用户名: 密码: 验证码:
抗虫基因植物表达载体构建、遗传转化及表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在王彦平构建的植物表达载体基础上构建Bt抗虫基因表达载体,并转化烟草,对Bt基因表达水平进行检测。试验进一步以普通741杨和转双抗虫基因pB29无菌苗为试验材料,建立了叶片再生体系并对农杆菌介导的遗传转化体系进行了优化。通过农杆菌介导法将Bt cry3A (Bt3)基因转入已含Bt cry1A(c) (Bt1)基因的pB29中,获得转双Bt基因741毛白杨,对部分转化植株进行了DNA水平和蛋白质水平的检测。主要研究结果如下:
     利用植物表达载体pCAMBIA1305-Bt1-Bt3、pCAMBIA1305-Bt1和pCAMBIA1305-Bt3,通过DNA重组技术,分别将Bt1和Bt3基因正向插入植物表达载体pCAMBIA3301中,成功构建了pCAMBIA3301-Bt1、pCAMBIA3301-Bt3植物表达载体。此可读框架通过组成型启动子CaMV35S启动,携带PPT乙酰基转移酶(PAT)基因作为选择标记基因,并将构建的表达载体导入根癌农杆菌EHA105。
     确定烟草转化的潮霉素临界筛选浓度为50 mg.L-l,头孢噻肟钠的抑菌浓度为200 mg.L-l。采用农杆菌介导法,将植物表达载体载体pCAMBIA1305-Bt1-Bt3、pCAMBIA1305-Bt1和pCAMBIA1305-Bt3及构建的植物表达载体pCAMBIA3301-Bt1、pCAMBIA3301-Bt3转入烟草中,均得到完整再生植株。经PCR检测,初步证明目的基因已整合到烟草的基因组中。ELISA检测表明,大部分转基因株系中Bt1和Bt3毒蛋白表达量均高于对照。在5株携带双价Bt基因的转基因烟草中,Bt1毒蛋白和Bt3毒蛋白的表达量最高分别达0.030 1%和0.293 8%。
     对农杆菌介导的741杨遗传转化体系进行了优化,确定叶片诱导分化不定芽的适宜培养基为MS+ 6-BA 1.0 mg.L-l + NAA 0.1 mg.L-l,生根培养基为1/2 MS+ NAA 0.1 mg.L-l。潮霉素临界筛选浓度为10 mg.L-l,抗生素头孢噻肟钠的抑菌浓度为400 mg.L-l。遗传转化的适宜菌液浓度为OD600 = 0.4,浸菌时间为8~10 min,共培养时间以2 d为宜。
     采用农杆菌介导法,将Bt3基因转入已转Bt1基因的杂种741毛白杨无性系pB29中,获得转双Bt基因741毛白杨。在含Hyg的培养基中进行多次继代筛选,获得抗性稳定的无性系9个,编号为pC1~pC9。
     采用特异引物分别对获得的转双Bt基因741杨无性系进行PCR检测,结果表明:Bt1基因稳定存在于pB29无性系中,Bt3基因已整合到各无性系的基因组DNA中。对杂种741毛白杨转化植株进行毒蛋白表达的ELISA检测,结果表明,所选转双价Bt基因的741杨的2个无性系pC1和pC2,均检测到Bt1和Bt3毒蛋白的表达。Bt1毒蛋白的表达量分别为0.009 4%和0.011 0%;Bt3毒蛋白的表达量分别为0.217 0%和0.149 4%,高于对照pB29及转单一Bt3基因的741杨无性系CC71的Bt3蛋白表达量(0.033 7%)。
On the base of the plant expression vectors constructed by Wang Y P, the plant expression vectors harboring Bt genes were constructed and transformed into tobacco using leaf-disk method. The Bt genes expression levels were tested. Selecting 741 poplar and pB29 clone as the experiment materials, the leaf regeneration systems were established and optimized the Agrobacterium tumefaciens mediated transformation system. Mediated by Agrobacterium tumefaciens, Bt cry3A (Bt3) gene was integrated into pB29 genome which have harbored Bt cry1A(c) (Bt1) gene already and transgenic 741 poplars with two Bt genes were obtained. Some transgenic plants were tested on DNA and protein levels. The main results were as follows:
     On the base of the plant expression vectors pCAMBIA1305-Bt1-Bt3, pCAMBIA1305-Bt1 and pCAMBIA1305-Bt3, using DNA recombination technology, the plant expression vector pCAMBIA3301-Bt1 fused Bt1 gene and the plant expression vector pCAMBIA3301-Bt3 fused Bt3 gene were separaterly constructed. Each gene was promoted with CaMV35S promoter, containing PAT gene as a selective marker. The plant expression vectors were transformed into EHA105.
