用户名: 密码: 验证码:
多元Al-Si-Cu合金铸造工艺参数优化及其在汽车发动机缸体应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速、节能、环保、安全、舒适是汽车工业发展的主题,而轻量化是实现上诉目标最直接最有效的途径。发动机是汽车的“心脏”,质量占整车重量的20-30%,而缸体作为发动机中最大的铸件,其质量占发动机重量的25-35%。近年来,铝合金作为一种新型材料,在汽车轻量化建设中得到了广泛应用。用铝合金代替传统的铸铁材料生产发动机缸体后,不但可使缸体减重30%左右,还可以提高导热性能,防止汽车高速行驶过程中出现转向偏差。因此,采用铝合金生产缸体对降低汽车发动机乃至整车重量,推进我国汽车工业节能减排进程都具有重要意义。目前,国内在高性能铝合金缸体的研发应用上还与国际水平存在较大的差距。要想实现高性能铝合金缸体的工业化生产,必须解决三个方面的问题:新型的铸造铝合金缸体材料、精密成熟的铸造工艺和先进成套的工业化生产装备,其关键和根本是要解决材料和铸造工艺的问题。
     基于此,借助日本马自达品牌汽车发动机缸体用铸造铝合金的生产经验,与苏州明志科技有限公司合作开发了长春一汽马自达系列轿车发动机缸体用的新型铸造铝硅合金,并对其铸造工艺及其应用进行了研究。力争拥有自主知识产权的高性能铝制发动机缸体的生产技术,提升国内生产铝制发动机缸体的能力,加快我国汽车行业在轻量化道路的发展速度。本文主要研究内容和研究成果如下:
     1、研究了细化变质处理对多元Al-Si-Cu合金组织和力学性能的影响。选取目前工厂生产中最常用的三种细化变质剂:Al-5Ti-B、Al-10Sr和RE,借助正交试验优化得到复合细化变质配方为:Al-10Sr=0.1wt%、RE=0.3wt%、Al-5Ti-B=0.8wt%。与单一细化变质处理的合金以及母合金相比,该配方制备合金的力学性能和显微组织均得到极大的提升,其力学性能为:σb=252MPa、σs=191MPa、δ=3.0%、布氏硬度=90.6HB,其组织中a-Al相更加细小且轮廓清晰,共晶硅相、Al-Cu相、Al-Si相以及含铁相的成分变得多元化,且尺寸更小、形状更圆整、分布更均匀,说明三种细化变质剂起到相互促进的作用。最后提出了两个描述变质效果的参数:平均面积和长宽比,细化变质合金的变质效果最优。
     2、研究了不同原砂制砂芯及其壁厚对多元Al-Si-Cu合金组织和力学性能的影响。选用石英砂、铬铁矿砂和宝珠砂分别制成厚度范围在8mm~40mm的阶梯状砂芯片,由于提供的冷却速度不同,直接影响制备的多元Al-Si-Cu合金的力学性能、二次枝晶间距和细化变质效果。铬铁矿砂砂芯制合金的抗拉强度和伸长率性能最好,硬度是石英砂的最好。随壁厚增加,三种砂芯制合金的抗拉强度由360MPa变为280MPa,伸长率由8%变为3%,而壁厚对硬度性能的影响并没有明显规律。当壁厚为40mm时,石英砂和宝珠砂制合金组织中出现片状和块状Si相,变质效果恶化。最后,在三种砂芯制合金的力学性能与二次枝晶间距之间建立了拟合方程,用于指导工厂实际生产。
     3、研究了多元Al-Si-Cu合金的热疲劳性能。通过对不同热处理试样在不同温度幅下热疲劳裂纹萌生与扩展的观察和分析,发现由于T6态合金的温度敏感性最弱、抗氧化性能最强,其热疲劳寿命最长。多元Al-Si-Cu合金在热疲劳裂纹萌生期要经历三个阶段:形成微观氧化层、氧化层内生成微坑、微坑生长或微坑内部生成裂纹源。裂纹扩展前期为沿晶生长,主要靠裂尖钝化-尖锐化引起裂纹扩展;而后期为沿晶和穿晶混合生长,以裂尖钝化-尖锐化和裂尖前沿空洞连体复合方式扩展。最后发现了Si相形状和位向影响裂纹扩展行径的两种方式:“绕墙”扩展和“穿墙”扩展。提出了两种新的表征合金热疲劳性能的方法:裂纹曲折度和裂纹的长宽比。
     4、研究了多元Al-Si-Cu合金的摩擦行为和磨损机理。结果表明:T6态合金在不同载荷和磨损时间下的质量磨损率和摩擦系数最小,磨面磨损形貌处于较轻微的磨损机理状态。当载荷小于500N且磨损时间小于3h时,T6态和铸淬时效态合金的耐磨性能接近,主要是因为二者硬度性能相近;增大载荷延长磨损时间,发现三种状态合金的亚表面内Si相发生破碎,间接提高了合金的表面硬度,改善了润滑效果。载荷过大则导致Si相甚至Al2Cu相周围出现微裂纹和撕裂状塑性变形,严重影响合金的耐磨性能。多元Al-Si-Cu合金摩擦磨损至失效过程中,磨损机理的衍变过程是:磨粒磨损→磨粒磨损+粘着磨损→粘着磨损→粘着磨损+剥层磨损→剥层磨损+氧化磨损。依据材料磨面塑性变形程度及其硬度缩减情况,率先提出将氧化磨损分为氧化轻微磨损和氧化失效磨损两类。
High speed, energy saving, environmental protection, safety and comfort are themes of development of automobile industry. While light weight is the most effective way to achieve the objectives listed above. Engine is the heart of a car, which holds20~30%of the car's whole weight. As the biggest casting in the engine, cylinder body takes up25~35%of engine's weight. Aluminum alloy, which is a new kind of material, has recently gained extensive application in the automobile weight lightening process. Not only engine block can be lightened by30%when traditional cast iron engine block is replaced by aluminum alloy engine block, thermal conductivity can also be enhanced, which prevent steering deviation at high speed driving. Thus, producing cylinder body with aluminum alloy has significance in both reducing engine even the whole automobile weight and pushing on the process of energy conservation and emission reduction in China automobile industry. At present, there is a big gap between domestic high performance aluminum engine block research and international level. Three aspects of problems must be solved to achieve industrialize production of high performance aluminum alloy engine block:new type material of cast aluminum alloy for engine block, precise and mature casting techniques and complete sets of advanced production equipments, the key of the above is to solve the problem of material and casting techniques.
