用户名: 密码: 验证码:
电极性矿物材料表面光催化功能膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作利用电气石矿物材料的天然电极性、辐射红外线性能和TiO_2的光催化性能,研制以电气石为载体,TiO_2薄膜和[TiO_2,SiO_2]复合薄膜为催化剂的新型复合催化材料。研究材料的制备技术、结构、性能及电气石表面TiO_2晶体生长机理、电气石增强TiO_2光催化效率机理。
     用溶胶—凝胶技术在紫铜网表面成功生长电气石/TiO_2复合薄膜,该复合膜中电气石微粒表面形成了TiO_2空心球簇结构和TiO_2层状微粒簇结构。空心球平均粒径为2μm;TiO_2微粒簇平均直径为10μm,TiO_2微粒平均粒径为2μm,阶梯层厚度为10nm,表面凸起平均粒径15nm。研究表明,电气石/TiO_2复合薄膜的光催化效率比不含电气石的TiO_2薄膜提高15.6%。
     电气石/[TiO_2,SiO_2]复合催化剂的最佳制备工艺参数为:[TiO_2,SiO_2]复合膜中SiO_2的质量分数为10%,热处理温度为600℃,热处理时间为3h。该复合催化剂对初始浓度为10mg/L的甲基澄溶液的光催化降解率(3h)达到97%以上,比电气石/TiO_2复合催化剂提高14.3%。
     通过电气石促进TiO_2光催化反应机理的研究发现,在电气石/TiO_2光催化剂体系中,电气石天然电场不仅能够吸引并牢固的捕获由TiO_2在紫外线激发下产生的光生电子,避免光生电子和光生空穴发生再复合反应,而且能够电离水分子,促进羟基自由基的生成。同时,电气石辐射的红外线能够降低水分子团的直径,引起有机高分子强烈共振,加速光催化反应速度。
A kind of novel composite photocatalysts containing TiO2 and tourmaline particles, such as tourmaline/TiO2 composite photocatalysts and tourmaline/[TiO2, SiO2] composite photocalysts, were fabricated mainly by the sol-gel technique, whose microstructure, photocatalystic activities and spontaneous polarization were investigated by the scanning electron microscope(SEM), UV-visible spectro-photometer, etc.
    The novel porous composite films of tourmaline/TiO2 were prepared from alkoxide solutions on the surface of copper by sol-gel method. Results show that the empty and porous balls of TiO2 were grown on the surface of fine tourmaline particles dispersing in the TiO2 film based on the copper net, under the effect of the nature electric field of fine tourmaline particles. The average diameter of the empty balls is 2 μm, and the photocatalystic degradation ratio of methyl orange increased by 15.6% with the composite film of TiO2 containing 0.5 wt % tourmaline than with the thin films of TiO2 under the irradiation of ultraviolet.
    In this paper, not only a new method to testify the spontaneous polarization of tourmaline is provided, but also the influence of treatment temperature on the spontaneous polarization of tourmaline/[TiO2, SiO2] composite photocatalysts containing 10wt% SiO2 are observed. Results show that tourmaline/[TiO2, SiO2] composite photocatalysts granules, under the bombardment by electron beam in SEM, will turn to be brighter and attract each other, and the electrostatic gravitation among the tourmaline/[TiO2, SiO2] composite photocatalysts granules grow up evidently on their surfaces with the accumulations of electron from the electron probe, so as to be strong enough to force the tourmaline/[TiO2, SiO2] composite photocatalysts granules be shifted rapidly and accumulated into clusters ultimately.
    Photocatalytic activities and mutual interactions mechanism between TiO2 and fine tourmaline particles were investigated, respectively. Photoelectrocalalytic reaction happens in the reaction system, in which electrons and cavities generated from nanometer TiO2 under irradiation of ultraviolet will be avoided compounding due to existence of permanent and strongly electric field of fine tourmaline powders.
引文
1. Lincebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO_2 surfaces: principle, mechanisms, and selected results[J]. Chem. Rev., 1995, 95(3): 735~758.
    2.梁金生,金宗哲,王静.稀土/纳米氧化钛的表面电子结构[J].中国稀土学报,2002,20(1):74~76。
    3.宗福祥,王峰,翁渔民,等.紫外辐照纳米尺度TiO_2薄膜亲水性转变机理[J].复旦学报,2002,41920:208-211.
