(1): 11-20
    [48] Bonaccini, D. Prieto, E. Corporon, et. al.. Performance of the ESO AO system. ADONIS, at theLa Silla 3.6-m telescope. SPIE, 1997, Vol. 3126: 589-594
    [49] Arsenault Robin, Salmon Derrick A., Kerr John M., et. al.. PUEO: the Canada- France-Hawaii Telescope adaptive optics bonnette I: system description. SPIE, 1994, Vol. 2201: 833-843
    [50] Rigaut, Francois J. Arsenault, Robin, Kerr John M., et. al.. Canada-France-Hawaii Telescope adaptive optics bonnette II: simulations and control. SPIE, 1994, Vol. 2201: 149-160
    [51] Wizinowich Peter L., Nelson Jerry E., Mast Terry S., Gleckler Anthony D., W.M. Keck. Observatory adaptive optics program. SPIE, 1994, Vol. 2201: 22-33
    [52] Saddlemyer Leslie K., Herriot Glen, Veran Jean-Pierre. Design and current status of the reconstructor for Altair: the Gemini North adaptive optics system. SPIE, 2000, Vol. 4007: 649-658
    [53] Gaessler, Wolfgang, Takami Hideki, Takato Naruhisa, et. al.. First results from the Subaru AO system. SPIE, 2002, Vol. 4494: 30-40
    [54] Ageorges Nancy, Lenzen Rainer, Hartung Markus, Brandner Wolfgang. Polarization with adaptive optics at ESO Very Large Telescope. SPIE, 2003, Vol. 4843: 212-222
    [55] A. V. Gontcharov, M. Owner-Petersen. Multiconjugate adaptive optics for the Swedish ELT. Proc. SPIE, 2000, Vol.4004: 309-395
    [56] Alexander V. Goncharov, mette Owner-Petersen, Torben Andersen. Adaptive optics schemes for future extremely large telescopes. Opt. Eng. , 2002, 41(4): 1065-1072
    [57] D. P. Greenwood, C. A. Primmerman. Adaptive optics research at Lincoln Laboratory. The Lincoln Laboratory Journal, 1992, Vol. 5: 3-24
    [58]张强.《氧碘化学激光器光束净化》.四川大学博士学位论文.
    [59] P. J. Lena. Astrophsical results with the Come-on Adaptive Optics System. Proc. SPIE,1994, Vol.2201: 1099-1109
    [60] J. W. Hardy. Active Optics: a progress review. SPIE, 1991, Vol.1542: 2-17
    [61] J. Thaddeus Salmon et al.. Real time wave-front correction system using a zonal deformable mirror and a Hartmann sensor. SPIE, 1991, Vol.1542: 459-467
    [62] Kenneth W. Billman. Airborne Laser System Common Path/Common Mode Design Approach. SPIE ,1999, Vol.3706: 196-203
    [63]侯静,姜文汉,凌宁.角锥棱镜阵列作为伪相位共轭器件的保真度分析.强激光与粒子束, 2001, 13(3): 287-290
    [64]侯静,姜文汉,凌宁.赝相位共轭器件在共光路/共模块自适应光学系统中的应用分析.光学学报,2001, 21(11): 1326-1330
    [65]侯静.自适应光学波前探测新概念研究[D],国防科学技术大学博士学位论文,2002