     For reasons such as noted above, with the help of Japan's Mazda automobile casting aluminum alloy production experience, the casting process and application of new type casting aluminum alloy for Mazda series sedan engine cylinder block of Changchun First Automobile Work shop are investigated, which is cooperative developed with Suzhou Mingzhi Technology Co. Ltd. To enhance the ability of domestic aluminum engine cylinder production and to speed up China's auto industry in the development of weight lightening are very important. The production technology of high performance aluminum engine cylinder with independent intellectual property rights is also very important. In this paper, the main research contents and results are as follows:
     1. Effects of grain refining and modification on microstructure and mechanical properties of multielement Al-Si-Cu alloy were investigated. Three of the most commonly used refiners and modifiers in the industrial field were chosen:Al-5Ti-B, Al-10Sr and RE. With the help of orthogonal test, optimized combination refinement and modification formula was as follows:Al-10Sr=0.1wt%, RE=0.3wt%, Al-5Ti-B=0.8wt%. It was also clear that the combined addition of grain refiner and modifier to multielement Al-Si-Cu cast alloy had resulted in maximum improvement in microstructure and mechanical properties as compared to the individual addition of grain refiners, modifier and in an untreated as cast condition. Its mechanical properties were σb=252MPa, σs=191MPa,δ=3.0%and brinell hardness was90.6HB. In the microstructure, a-Al phase was finer and had a clear outline. The component of eutectic silicon phase, Al-Cu phase, Al-Si phase and iron phase became diversified, and their sizes became smaller, their shape became more rounded and they distributed more uniform. All of these demonstrated that the three refiners and modifiers had mutual promotion to each other. At last, two parameters used to describe the modification effect were proposed:mean area and aspect ratio. The most optimal effect of modification was the alloy with grain refining and modification.
     2. Effects of mould sand type and casting wall thickness on microstructure and mechanical properties of multielement Al-Si-Cu alloy were investigated. Multistep moulds which wall thickness was from8mm to40mm were made by quartz sand, chromite sand and alumina sand. The mechanical property, secondary dendrite arm space and the effect of grain refining and modification of multielement Al-Si-Cu alloy were directly effected by different provided cooling rates. Alloy made by chromite sand core had the best tensile strength and elongation, while the alloy made by quartz sand core had the best hardness. With the increase of wall thickness, tensile strength of Al-Si-Cu alloy made by the three kinds of mould sands decreased from360MPa to280MPa, elongation from8%to3%, while the hardness did not appear evident trend with the different wall thicknesses. When the thickness was40mm, flake and massive Si phase appeared in the alloy made by quartz sand and alumina sand which meaned that the modification effect became worse. At last, the fitting equation, which could be used to guide practical production, was made between mechanical properties and secondary dendrite arm space of Al-Si-Cu alloy made by the three kinds of mould sands.
     3. The thermal fatigue property of multielement Al-Si-Cu alloy was investigated. Through the observation and analysis of thermal fatigue crack initiation and propagation of Al-Si-Cu alloy under different heat treatment conditions and temperature ranges, the alloy treated by T6heat treatment was found to have the longest thermal fatigue life because of its lowest temperature sensitivity and highest antioxidant property. Multielement Al-Si-Cu alloy experienced three periods during the thermal fatigue initiation process:the formation of micro oxidation layer, the formation of micro pit inside the oxide layer and micro craters grow to the crack source. The early stage of fatigue crack expansion was along the grain boundary, which was caused by the passivation-sharpen of crack tip. The later stage of crack propagation was mixed by the growth along the grain and through the grain, which was propagated in a complex way by passivation and sharpening on the crack tip and siamesed voids on front edge of crack tip. At last, two ways that effected the crack propagation way by the shape and position of Si phase were found:"bypass-wall expansion" and "through-wall expansion". Two methods of the new characterization of thermal fatigue properties were proposed:the tortuosity of the crack and the ratio of crack length and width.