     Hygromycin (Hyg) critical concentration was 50 mg.L-l and Cefotaxime (CTX) was 200 mg.L-l for the tobacco transformation. Mediated by Agrobacterium tumefaciens, using the plant expression vectors pCAMBIA1305-Bt1-Bt3, pCAMBIA1305-Bt1 and pCAMBIA1305-Bt3 and the plant expression vectors pCAMBIA3301-Bt1 and pCAMBIA3301-Bt3, the Bt genes were transformed into tobacco using leaf-disk method and the Hyg and PPT resistant plants have been regenerated. PCR detections indicated that Bt1 and Bt3 genes were integrated into the tobacco genome. ELISA analysis showed that in most of the transgenic tobacco plants the expression levels of Bt proteins were higher than the comparison. In five transformed Bt1-Bt3 genes tobacco plants, both Bt1 and Bt3 proteins expressed in three plants. The expression levels of Bt1 and Bt3 proteins were higher than that in the wild-type tobacco plant. The highest could be up to 0.030 1% and 0.293 8% of the leaf total soluble proteins, respectively.
     The leaf regeneration system of the 741 poplar was established and the Agrobacterium tumefaciens mediated transformation system was optimized. The shoot induction medium was MS+ 6-BA 1.0 mg.L-l + NAA 0.1 mg.L-l and the root induction medium was 1/2 MS+NAA 0.1 mg.L-l. Hygromycin (Hyg) critical concentration was 10 mg.L-l and Cefotaxime (CTX) 400 mg.L-l was a suitable concentration to control the propagation of Agrobacteria. Several crucial factors influencing the transformation efficiency were studied. It was found that OD600=0.4, infection of leaf explants for 8~10 min with Agrobacteria and cocultivation for 2 days after infection would befavorable for the transformation.
     Mediated by Agrobacterium tumefaciens, Bt3 gene was integrated into pB29 genome, which had already integrated Bt1 gene already, then transgenic 741 poplars with two Bt genes were obtained. Through several transformations and selections, 9 clones of transgenic 741 poplar with two Bt genes were obtained and the clone numbers were pC1~pC9.
     The results of PCR detection using special primers confirmed that Bt1 gene stably consisted in pB29 clones and Bt3 gene were integrated into the pB29 genome. ELISA analysis indicated that in the two clones pC1and pC2, both Bt1 and Bt3 proteins expressed. The expression levels of Bt1 protein were 0.009 4% and 0.011 0%, respectively. The expression levels of Bt3 proteins were 0.217 0% and 0.149 4%, higher than that of pB29 and that of the transformed single Bt3 gene 741 poplar clone CC71, of which the expression level of Bt3 protein was 0.033 7%.
引文
[1]苏仁芳,张晓东.转Bt基因作物存在的问题及其安全性[J].陕西农业科学,2008(2):99-102.
    [2]喻子牛,柯云,刘子铎,等.微生物农药在病虫害可持续控制中的应用及发展策略[M].北京:北京科学出版社,2000.