    [66]侯静,姜文汉,凌宁.共光路/共模块自适应光学数据融合方法.光学学报, 2004, 24(1): 131-136
    [67]姜文汉.光电技术研究所的自适应光学技术.光电工程, 1995,22(3): 1-13
    [68]中科院光电技术研究所自适应光学技术专辑(上、下),光电工程,1995,Vol. 22
    [69]姜文汉.光电技术研究所的自适应光学技术.光电工程, 1995,22(1): 1-13
    [70]凌宁,官春林.变形镜的发展.国家高技术计划信息领域信息获取与处理技术主体十周年汇报――自适应光学望远镜技术,1996,182~190
    [71]鲜浩等.用Hartmann-Shack传感器测量激光光束的波前相位.光电工程, 1995, 22(4) : 46-49
    [72] Billman K W, Airborne laser system common path/common mode design approach. Proc. SPIE, 1999, Vol.3706: 196-203
    [73] Harold Schall, Andy Myers, David Weight, Ken Billman and Sal Cusumano. In-flight Calibration of an Airborne Wavefront Control Subsystem. Proc. SPIE, 1999, Vol.4034: 196-203
    [74]姜文汉.光电技术研究所的自适应光学技术.光电工程, 1995,22(3): 1-13
    [75]侯静,姜文汉,凌宁.角锥棱镜阵列作为伪相位共轭器件的保真度分析.强激光与粒子束, 2001, 13(3): 287-290
    [76]侯静,姜文汉,凌宁.赝相位共轭器件在共光路/共模块自适应光学系统中的应用分析.光学学报,2001, 21(11): 1326-1330
    [77]侯静.自适应光学波前探测新概念研究[D].国防科学技术大学博士学位论文,2002
    [78]侯静,姜文汉,凌宁.共光路/共模块自适应光学数据融合方法.光学学报, 2004, 24(1): 131-136
    [79]侯静,姜文汉,凌宁.两种自适应光学系统中哈特曼波前传感器与变形镜的对准误差.光学学报,2003,23(6): 750-755
    [80] Jing Hou. Time-sharing wavefront-sensing adaptive optics. J.Opt.Soc.Am.A, 2004, 21(4): 224-230
    [81] Michael C. Roggemann and David J. Lee. Two-deformable-mirror concept for correcting scintillation efforts in laser beam projection through the turbulent atmosphere[J]. Applied Optics, 1998, 37(12):4577-4585
    [82] Jeffrey D. Barchers. Close-loop stable control of two deformable mirrors for compensation ofamplitude and phase fluctuations. J.Opt. Soc.Am.A, 2002, 19(6):926-945
    [83]李有宽,陈栋泉,杜祥琬.双变形镜自适应光学全场补偿模拟.强激光与粒子束,2000, 12(6):665-669
    [84]李有宽,杜祥琬,陈栋泉.信标光波长对全场补偿的影响.强激光与粒子束,2001,13(7):541-544
    [85] V. P. Sivokon, M. A. Vorontsow. High-resolution adaptive phase disturtion suppression based solely on intensity information. J.Opt.Soc.Am.(A), 1998, 15(3): 234-247
    [86]李新阳,姜文汉.两个自适应光学系统串联校正的控制性能分析.光学学报,2001, 21(8): 1059-1064
    [87] Shijie Hu , Bing Xu , Xuejun Zhang, Wenhan Jiang, et al. Double Deformable Mirrors Adaptive Optics Sysetem for Phase Compensation. Applied Optics, 2006, 45(12): 2638-2642
    [88]胡诗杰,许冰,吴健等.自适应光学系统中双变形镜解耦控制分离研究.光学学报,2005, 25(12):1687-1692
    [89] R. Conan, P. Hampton, C. Bradley, O. Keskin. The Woofer-Tweeter Experiment. SPIE, Vol.6272: 62721V-1- 62721V-10
    [90] Thomas Berkefeld, Andreas Glindemann, Stefan Hippler. Multi-conjugate adaptive optics with two deformable mirrors-requirements and performance.