     4. The friction behavior and wear mechanism of multielement Al-Si-Cu alloy were investigated. The results were as follows:the alloy treated by T6heat treatment had the lowest wear rate of weight and friction coefficient under different loads and wear times, and its abrasion morphology was in the state of minor wear mechanism. When the load was less than500N and wear time was less than3h, the alloy after T6condition and cast-quenching+aging had the similar wear property, which mainly because they had the similar hardness. When the load and wear time increased, broken Si phase was found in the subsurface in three kinds of alloy. The broken Si phase increased surface hardness indirectly and changed the lubrication effect. Excessive load might cause microcrack and even severe tear shaped plastic deformation around Si phase and even Al2Cu phase, what severely effected the wear property of Al-Si-Cu alloy. In the process of multielement Al-Si-Cu alloy's friction and wear to failure, the evolution of wear mechanism is:abrasive wear→abrasive wear+adhesive wear→adhesive wear→adhesive wear+delamination wear→delamination wear+oxidative wear. According to the plastic deformation and hardness reduction on the worn surfaces, two kinds of oxidative wear were firstly announced, that was slight oxidative wear and failure oxidative wear.
引文
[1]http://www.gov.cn/zwgk/2009-03/20/content_1264324.htm,汽车产业调整和振兴规划.
    [2]刘静安,盛春磊,刘志国等.铝材在汽车上的开发应用及重点新材料产品研发方向[J].铝加工,2012,5:4-16.
    [3]刘海东.乘用车轻量化绿色效应评价理论与方法研究[D].长春:吉林大学博士学位论文,2011.
    [4]http://baike.baidu.com/view/1112256.htm,汽车工业.
    [5]张志民,栗新.铝合金材料在现代汽车轻量化制造技术中的应用[J].专用汽车,2007,7(7):10-12.
    [6]周云郊.钢铝混合材料车身结构轻量化设计关键问题与应用研究[D].广州:华南理工大学博士学位论文,2011.
    [7]贾和坤.轻型车用柴油机预混合低温燃烧机理及排放控制研究[D].镇江:江苏大学博士学位论文,2013.
    [8]李永兵,李亚庭,楼铭等.轿车车身轻量化及其对连接技术的挑战[J].机械工程学报,2012,48(18):44-54.
    [9]中华人民共和国统计局.2008中国统计年鉴[M].北京:中国统计出版社,2008.
    [10]中国机械工业年鉴编辑委员会,中国通用机械工业协会.2008中国机械工业年鉴[M].北京:机械工业出版社,2008,10.
    [11]陈勇.中国能源与可持续发展[M].北京:科学出版社,2007,2:2-85.
    [12]徐元浩,李云伍.汽车工业汽车节能减排的措施与前景[c].重庆:重庆汽车工程学会2008年学术会议论文集,2008.
    [13]展玉山.我国汽车行业节能减排技术措施探讨[J].价值工程,2012,22:49-51.
    [14]http://baike.baidu.com/view/873088.htm,汽车尾气污染.
    [15]http://wenku.baidu.com/view/7712487702768e9951e73826.html,;气车尾气主要成分.
    [16]http://wenku.baidu.com/view/664a34d233d4b14e852468c6.html,汽车排放污染物.
    [17]http://www.moc.gov.cn/zhuzhan/zhengcejiedu/guihuajiedu/shierwuguihuaJD/xiangguanzhengc efagui/201110/t20111010_1064457.html,公路水路交通运输节能减排“十二五”规划.
    [18]Chen Youjun. A study on the development strategy of China's auto parts industry[J].CHINA AUTO,2006,4:12-13.
    [19]Martin Goede, Marc Stehlin, Lukas Rafflenbeul, et al. Super Light Car—lightweight construction thanks to a multi-material design and function integration [J]. European Transport Research Review,2009,1:5-10.
    [20]http://www.gov.cn/zwgk/2010-10/18/content_1724848.htm,国务院关于加快培育和发展战略性新兴产业的决定.
    [21]智淑亚.汽车车身轻量化材料的应用及发展[J].中国制造业信息化,2012,41(17):104-107.
    [22]陆刚,李兴普.现代车用材料用用手册[M].北京:中国电力出版社,2007:1-156.
    [23]牛全峰,李世红,杨学智.汽车材料的应用与发展[J].现代零部件,2012,8:29-31.
    [24]Li Hong, Li Xin. The present situation and the development trend of new materials used in automobile lightweight[C].2012 International Conference on Information Engineering for Mechanics and Materials,2012, May, p 58-62.
    [25]朱则刚.铝合金复合材料在汽车轻量化上的应用[J].轻金属,2011,10:3-6.
    [26]李春梅.汽车轻量化材料的应用[J].科技与企业,2012,8:345.
    [27]何昌德,杨普新.轻量化材料及加工技术在现代汽车上的发展和应用[J].装备制造技术,2011,2:93-96.
    [28]Witik Robert A., Payet Jeiome, Michaud Veronique, et al. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications [J]. Applied Science and Manufacturing,2011,42(11):1694-1709.