    [3]胡华刚,王慧,张凤清.几种植物抗虫基因研究进展[J].热带农业科技,2006,29(4):18-21.
    [4]吴刚,崔海瑞,舒庆尧,等. Bt杀虫晶体蛋白基因及其转基因育种研究进展[J].生物工程进展,2000,20(2):45-48.
    [5]赵玉艳,蔡磊明.转苏云金芽孢杆菌基因作物安全性研究[J].卫生毒理学杂志, 2004, 18(1):57-58.
    [6]张宏宇,李中奎,喻子牛.转苏云金杆菌杀虫晶体蛋白基因抗虫植物的研究进展与商品化[J].生物技术通报,1997,3:13-15.
    [7]张洪瑞,朱其松,高苓昌,等. Bt基因及其在转基因抗虫植物中的研究进展[J].河北农业科学, 2008,12(6):87-89.
    [8]袁胜亮,李明,周国娜,等.浅析抗虫基因种类及抗虫原理[J].安徽农业科学, 2007,35(31):9963-9964.
    [9]于德花,刘玉新,张明兴.利用转基因技术进行作物遗传改良的研究进展[J].安徽农业科学, 2007,35(11):3167-3171.
    [10] Hofte H,Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiol Rev, 1989,53(2):242-255.
    [11] Tailor R,Tippett J,Gibb G,et al. Identification and characterization of a novel Bacillus thuringiensis endotoxin entomocidal to coleopteran and lepidopteran larvae[J]. Mol Microbiol,1992, 6(9):1211-1217.
    [12] Feitelson J S,Payne J,Kim L. Bacillus Thuringiensis: insects and beyond[J]. Bio/Technology, 1992,10:271-275.
    [13] Schnepf H E,Whiteley H R. Cloning and expression of the Bacillus thuringiensis. Crystal protein gene in Escherichia coli [J]. Proc. Natl. Acad. Sci. USA,1981,78(5):2893-2897.
    [14]黄大昉,林敏.农业微生物基因工程[M].北京:中国科技出版社,2000. 417-485.
    [15] Kumar P A ,Sharma R P, Malik V S. The insecticidal Proteins of Bacillus thuringiensis[J]. Advances in Applied Microbiology,1997,42: 1-43.
    [16]李海涛,王洪成,刘志洋,等.Bt杀虫晶体蛋白的研究概述[J].黑龙江农业科学,2004,5:37-39.
    [17] Barton K A,Whiteley H R,Yang N S. Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidoptern insects[J]. Plant Physiology,1987,85:1103-1109.
    [18] Fishhoff D,Bondish K. Insect tolerant transgenic tomato plants[J]. Biotechnology, 1987, 5:807-813.
    [19] Hilder V A,Gatehouse A M R,Sheerman S E,et al. A novel mechanism of insect resistance engineered into tobacco[J]. Nature,1987,330:160-163.
    [20] Vaeck M. Transgenic plants protected from insect attack[J]. Nature,1987,328:33-37.
    [21] Perlak F J,Deaton R W,Armstrong T A,et al. Insect resistant cotton plants[J]. Bio /Technology,1990,8:939-942.
    [22]项友斌,梁竹青,高明尉,等.农杆菌介导的苏云金杆菌抗虫基因cryⅠAb和cryⅠAc在水稻中的遗传转化及蛋白表达[J].生物工程学报,1999,15(4):495-500.
    [23] Shu Q,Ye G,Cui H,et al. Transgenic rice plants with a synthetic cryⅠAb gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species[J]. Molecular Breeding, 2000,6(4):433-439.
    [24] Tu J,Zhang G.,Datta K,et al. Field performance of transgenic elite commercial hybrid rice expessing Bacillus thruingiensisδ-endotoxin [J]. Nature Biotechnology,2000,(18):1101-1104.
    [25]喻子牛,孙明,刘子铎,等.苏云金芽孢杆菌杀虫晶体蛋白及其基因的研究与应用[M].北京:农业出版社,1993. 170-179.