    [91]激光加工应用的聚焦透镜.激光与光电子学进展,1999,3(3):32~34
    [92]杨苏庆,周骥平.激光切割板材的关键技术.机械制造与研究, 36(3):68-70
    [93]刘强,段正澄等.激光束聚焦特性与切割质量关系的研究.华中理工大学学报,Vol.20(增刊):55-59
    [94] Billman K W, Airborne laser system common path/common mode design approach. Proc. SPIE, 1999, Vol.3706: 196-203
    [95] Harold Schall, Andy Myers, David Weight, Ken Billman and Sal Cusumano. In-flight Calibration of an Airborne Wavefront Control Subsystem. Proc. SPIE, 1999, Vol.4034: 196-203
    [96]姜文汉.光电技术研究所的自适应光学技术.光电工程,1995,22(1): 1-13
    [97]侯静,姜文汉,凌宁.角反射器阵列作为伪相位共轭器件的保真度分析.强激光与粒子束, 2001, 13(3): 287-290
    [98]侯静,姜文汉,凌宁.赝相位共轭器件在共光路/共模块自适应光学系统中的应用分析.光学学报,2001, 21(11): 1326-1330
    [99]侯静.自适应光学波前探测新概念研究[D].国防科学技术大学博士学位论文,2002
    [100]侯静,姜文汉,凌宁.共光路/共模块自适应光学数据融合方法.光学学报, 2004, 24(1): 131-136
    [101]侯静,姜文汉,凌宁.两种自适应光学系统中哈特曼波前传感器与变形镜的对准误差.光学学报,2003,23(6): 750-755
    [102] Jing Hou. Time-sharing wavefront-sensing adaptive optics. J.Opt.Soc.Am.A, 2004, 21(4): 224-230
    [103] Stephen F.Jacobs. Experiments with retrodirective array[J]. Optical Engineering. 1982 .21(5): 281-283 [ 104 ] Chipman R A, Shamir J. Wavefront correcting properties of corner-cube arrays[J]. Applied.Optics., 1988, 27(8): 3203-3209
    [105]李华贵.动态Hartmann法波前误差测量及计算机校正:[硕士学位论文].成都:中科院光电所,1990
    [106] Wenhan Jiang, Huagui Li. Hartmann-Shack wavefront sensint and wavefront control algorithm. SPIE, 1990, Vol.1271: 82-89
    [107] J. Herrmann. Least-squres wavefront errors of minimum morm. J.Opt.Soc.Am.A., 1980, 70(1): 283-289
    [108]鲜浩,李华贵,姜文汉,吴旭斌.用Hartmann-Shack传感器测量激光光束的波前相位.光电工程, 1995, 22(1): 46-49
    [109]李华贵.动态Hartmann法波前误差测量及计算机校正:[硕士学位论文].成都:中科院光电所,1990
    [110] Wenhan Jiang, Huagui Li, Hartmann-Shack wavefront sensint and wavefront control algorithm, Proc. SPIE, 1990, Vol.1271:82-88 [ 111 ] Huagui Li, Wenhan Jiang. Atmospheric turbulence parameter measurement using Hartmann-Shack wavefront sensor[A]. ESO Pro[C], 1993, Vol.48:21-28
    [112]周仁忠,阎吉祥.自适应光学.国防工业出版社[M],1996,435-440
    [113]胡东霞,张小民,景峰等.用角椎棱镜阵列抑制低频波前畸变[J].强激光与粒子束,2003, 15(4): 1057-1060
    [114] Jiang Wenhan,Xinhao,Shenfeng. Detecting error of Shack-Hartman wavefront sensor. SPIE Proc.,San Diego, 1997, Vol.3126: 534-544
    [115]沈峰,姜文汉.夏克-哈特曼波前传感器的波前相位探测误差.光学学报,2000, 20(4):666-671
    [116] Johannes Pfund, Norbert Lindlein, Johannes Schwider. Misalignment effects of the Shack-Hartmann sensor. Applied Optics, 1998, 37(2):1256-1261
    [117]胡诗杰,陈善球,杨平等.角椎棱镜阵列对波前传感器探测精度影响研究.第十七届全国激光学术会议,中国激光,2006, 33 (增刊):. 369-372
    [118]激光技术手册
    [119]侯静.自适应光学波前探测新概念研究[D].国防科学技术大学博士学位论文,2002
    [120]侯静,姜文汉,凌宁.角反射器阵列作为伪相位共轭器件的保真度分析.强激光与粒子束, 2001, 13(3): 287-290
    [121]侯静,姜文汉,凌宁.赝相位共轭器件在共光路/共模块自适应光学系统中的应用分析.光学学报,2001, 21(11): 1326-1330