    [29]魏元生.轻金属材料和成形工艺在汽车上的应用[J].轻合金加工技术,2013,41(2):6-15.
    [30]沈亚辉.轻量化技术在整车上的应用[J].上海汽车,2012,7:38-40.
    [31]刘莉.复合材料在汽车制造中的应用[J].科技创新与应用,2012,10:110.
    [32]丁宁,高峰,王志宏等.汽车用铝合金零部件的节能减排分析[J].汽车技术,2012,2:55-59.
    [33]李永兵,陈长年,朗利辉等.汽车铝车身关键制造技术研究[J].汽车工艺与材料,2013,3:50-58.
    [34]王祝堂.汽车工业与铝消费[J].资源再生,2011,2:56-59.
    [35]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004:178-201.
    [36]Li Yanping, Liu Haijiang. Material and structural optimization for engine hood inner panel of car body aimed to lightweight[C].2010 WASE International Conference on Information Engineering,2010, August, p 291-294.
    [37]武仲河,站中学,孙全喜等.铝合金在汽车工业中的应用与发展前景[J].内蒙古科技与经济,2008,9:59-60.
    [38]刘道春.低碳经济驱动铝合金汽车零部件市场的发展(续)[J].有色金属加工,2011,40(2):4-7.
    [39]Garat M. Optimization of an aluminum cylinder head alloy of the AlS17Cu3MnMg type reinforced by additions of peritectic elements [J]. International Journal of Metalcasting, 2011,5(3):17-24.
    [40]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006.
    [41]王孟君,黄电源,姜海涛.汽车用铝合金的研究进展[J].金属热处理,2006,31(9):34-38.
    [42]Takami Toshihiro, Fujine Manabu, Kato Shinji, et al. MMC all aluminum cylinder block for high power SI engines[C]. SAE 2000 World Congress,2000, March.
    [43]尹晓辉,刘静安.汽车用铝材的现状、发展趋势与重点研发方向[J].铝加工,2007,5:10-17.
    [44]王祝堂,张新华.汽车用铝合金[J].轻合金加工技术,2011,39(2):1-14.
    [45]刘波,刘鹏,陈海波等.长安汽车变形铝合金技术研究与应用进展[J].汽车工艺与材料,2013,1:7-11.
    [46]王立娟,张万金,吴欣凤.变形铝合金熔炼与铸造[M].长沙:中南大学出版社,2010.
    [47]Martin Goede. Super LIGHT-Car project—An integrated research approach for lightweight car bodyinnovations[C].International Conference:Innovative Developments for Lightweight Vehicle Structures, Wolfsburg, Germany,2009:25-38.
    [48]Christian Sahr. Concept tools and simulation for lightweight body design[C]. International Conference:Innovative Developments for Lightweight Vehicle Structures, Wolfsburg, Germany,2009:41-50.
    [49]姚成.全铝车身在纯电动公交客车车身上的应用研究[J].海峡科学,2010,12:91-93.
    [50]杨辉煌.轻量化客车车身铝合金真空压铸杆件开发研究[D].厦门:厦门大学,2009.
    [51]黄松,徐满年,周忠胜.东风“猛士”高机动性越野汽车的技术创新[J].汽车科技(增刊),2008,Z1:1-6.
    [52]张玉美,王智明,刘建岭.铝合金车轮的发展现状及展望[J].铝加工,2010,5:25-28.
    [53]李婷.探析汽车铝轮毂新兴产业及其发展方向[J].汽车工业研究,2012,11:42-44.
    [54]李晓敏.我国汽车铝合金轮毂发展现状及建议[J].轻金属,2011,6:3-5.
    [55]田涛.浅谈汽车铝合金轮毂的应用[J].科技创新与应用,2012,17:54.
    [56]Tohata T., Tako H., Uchida S., et al. Development of aluminum closed deck cylinder blocks produced by the ordinary pressure die casting method [C]. Proceedings of the 26th International Symposium on Automotive Technology and Automation,1993, September, p 355.
    [57]Li Jian, Fu Liming, Ma Siqun, et al. Implementation of CAE simulation platform for lightweight automobile body design[C].5th IEEE International Symposium on Service-Oriented System Engineering,2010, June, p 260-263.
    [58]万仁芳.汽车工业发展与汽车发动机灰铸铁缸体生产技术[J].铸造,2001,50(12):746-751.
    [59]司乃潮,孙少纯,付明喜等.高强度灰铸铁在薄壁缸体上的应用[J].农业机械学报,2002,33(5):96-100.
    [60]李明,刘庆义,张行河等.蠕墨铸铁在发动机铸件上的应用[J].铸造设备研究,2008,5:28-34.
    [61]张忠仇,李克锐,曾艺成.我国蠕墨铸铁的新进展及对今后发展的看法和建议[c].淄博:2012年全国蠕墨铸铁研讨会暨机床铸铁件技术交流会议,2012.
    [62]张伯明.蠕墨铸铁在发动机上的应用[J].汽车与配件,2011,2:31-33.
    [63]王有清,胡飞,施华武等.蠕墨铸铁在气缸体铸件上的应用与发展[J].现代铸铁,2010,6:23-36.