    [26]张洪瑞,朱其松,高苓昌,等. Bt基因及其在转基因抗虫植物中的研究进展[J].河北农业科学,2008,12(6):87-89.
    [27] James C. Executive summary of global status of commercialized biotech/GM Crop:2006. ISAAA Briefs No.35[R]. New York:Ithaca,2006.
    [28]卢美贞,崔海瑞,姚艳玲,等.影响苏云金芽孢杆菌基因在转基因植物中表达的因素[J].细胞生物学杂志,2005,27:509-513.
    [29] van Aarssen R, Soetaert P, Stam M,et al. cry IA(b) transcript formation in tobacco is inefficient[J]. Plant Mol Biol,1995,28(3):513-524.
    [30] Koziel M G,Beland G L,Bowman C,et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis[J]. Bio /technology, 1993,11:194-200.
    [31]汤慕瑾,袁美妗,陈建武,等.苏云金杆菌辅助蛋白P20对杀虫晶体蛋白Cry1Ab表达的影响[J].生物工程学报,2003,19(5):566-571.
    [32] Ge B,Bideshi D,Moar W J,et al. Differential effects of helper proteins encoded by the cry2A and cry11A operons on the formation of Cry2A inclusions in Bacillus thuringiensis. FEMS Microbiol Lett,1998,165:35-41.
    [33]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002.
    [34]王军辉,王念,张建国,等.转Bt基因植物中外源基因时空动态表达的研究现状[J].生物技术通报,2004,(2):1-4.
    [35]李汝忠,沈法富,王宗文,等.转Bt基因抗虫棉Bt基因表达的时空动态[J].山东农业科学,2002,(2):7-9.
    [36] Wu G,Gui H,Xia Y,et al. Inheritance and expression of the cry1Ab gene in Bt ( Bacillus thuringiensis) transgenic rice[J]. Theor Appl Genet,2002,104(4):727-734.
    [37] Sachs E S,Benedict J H,Stelly D M,et al. Expression and segregation of genes encoding CryIA insecticidal proteins in Cotton[J]. Crop Sci,1998,38:1-11.
    [38]王家宝,王留明,沈法富,等.环境因素对转Bt基因棉Bt杀虫蛋白表达量的影响[J].山东农业科学,2000,6:4-6.
    [39]耿军义,张香云,王兆晓,等. Bt基因在不同陆地棉基因型的表达研究[J].棉花学报, 2003,15(1):8-12.
    [40]刘宗华,胡彦民,汤继华,等.回交二代玉米转Bt基因材料抗虫性鉴定研究[J].作物杂志,2000(2):7-9.
    [41]刘海涛,郭香墨,夏敬源.抗虫杂交棉F1代与亲本Bt蛋白表达量及抗虫差异性研究[J].棉花学报,2000,12(5):261-263.
    [42]张中林,任延国,沈燕新,等.苏云金芽抱杆菌(Bt)晶体毒蛋白基因在烟草叶绿体中的表达[J].遗传学报,2000,27(3):270-277.
    [43]林良斌,官春云,周小云,等.转基因抗虫油菜中Bt杀虫蛋白基因稳定遗传和高效表达及抗虫性研究[J].作物学报,2002,28(2):175-178.
    [45]吴刚,夏英武.植物转基因沉默及对策[J].生物技术,2000,10(2):27-32.
    [46]吴刚,崔海瑞,舒庆尧,等.转基因水稻中转录水平cry1Ab基因的沉默及其阶段复活[J].中国科学,2001,31(6):487-496.
    [47]郭旺珍,孙敬,郭玉芳,等.转基因抗虫棉Bt基因不同剂量的聚合与抗虫性表现[J].遗传学报,2001,28(7):668-676.
    [48]冯英,薛庆中.作物抗虫基因工程及其安全性[J].遗传,2001,23(6):571-576.