    [122] Jeffrey D. Barchers. Close-loop stable control of two deformable mirrors for compensation of amplitude and phase fluctuations. J.Opt. Soc.Am.A, 2002, 19(8):926-945
    [123]李有宽,陈栋泉,杜祥琬.双变形镜自适应光学全场补偿模拟.强激光与粒子束,2000, 12(6):665-669
    [124]李有宽,杜祥琬,陈栋泉.信标光波长对全场补偿的影响.强激光与粒子束,2001,13(7):541-544
    [125] V. P. Sivokon, M. A. Vorontsow. High-resolution adaptive phase disturtion suppression based solely on intensity information. J.Opt.Soc.Am.(A), 1998, 15(5): 234-247
    [126]李新阳,姜文汉.两个自适应光学系统串联校正的控制性能分析.光学学报,2001, 21(9): 1059-1064
    [127] R. Conan, P. Hampton, C.Bradley, O.Keskin. The Woofer-Tweeter Experiment. SPIE, Vol.6272:62721V-1- 62721V-10
    [128] Shijie Hu , Bing Xu , Xuejun Zhang, et al. Wenhan Jiang, Double Deformable Mirrors Adaptive Optics Sysetem for Phase Compensation. Applied Optics, 2006, 45(12): 2638-2642
    [129]胡诗杰,许冰,吴健等.自适应光学系统中双变形镜解耦控制分离研究.光学学报,2005, 25(12):1687-1692
    [130] Thomas Berkefeld, Andreas Glindemann, Stefan Hippler. Multi-conjugate adaptive optics with two deformable mirrors-requirements and performance.
    [131]姜文汉,王春红. 61单元自适应光学系统.量子电子学报,1998, 15(3):193-199
    [132] Guangming Dai. Modal compensation of atmospheric turbulence with the use of Zernikepolynomials and Karhunen-Loeve function. J. Opt. Soc. Am. A, 1995, 12(10): 2182-2193. [ 133 ] N. Roddier. Atmospheric wavefront simulation using Zernike polynomials. Optical Engineering, 1990, 29(10): 1174-1180.
    [134] J. Herrmann. Least-squres wavefront errors of minimum morm. J.Opt.Soc.Am.A., 1980, 70(4):587~594
    [135]鲜浩,李华贵,姜文汉等.用Hartmann-Shack传感器测量激光光束的波前相位.光电工程,1995,22(3): 46-49
    [136]李华贵.动态Hartmann法波前误差测量及计算机校正:[硕士学位论文].成都:中科院光电所,1990
    [137] Wenhan Jiang, Huagui Li. Hartmann-Shack wavefront sensint and wavefront control algorithm. Proc. SPIE, 1990, Vol.1271:82-89
    [138]侯静,姜文汉,凌宁.斯特列尔比的特性曲线分析.光学学报,2001,21(10):1065-1067
    [139]胡诗杰,陈善球,杨平等.波前校正器解耦分离方法研究.第八届全国激光科学技术青年学术交流会,2005
    [140] Shijie Hu , Bing Xu , Xuejun Zhang, Wenhan Jiang, et al. Double Deformable Mirrors Adaptive Optics Sysetem for Phase Compensation. Applied Optics, 2006, 45(12): 2638-2642
    [141]胡诗杰,许冰,吴健等.自适应光学系统中双变形镜解耦控制分离研究.光学学报,2005, 25(12):1687-1692
    [142] Guangming Dai. Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen-Loeve function. J. Opt. Soc. Am. A, 1995, 12(12):2182-2193 [ 143 ] Guangming Dai. Modal wavefront reconstruction with Zernike polynomials and Karhunen-Loeve function. J. Opt. Soc. Am. A, 1996, 13(10):1218-1225
    [144] Shijie Hu, Shanqiu Chen, Bing Xu, et al. Experiment of Double Deformable Mirrors Adaptive Optics System for Phase Compensation. Proc. Of SPIE, 2007, Vol.6467: 64670K-1-64670K-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700