    [64]王成刚,刘文辉,马顺龙等.蠕墨铸铁缸体缸盖的铸造技术开发[J].铸造,2012,61(2):136-132.
    [65]华雄飞.微合金化对全铝发动机高强度铸造Al-Si合金性能和组织的影响[D].镇江:江苏大学硕士学位论文,2010.
    [66]丁向群,何国求.轿车用铝合金的研究应用进展[J].同济大学学报,2005,11:1504-1506.
    [67]冯武堂,杨厚忠,万瑞生等.铝合金在汽车发动机中的应用[J].制造工艺,2007,52(12):40-42.
    [68]刘闯,姚嘉,卢伟.铝合金在汽车上的应用现状和前景分析[J].佳木斯大学学报,2006,10:560-561.
    [69]兰冬云,郭敖如.国内外汽车发动机铝缸体铸造技术[J].铸造设备研究,2008,8(4):45-49.
    [70]Crivellone G., Fuganti A., Mus C., et al. Permanent mold gravity casting cylinder block with hypereutectic aluminum liners [C]. SAE 2001 World Congress,2001, March.
    [71]梁盛文.汽车铸造技术的现状与发展趋势[J].汽车工艺与材料,2007,5:19-25.
    [72]王华侨,盛学斌,耿巍麟.铝合金先进铸造技术在发动机关键零部件成形中的应用[J].金属加工,2009,13:65-68.
    [73]Chen Youjun. A forecast on the prosperity of China's auto industry and discussion on its development approach [J].CHINAAUTO,2006,4:10-11.
    [74]吴浚郊.轿车发动机铝合金缸体和缸盖的铸造技术[J].铸造技术,2002,23(5):273-275.
    [75]张洪信,姜勇,张铁柱等.铝合金压力铸造技术的现状与展望[J].铸造,2007,56(12):1247-1250.
    [76]邵京城,李俊涛,艾国等.汽车铝合金缸体缸盖铸造工艺研究现状[J].热加工工艺,2011,40(3):57-60.
    [77]熊守美.高压铸造过程铸造压力传递及界面热交换行为的研究[J].机械工程学报,2011,47(2):124-125.
    [78]许豪劲,万里,吴克亦等.连续式低压铸造技术的研究与开发[J].特种铸造及有色合金,2013,33(1):29-32.
    [79]王一诚,任树勇,高飞.金属型真空重力精密铸造技术的研究及在铝硅系合金铸造上的应用[J].金属加工,2008,17:63-64.
    [80]于宁国.金属型重力铸造条件下的铝合金铸件生产技术[J].装备制造技术,2011,10:174-177.
    [81]肖小峰,薛琼,肖科峰等.发动机缸体缸盖的消失模铸造技术[J].机械设计与制造,2012,1:228-230.
    [82]蒋文明,樊自田,刘德均.真空低压消失模壳型铸造和消失模铸造铝合金组织和性能对比[J].中国有色金属学报,2013,23(1):22-28.
    [83]高成勋,刘伟明,颜鹏远.铝合金缸体缸盖的消失模铸造[J].特种铸造及有色合金,2010,30(8):746-749.
    [84]王新节.汽车发动机缸体缸盖消失模铸造技术的研究与应用(一)[J].机械工人(热加工),2007,2:53-56.
    [85]杜在均,邱壑.节能减排的冷芯盒组芯造型线技术[J].铸造设备研究,2008,4:1-4.
    [86]王新节.汽车发动机缸体缸盖冷芯盒铸造技术的研究与应用(上)[J].中国铸造装备与技术,2008,2:1-4.
    [87]赵海顺.冷芯盒制芯工艺缺陷原因分析及其控制技术[J].铸造设备与工艺,2009,5:18-20.
    [88]魏甲,孙莹,张佳男等.新型冷芯盒制芯工艺及材料研究[C].广州:第十二届全国铸造年会暨2011中国铸造活动周,2011.
    [89]http://www.km.qpll0.com/news/type-news.asp?news_id=242710,汽车发动机铝体和铁体的区别.
    [90]Du Weiming,Li Jun,Song Jianlong,et al. Design of gasoline engine aluminum alloy cylinder block for passenger car [J]. Chinese Internal Combustion Engine Engineering,2011,32(5): 59-63.
    [91]刘光磊.重力铸造汽车发动机缸体用新型铝硅合金变质处理的研究[D].镇江:江苏大学硕士学位论文,2010.
    [92]金陵.徐州V6发动机铝合金缸体填补国内空白[J].机械制造,2010,48(545):78.
    [93]王永光.铝合金复合材料在汽车轻量化上的应用[J].科技创新与应用,2012,10:26.
    [94]Kaida Kenji, Matsubara Nagayoshi, Minai Chikaaki, et al. New casting technology for closed deck aluminum cylinder blocks [C]. Passenger Car Meeting and Exposition,1990, September.
    [95]项大伟,张炳荣,田身军等.金属型重力铸造铝合金缸盖关键部位二次枝晶间距研究[J].铸造设备与工艺,2010,4:35-38.