    [49] Downes S,Mahon R,Olsen K. Monitoring and adaptive resistance management in Australia for Bt-cotton: Current status and future challenges[J]. J Invertebr Pathol,2007 Mar 25.
    [50]郭三堆,崔洪志,夏兰芹,等.双价抗虫转基因棉花研究[J].中国农业科学,1999,32(3):1-7.
    [51]苏仁芳,张晓东.转Bt基因作物存在的问题及其安全性[J].陕西农业科学,2008,(2):99-102.
    [52] Zhao J Z,Cao J,Hilda L,et al. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants[J]. Proc Natl Acad Sci USA,2005,102(24):8 426-8430.
    [53]袁英,李启云,孔祥梅,等.转双价抗虫基因Bt-pta玉米植株的获得[J].中国农学通报,2006,22(10):131-134.
    [54]郝贵霞,朱祯,朱之悌.杨树基因工程进展[J].生物工程进展,2000,20(4):6-9.
    [55] Halpin C. Gene stacking in transgenic plants-the challenge for 21st century plant biotechnology [J]. Plant Biotech J,2005,3(2):141-155.
    [56] Tang K X,Tinjuangjun P,Xu Y,et al. Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests[J]. Planta,1999,208:552-563.
    [57] Singla Pareek S L,Reddy M K,Sopory S K. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance[J]. Proe Natl Acad Sci,2003,100:14672-14677.
    [58] Bohmert K,Balbo I,Kopka J,et al. Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight[J]. Planta,2000,211:841-845.
    [59]吴才君,范淑英.植物转基因沉默[J].江西农业大学学报,2004,26(1):154-158.
    [60]张蕾,崔建国,王洪魁.杨树Bt抗虫基因工程研究进展[J].中国森林病虫,2005,24(3):19-22.
    [61]刘美清,李淑玲.杨树抗性研究的现状及展望[J].河南农业大学学报,1998,32(3):225-227.
    [62] McCown B H,McCabe D E,Russell D R,et al. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration[J]. Plant Cell Report,1991,9:590-594.
    [63] Leple J C,Brasileiro A C M,Michel M F,et al. Transgenic poplars: expression of chimeric genes using four different constructs[J]. Plant Cell Report,1992(11):137-141.
    [64] Kleiner K W,Ellis D D,McCown B H,et al. Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cryIA(a) endotoxin gene against forest tent caterpillar and gypsy moth following winter dormancy[J]. Environmental Entomology,1995,24(5):1358-1364.
    [65] Howe G T,Goldfarb B,Strauss S H. Agrobacterium mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants[J]. Plant cell,Tissue and Organ Culture,1994,36:59-71.
    [66] Francis K E. Genetic transformation and transgenic analysis of hybrid poplar NM6. (P. nigra×P. maximowiczii)[J]. Plant Physiol,1996,98:796-797.
    [67] STRAUSS S H,JAMES R R, CROFT B A. Susceptibility of the Cottonwood leaf Beetle (Coleoptera: hrysomelidae) to different strains and transgenic toxins of Bacillus thuringiensis[J]. Environ Entomol,1999,28(1):108-I15.
    [68] Génissel A,LepléJ C,Millet N,et al. High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp tenebrionis. Molecular Breeding,2003,11(2):103-110.
    [69]伍宁丰,范云六.含苏云金芽孢杆菌杀虫晶体蛋白基因的杨树工程植株的建立[J].科学通报,1991(9):705-708.
    [70]张锐,郭三堆.植物抗虫基因工程研究进展[J].生物技术通报,2001(2):8-12.
    [71]田颖川,李太元,莽克强,等.抗虫转基因欧州黑杨的培育[J].生物工程学报,1993,9(4):291-297.
    [72]陈颖,韩一凡,李玲,等.苏云金杆菌杀虫晶体蛋白基因转化美洲黑杨的研究[J].林业科学,1995,31(2):97-103.