    4. Fujishima A, Honda k. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 328(7): 37~38.
    5. Hoffman M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95(1): 69~96.
    6.梁金生,金宗哲,王静.环境净化功能M/TiO_2纳米材料光催化活性的研究.硅酸盐学报.1999,27(5):601~604.
    7. Jones A P, Watts R J. Dry phases titanium dioxide-mediated photocatalysis: basis for in situ surface destruction of hazardous chemicals[J]. Journal of Environmental Engineering, 1997, 10: 974~980.
    8. Ikezawa S, Hamyara H, Kubota T, et al. Application of TiO_2 film for environmental purification deposite by controlled electron beam-excited plasma[J]. Thin Solid Films, 2001, 386: 173~176
    9.王估中,符雁,汤鸿宵.甲基橙溶液多相光催化降解研究[J].环境科学,1998,19(1):1~4.
    10.方世杰,徐明霞,黄卫友等.纳米TiO_2光催化降解甲基橙[J].硅酸盐学报,2001,29(5):435~442.
    11.董庆华等.半导体悬浮体系光催化分解有机磷化合物[J].感光科学与光化学.1992,10(1):71~76.
    12.梁金生,金宗哲,王静.室内环境净化功能建筑涂料的研究[J].河北工业大学学报,2000,29(3):15~17.
    13. Zongzhe Jin, Jinsheng Liang, Jing Wang, et al, Proc.3rd.Inte Conf.on Ecomaterials, Japan, P-12, 1997,201~205.
    14. Jinsheng Liang, Zongzhe Jin, Jing Wang. Effects of TiO2 film photocatalyst tiles on growth of
    
    experimental animals proc., Inte. Conf. on High-performance ceramics, Beijing, 1998.
    15.竹内浩士.光触媒大气净化材料NOx除去[J].工业材料,1999,47(6):88~90.
    16. Taoda H, et al. Removal of nitrogen oxides from ambient air using TiO_2 film photocatalyst. In: the society of non-traditional technology eds. Proceedings of the Third International Conference on Ecomaterials. Japan, 1997, P-12, 31~34.
    17.贺飞,唐怀里,赵文宽,等.二氧化钛光催化自清洁功能陶瓷的研制[J].武汉大学学报,2001,47(4):419~424.
    18.藤屿昭.用TiO_2光触媒控制化学过敏症和建筑综合症[J].机能材料,1998,18(9):29~33.
    19.梁金生,金宗哲,于静.环境净化功能(Ce,Re)/TiO_2纳米材料的表面能带结构[J].硅酸盐学报.2001,29(5)601~603.
    20.张立德.纳米材料的研究现状和发展趋势[J],现代科学仪器,1988,(27):1~2.
    21.郭景坤.纳米化学研究及其展望[J].科学,1999,51(2):13~16.
    22.杨剑,滕凤恩.纳米材料综述[J].材料导报,1997,11(2):6~10.
    23.吴合进,吴鸣,等.增强型电场协助光催化降解有机污染物的初步研究[J].分子催化.2000.8,14(4):241~242.
    24. Butterfield I M, Christensen P A, Curtis T P, et al.Water Disinfection Using an Immobilised Titanium Dioxide Film in a Photochemical Reactor with Electric Film Enhancement[J]. Water Res, 1997, 31(3): 675.
    25. Liu Hong, Cheng Shaoan, Zhang Jianqing, et al.Titanium Dioxide as Photolcatalyst on Porous Nickel: Adsorption and the Photocatalytic Degradation of Sulfosalicylic Acid[J]. Chemosphere. 1999,38(2): 283~292.
    26.符小容等.TiO_2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解[J].应用化学,1997,14(4):77~99.
    27.符小容,宋世庚等.溶胶凝胶法制备TiO_2/Pt/glass纳米薄膜及其光电催化性能[J].功能材料,1997,28(4):411~414.
    28.冷文华,童少平等.附载型二氧化钛光电催化降解苯胺机理[J].环境科学学报,2001,21(6):281~284.
    29.冷文华,成少交.光电催化和光产生过氧化氢联合降解苯胺[J].环境科学学报,2001,21(5):625~627.
    30.刘惠玲,周定.网状Ti/TiO2电极光电催化氧化若丹明B[J].环境科学,2002,23(4):47-51.
    
    
    31.李芳柏,于良焱.新型Ti/TiO2电极的制备及其光电催化氧化活性[J].中国有色金属学报,2001,11(6):976~981.