    [96]刘兵,彭超群,王日初等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010(9):1706-1715.
    [97]SUN Y, PANG S Q, LIU X R, et al. Nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy[J]. Transactions of Nonferrous Metals Society of China,2011,21(10):2186-2191.
    [98]S. FARAHANY, A. OURDJINI, M. H. IDRIS, et al. Effect of bismuth on microstructure of unmodified and Sr-modified Al-7Si-0.4Mg alloys [J]. Transactions of Nonferrous Metals Society of China,2011,21(7):1455-1464.
    [99]ZUO X R, ZHONG Z G. Effect of united refining and modification on mechanical properties of A356 aluminium alloys [J]. Transactions of Nonferrous Metals Society of China,2006, 16(3):S1419-S1424.
    [100]万迪庆,何柏林,陈朝霞等.新型变质剂Pr2(CO3)3对ZL107的变质作用及性能影响[J].稀有金属材料与工程,2010,39(增刊1):94-97.
    [101]K. DAHLE, K. NOGITA, S.D. MCDONALD, et al. Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels [J]. Metallurgical and Materials Transactions A,2001,32(4):949-960.
    [102]Y.C. TSAI, C.Y. CHOU, R.R. JENG, et al. Effect of rare earth elements addition on microstructures and mechanical properties of A356 alloy [J]. International Journal of Cast Metals Research,2011,24(2):83-87.
    [103]WAN D Q. Si phase morphology and mechanical properties of ZL107 Al alloy improved by La modification and heat treatment [J]. Transactions of Nonferrous Metals Society of China, 2012,22(5):1051-1054.
    [104]WANG Z J. Influence of the remelting on the refining properties of a new green Al-Ti-B-RE master alloy [J]. Rare Metal Materials and Engineering,2012,41(2): 577-580.
    [105]X.H. ZHANG, G.C. SU, C.W. JU, et al. Effect of modification treatment on the microstructure and mechanical properties of Al-0.35%Mg-7.0%Si cast alloy [J]. Materials and Design,2010, 31:4408-4413.
    [106]D.G. MALLAPUR, K. RAJENDRA UDUPA, S.A. KORI. Studies on the influence of grain refining and modification on microstructure and mechanical properties of forged A356 alloy [J]. Materials Science and Engineering A,2011,528:4747-4752.
    [107]赵延阔,李红英,王晓峰等.不同变质剂对4032铝合金变质效果的影响[J].中南大学学报(自然科学版),2011,42(2):361-367.
    [108]廖恒成,夏锦宏,孙国雄.Sr+B联合熔体处理对Al-Si-Mg合金组织和力学性能的影响[J].中国有色金属学报,2003,13(1):27-34.
    [109]吴国华,马春江,王叶双等.稀土对B319铝合金组织性能的影响[J].金属学报,2002,38(7):703-708.
    [110]CHEN C, LIU Z X, REN B, et al. Influences of complex modification of P and RE on microstructure and mechanical properties of hypereutectic Al-20Si alloy [J]. Transactions of Nonferrous Metals Society of China,2007,17(2):301-306.
    [111]TSAI Y C, CHOU C Y, LEE S L, et al. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys[J]. Journal of Alloys and Compounds,2009,487:157-162.
    [112]J. CAMPBELL, M. TIRYAKIOGLU. Review of effect of P and Sr on modification and porosity development in Al-Si alloys [J]. Materials Science and Technology,2010,26(3): 262-268.
    [113]吉祖明.我国冷芯盒制芯(型)技术的现状及其发展前景[J].柴油机设计与制造,1999,4:40-43.
    [114]崔怡,吴浚郊,李文珍等.冷芯盒射芯工艺参数的研究[J].铸造,2000,49(9):529-532.
    [115]http://wenku.baidu.com/view/6b4a5dd2240c844769eaee34.html,三乙胺冷芯盒工艺.
    [116]江贤波.用于缸体、缸盖生产的三乙胺法冷芯盒制芯工艺研究与应用[D].合肥:合肥工业大学硕士学位论文,2007.
    [117]任兴武.冷芯盒制芯工艺及其应用介绍[J].山东内燃机,2003,3:41-43.
    [118]王伟春,宋建武,何国平等.冷芯盒树脂砂制芯工艺的应用研究[J].铸造技 术,2006,27(1):36-38.
    [119]戴斌煜.冷芯盒法的现状与展望[J].铸造,2002,51(5):273-276.
    [120]刘刚强.冷芯盒造型工艺与制芯技术的研究[J].铸造技术,2006,27(11):1161-1164.
    [121]刘增林,商联华,文亦莉等.用冷芯盒树脂砂芯生产缸体件缺陷的防止措施[J].铸造,1995,9:28-30.
    [122]Lee Choongdo. Variability in the tensile properties of squeeze-cast Al-Si-Cu-Mg alloy [J]. Materials Science and Engineering:A,2008,488(1-2):296-302.
    [123]A.K. Dahle, K. Nogita, J.W. Zindel, et al. Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels [J]. Metallurgical and Materials Transactions A,2001, 32(4):949-960.