    [73]王学聘,韩一凡,戴莲韵,等.抗虫转基因欧美杨的培育[J].林业科学,1997,33(1):69-74.
    [74]郑均宝,张玉满,杨文芝,等. 741杨离体叶片再生及抗虫基因转化[J].河北农业大学学报,1995,18(3):20-25.
    [75]郑均宝,梁海永,孙克南,等.雄性毛白杨离体叶片再生及抗虫基因转化[J].河北林学院学报,1996,11(2):97-101.
    [76]王明麻.林木遗传育种学[M].北京:中国林业出版社,2001. 25-332.
    [77]郭同斌,嵇保中,诸葛强,等.转Bt基因杨树(NL-80106)对杨小舟蛾抗虫性研究[J].南京林业大学学报(自然科学版),2004,28(6):5-9.
    [78] TianY C,Zheng J B,Yu H M,et al. Studies of transgenic hybrid Poplar 741 carrying two Insect-resistant genes[J]. Acta Botanica Sinica,2000,42(3):263-268.
    [79]李明亮,张辉,胡建军,等.转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究[J].林业科学,2000,36(12):93-97.
    [80]常玉广,刘桂丰,姜静,等.小黑杨抗虫基因的遗传转化[J].东北林业大学学报,2004, 32(6):30-31.
    [81]诸葛强,房丹,李秀芬,等.美洲黑杨杂种优良无性系转抗虫基因(Bt和CpTI)的研究[J].分子植物育种,2006,4(6):819-824.
    [82]谢先芝.抗虫转基因植物的研究进展及前景[J].生物工程进展,1999,19(6):47-52.
    [83]李志兰,杨敏生,王进茂,等.杨树基因工程育种研究进展[J].河北农业大学学报,2002,25(增刊):145-148.
    [84]杨敏生,梁海永,王进茂,等.转基因741杨高效配套育苗体系建立[J].河北林果研究,2005,20(1):1-6.
    [85] Zhang H N,Guo C J,Li C D,et al. Cloning,characterization and expression analysis of two superoxide dismutase (SOD) genes in wheat (Triticum aestivum L.)[J]. Frontier of Agriculture in China,2008,2(2):141-149.
    [86]王娇娇.水稻CDPK家族基因结构、盐胁迫下的表达特性和重要基因遗传转化[D].保定:河北农业大学,2008.
    [87] Chen L,Manny P,Taylor N J. Expression and inheritance of multiple transgenes in rice plants[J]. Nature Biotechnology,1988,16:1060-1064.
    [88]戴顺洪,李良材,丁月云,等.水稻基因枪法多基因转化研究[J].遗传学报,1998,25(4):345-350.
    [89] Spencer T M,O′Brien J V, Star W G, et al. Segregation of transgenes in maize[J]. Plant Mol Biol,1992,18(2):201-210.
    [90]冯道荣,许新萍,邱国华,等.多个抗病抗虫基因在水稻中的遗传和表达[J].科学通报,2000,45(15):1593-1599.
    [91]郭金英,朱协飞,郭旺珍,等.转Bt+Sck基因双价抗虫棉的抗虫性及遗传分析[J].棉花学报,2007,19(2):88-92.
    [92]杨向东,郭东全,包绍君,等.双价抗虫转基因大豆抗苜蓿夜蛾分析[J].大豆科学,2007, 26 (6):969-971.
    [93] Wu X,Wang J J,Zhu Z,et al. Study of transgenic Cotton carrying Bt-CpTI-GNA genes[J]. Cotton Science,2005,17(6):353-359.
    [94] Roush R T. Two toxin strategies for management of insect resistant transgenic crops:Can pyramiding succeed where pesticide mixtures have not[J]? Philosophical Transactions Proceedings of the Royal Society of London. Series B,1998,353(1376):1777-1786.