    [124]D.G Mallapur, K. Rajendra Udupa, S.A. Kori. Studies on the influence of grain refining and modification on microstructure and mechanical properties of forged A356 alloy [J]. Materials Science and Engineering:A,2011,528(13-14):4747-4752.
    [125]Zhang X.H., Su G.C., Ju C.W., et al. Effect of modification treatment on the microstructure and mechanical properties of Al-0.35%Mg-7.0%Si cast alloy [J]. Materials and Design,2010, 31(9):4408-4413.
    [126]Dobosz, Stanislaw M., Petr Jelinek, et al. Development tendencies of moulding and core sands [J]. China Foundry,2011,8(4):468-446.
    [127]Zheng Xingwei, Dong Jie, Liu Wencai, et al. Microstructure and mechanical properties of NZ30K alloy by semi-continuous direct chill and sand mould casting processes [J]. China Foundry,2011,8(1):41-46.
    [128]李晨希,郭太明,李荣德等.二次枝晶臂间距的研究[J].铸造,2004,53(12):1011-1014.
    [129]K. Nogita, H. Yasuda, K. Yoshida, et al. Determination of strontium segregation in modified hypoeutectic Al-Si alloy by micro X-ray fluorescence analysis [J]. Scripta Materialia,2006, 55(9):787-790.
    [130]倪红军,孙宝德,蒋海燕等.稀土熔剂对A356合金二次枝晶臂间距的影响[J].中国有色金属学报,2002,12(5):940-944.
    [131]Niklas, Andrea and Abaunza, Unai and Fernandez-Calvo, et al. Thermal analysis as a microstructure prediction tool for A356 aluminium parts solidified under various cooling conditions [J]. China Foundry,2011,8(1):89-95.
    [132]C.M. Dinnis, A.K. Dahle, J.A. Taylor, et al. The influence of strontium on porosity formation in Al-Si alloys [J]. Metallurgical and Materials Transactions A,2004,35(11):3531-3539.
    [133]Sergio Haro-Rodriguez, Rafael E. Goytia-Reyes, Dheerendra Kumar Dwivedi, et al. On influence of Ti and Sr on microstructure, mechanical properties and quality index of cast eutectic Al-Si-Mg alloy [J]. Materials and Design,2011,32(4):1865-1871.
    [134]S.A. Kori, B.S. Murty, M. Chakraborty. Development of an efficient grain refiner for Al-7Si alloy [J]. Materials Science and Engineering:A,2000,280(1):58-61.
    [135]SUN Shao-chun, YUAN Bo, LIU Man-ping. Effects of moulding sands and wall thickness on microstructure and mechanical properties of Sr-modified A356 aluminum casting alloy [J]. Transactions of Nonferrous Metals Society of China,2012,22(8):1884-1890.
    [136]夏鹏成,于金江,孙晓峰等.DZ40M合金的热疲劳性能[J].稀有金属材料与工程,2011,40(1):152-155.
    [137]司乃潮,吴强,李国强.Ti对Al-4.5%Cu合金热疲劳性能的影响[J].铸造,2006,55(7):731-734.
    [138]肖旋,许辉,秦学智等.3种铸造镍基高温合金热疲劳行为研究[J].金属学报,2011,47(9):1129-1134.
    [139]Jiang Xiaosong, He Guoqiu, Liu Bing, et al. Fatigue Behavior and Microstructure Evolution of Al-Mg-Si Alloy under Constant and Variable Amplitude Loadings [J]. RARE METAL MATERIALS AND ENGINEERING,2010,39(1):459-463.
    [140]TILMANN Beck, DETLEF Lohe, JOCHEN Luft, et al. Damage mechanisms of cast Al-Si-Mg alloys under superimposed thermal-mechanical fatigue and high-cycle fatigue loading [J]. Materials Science and Engineering A,2007,468-470(15):184-192.
    [141]John Campbell. Castings(铸造原理第二版)[M]. Beijing:Science Press,2011:344.
    [142]邓帮林,刘敬平,杨靖等.某缸盖热机疲劳分析[J].湖南大学学报(自然科学版),2012,39(2):30-34.
    [143]Liu Yanbin, Liu Zhiyi, Li Yuntao, et al. Enhanced fatigue crack propagation resistance of an Al-Cu-Mg alloy by artificial aging [J]. Materials Science and Engineering A,2008,492(1-2): 333-336.
    [144]郑子樵,孙晓旭,陈圆圆等.一种Al-Cu-Mg-Zr合金的疲劳裂纹扩展行为研究[J].稀有金属材料与工程,2010,39(6):975-979.
    [145]徐芳,陈振中.A357铸造铝合金疲劳裂纹扩展行为以及裂纹偏折[J].工程力学,2011,28(10):197-201.
    [146]宋谋胜,冉茂武,孔园园等.铸造A356铝合金的低周疲劳行为[J].中国有色金属学报,2011,21(3):538-545.
    [147]JIANG Xiao-song, HE Guo-qiu, LIU Bing, et al. Microstructure-based analysis of fatigue behaviour of Al-Si-Mg alloy [J]. Transactions of Nonferrous Metals Society of China,2011, 21:443-448.