    [95] Jackson R E,Bradley J R J,Van Duyne J W,ea al. Comparative production of Helicoverpa zea (Lepidoptera:Noctuidae) from transgenic cotton expressing either one or two Bacillus thuringiensis proteins with and without insecticide oversprays[J]. Journal of Economic Entomology, 2004,97(5):1719-1725.
    [96]岳建雄,张慧军,张炼辉.以对潮霉素抗性为筛选标记的棉花遗传转化[J].棉花学报,2002, 14(4):195-199.
    [97]邹莉,王丹,赵光洁,等.单倍体小黑杨对潮霉素的敏感性研究[J].林业科技,2008,33(4):7-9.
    [98] Zhao Y,Qian Q,Wang H Z,et al. Hereditary behavior of bar gene cassette is complex in Rice mediated by particle bombardment[J]. Journal of Genetics and Genomics,2007,34(9):824-835.
    [99]苏家琦,吴先军,张红宇,等.转bar基因水稻的研究与应用[J].分子植物育种, 2005, 3(2):229-232.
    [100]王为民,赵倩,朱登云,等.高赖氨酸蛋白质基因和bar基因导入水稻及转基因植株的检测[J].农业生物技术学报,2004,12(4):363-368.
    [101]黄超.农杆菌介导下的Bt基因和Bar基因在陆地棉上的遗传转化[D].武汉:华中农业大学,2005.
    [102] Stewart S D,Adamczyk J J,Knighten K S,et al. Impact of Bt cottons expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival of noctuid (Lepidoptera) larvae[J]. Journal of Economic Entomology,2001,94(3):752-760.
    [103] Zhao J Z,Cao J,Collins H L,et al. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants[J]. Proceedings of the National Academy Sciences USA,2005,102(24):8426-8430.
    [104]练云,贾志伟,何康来,等.人工改造的Cry1Ac和Cry1Ie基因在烟草中共表达对棉铃虫有更好的杀虫活性[J].科学通报,2008,53 (6):658-663.
    [105]石春林,朱祯,徐鸿林,等.转基因烟草中Bt毒蛋白基因的表达行为[J].植物学报,2000, 42 (3):269-273.
    [106]周壮志,周永刚,何朝族,等. cry3A和vhb基因在转基因马铃薯中的表达[J].生物化学与生物物理进展,2004,31(8):741-745.
    [107] Matzke A J M,Matzke M A. Position effects and epigenetic silencing of plant transgenes[J]. Current Opinion in Plant Biology,1998,1(2):142-148.
    [108] Kumar S, Fladung M. Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant Journal,2002,31(4):543-551.
    [109]曾凡锁,詹亚光.转基因植物中外源基因的整合特性及其研究策略[J].植物学通报,2004,21 (5):565-577.
    [110]张艳贞,季静,张领兵,等.以基因枪法将Bt杀虫蛋白基因导入常规玉米自交系的研究[J].玉米科学,2001,9(4):23-26.
    [111]郑均宝,梁海永,高宝嘉,等.转双抗虫基因741毛白杨的选择及抗虫性[J].林业科学,2000,36(2):13-20.
    [112]甄志先,李静,梁海永,等.转BtCry3A基因杨树毒蛋白表达及对桑天牛抗性的研究[J].蚕业科学,2007,33(4):538-542.
    [113]王彦平,李静,杨敏生,等.转不同抗虫基因741杨的抗虫选择性[J].林业科学,2008,44(8):67-71.
    [114]陈国胜.植物转基因沉默的机制及克服方法[J].河北农业科学,2008,12 (3):75-76.
    [115]程磊,周根余,沈革志.根癌农杆菌介导的水稻遗传转化[J].上海农业学报, 2000,16(4):43-51.
    [116]樊龙江,周雪平,胡秉民,等.转基因植物的基因漂流风险[J].应用生态学报, 2001,12(4):630-632.
    [117] Angle J S. Release of transgenic plants:biodiversity and population-level considerations[J]. Mol Ecol,1994,3(1):45-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700