    [148]H.Arami, R.Khalifehzadeh, M.Akbari, et al. Microporosity control and thermal-fatigue resistance of A319 aluminum foundry alloy [J]. Materials Science and Engineering A,2008, 472:107-114.
    [149]王泓.材料疲劳裂纹扩展和断裂定量规律的研究[D].西北工业大学博士学位论文,西安:2002:01.
    [150]J.M.Song, T.S.Lui, I.H.Kao, et al. Effect of microstructural refinement on tensile behavior of the AC9A aluminum alloy suffering thermal shock fatigue [J].Scripta Materialia,2004,51: 1159-1163.
    [151]周敬恩,冉广.A356铸造铝合金的疲劳裂纹萌生及短裂纹扩展研究[J].金属热处理,2008,33(1):34-42.
    [152]莫德锋,何国球,朱正宇等.非比例载荷下Al-7Si-0.3Mg合金的循环特性及微观机理[J].金属学报,2009,45(7):861-865.
    [153]李莉.机械零件疲劳强度若干问题的研究[D].沈阳:东北大学博士学位论文,2009.
    [154]刘正林.摩擦学原理[M].北京:高等教育出版社,2009.
    [155]金敬福.仿生结构在润滑条件下耐磨性能的研究[D].长春:吉林大学博士学位论文,2007.
    [156]王怀庆,司乃潮,司松海等.Ni对ZA27合金组织及磨损性能的影响[J].摩擦学学报,2013,33(1):57-64.
    [157]H.J. Kim, A. Emge, S. Karthikeyan, et al. Effects of tribooxidation on sliding behavior of aluminum [J]. Wear,2005,259(1-6):501-505.
    [158]尹必峰.内燃机关键摩擦副表面微织构润滑与摩擦机理及应用研究[D].镇江:江苏大学博士学位论文,2011.
    [159]覃奇贤,刘淑兰.浅谈摩擦与磨损[J].电镀与精饰,2009(5):33-36.
    [160]刘昌斌,夏长清,戴晓元.高强高韧铝合金的研究现状及发展趋势[J].矿冶工程,2003,23(5):74-78.
    [161]ATKINSON H V, WARD P J. Thixoforming of hypereutectic Al/Si automotive pistons [J].Solid State Phenomena,2008,141-143:201-206.
    [162]Harun Mindivan. Reciprocal sliding wear behaviour of B4C particulate reinforced aluminum alloy composites [J]. Materials Letters,2010,64(3):405-407.
    [163]Staia M. H, Santana Y.Y., Marcano Z. Dry sliding wear of TiNx PVD coating on 7075-T6 aluminium alloy [J]. Surface Engineering,2004,20(2):128-134.
    [164]R. N. Rao, S. Dasb, D. P. Mondalb, et al. Dry sliding wear behaviour of cast high strength aluminium alloy (Al-Zn-Mg) and hard particle composites [J]. Wear,2009,267(9-10): 1688-1695.
    [165]Edin E. Balic, Thierry A. Blanchet. The effect of countersurface thermal properties on the melt wears of aluminum [J]. Wear,2007,263(1-6):609-613.
    [166]王宏明,李桂荣,赵玉涛等.电磁铸造法制备的(Al2O3+Al3Zr)p/A359复合材料的磨损行为[J].稀有金属材料与工程,2006,35(4):669-672.
    [167]罗林,刘谦,邱骥.7A52铝合金微动磨损行为研究[J].材料工程,2009,4:45-48.
    [168]李慧平.铝硅合金高温摩擦表层硅相细化和球化研究[D].昆明:昆明理工大学硕士学位论文,2010.
    [169]Alireza Hekmat-Ardakan, Xichun Liu, Frank Ajersch, et al.Wear behaviour of hypereutectic Al-Si-Cu-Mg casting alloys with variable Mg contents [J]. Wear,2010,269(9-10):684-692.
    [170]T.M. Chandrashekharaiah, S.A. Kori. Effect of grain refinement and modification on the dry sliding wear behaviour of eutectic Al-Si alloys [J]. Tribology International,2009,42(1): 59-65.
    [171]S.A. Kori, T.M. Chandrashekharaiah. Studies on the dry sliding wear behaviour of hypoeutectic and eutectic Al-Si alloys [J]. Wear,2007,263(1-6):745-755.
    [172]A. Eshaghi, H.M. Ghasemi, J. Rassizadehghani. Effect of heat treatment on microstructure and wear behavior of Al-Si alloys with various iron contents [J]. Materials & Design,2011,32(3): 1520-1525.
    [173]李浩.喷射成形Al-Si系高硅铝合金组织和性能的研究[D].镇江:江苏科技大学硕士学位论文,2012.
    [174]S.K. Dey, T.A. Perry, A.T. Alpas. Micromechanisms of low load wear in an Al-18.5% Si alloy [J]. Wear,2009,267(1-4):515-524.
    [175]金云学,Jung-Moo Lee, Suk-Bong Kang. A356/SiCP与列车实用中的有机闸片的滑动摩擦磨损特性[J].稀有金属材料与工程,2008,37(11):1956-1960.
    [176]魏敏先.严酷工况下钢铁材料的氧化磨损及轻微-严重磨损转变[D].镇江:江苏大学博士学位论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700