    32.吴合进,吴鸣等.增强型电场协助光催化降解有机污染物[J].催化学报,2000,21(5):399~403.
    33.安太成,何春等.三维电极电助光催化降解直接湖蓝溶液的研究[J].催化学报,2001,22(2):193~197.
    34.姚清照、刘正宝.光电催化降解染料废水[J].工业水处理,1999,19(6):15~26.
    35.贵华.用水中有机污染物做牺牲电子施主光电化学制氢法[J].新能源,1998,20(1):24~26.
    36. Sidney B, LANG.., The History of Pyroelectricify: from Ancient Greece to Space Missions[J]. Ferroelectrics, 1999, 230: 99~108.
    37.汤云晖,吴瑞华,章西焕.电气石对含Cu~(2+)废水的净化原理探讨[J].岩石矿物学杂志,2002,21(2):192~196.
    38.冀志江.电气石的自发极化及应用基础研究[D].北京:中国建筑材料科学研究院博士论文,2003.3.
    39. Kakamu, et al. Tourmaline composite grains and apparatus using them, USP6034013, 2000.
    40.吴瑞华,汤云晖,张晓晖.电气石的电场效应及其在环境领域中的应用前景[J].岩石矿物学杂志,2001,20(4):474~484.
    41. Donnay. G.. Structural mechanism of pyroelectricity in tourmaline[J]. Acta Crystallographica, 1977, A33: 927~932.
    42. Dietrich R V. The Tourmaline Group. New York: Van Nostrand Reinhold Company, 1985.
    43.王天雕.新疆电气60Coγ辐照变色研究[J].辐射研究与辐射工艺学报,1995,13(2):102~104.
    44. Yamaguchi S. Surface electric fields of tourmaline[J]. J Appl Phys A, 1983, 31: 183~185.
    45.冀志江,梁金生,金宗哲.极性晶体电气石颗粒的电极性观察[J].人工晶体学报,2002,31(5):503~508.
    46. Jin Zongzhe, Ji Zhijiang, Liang Jinsheng et al.Observation of spontaneous polarization of tourmaline. Chinese Physics, 2003,2
    47.杨如增,徐礼新,廖宗廷.黑色电气石红外辐射与晶格缺陷及粒径的关系[J].2002,30(12):1458-1461.
    48. Barton R, Jr. Refinement of the crystal structure of buergerite and the absolute orientation of tourmalines[J]. Acta Crystallographica, 1969, B25: 1524~1533.
    
    
    49. Nakamura T, Kubo T. The tourmaline group crystals reaction with water[J]. J Ferroelectrics, 1992, 137: 13~31.
    50.余家国,赵修建,陈文梅等.TiO_2/SiO_2纳米薄膜的光催化活性和亲水性[J].物理化学学报,2001,17(3):261~264.
    51.余家国,赵修建,林立,等.超亲水TiO_2/SiO_2复合薄膜的制备和表征[J].无机材料学报,2001,16(3):529~534.
    52.陈文梅,杨尊先,赵修建,等.光催化超亲水TiO_2/SiO_2薄膜的研究[J].硅酸盐学报,2001,29(1).286-290.
    53. Jiaguo Yu, Xiujian Yu etc. Grain size and wettability of TiO_2/SiO_2 photocatalytic composite thin films. Rare Metals. 2001, 20(2): 81~86
    54. Jimmy C. Yu, Jiaguo Yu, Wingkei Ho, Lizhi Zhang, Preparation of highly photocatalytic active nano-sized TiO_2 particles via ultrasonic irradiation[J], Chem. Commum. 2001, (19): 1942~1943.
    55. Trapalis Ch, Kozzhukharov V, Samuneva B, et al. Sol-Gel processing of titanium-containing thin coatings part Ⅱ XPS studies[J]. J Mater Sci, 1993, 28: 1276.
    56. Yoko T, Kamiya K, Sakka S. Photoelectrochemical properties of TiO2 films prepared by the Sol-Gel method[J]. Yogyo Kyokai shi, 1987,95:150.
    57. Kato K, Tsuruki A, Yorii Y, et al. Morphology of thin anatase coatings prepared from alkoxide solution containing organic polymer affecting the photocatalytic decomposition of aqueous acetic acid[J]. J Water Sci, 1998, 30:837.
    58. Takahashi M, Mita K, Toyuki H, et al. Pt-TiO2 thin films on glass substrates as efficient photocatalysis[J]. Mater Sci, 1989, 24:243.
    59.余家国,赵修建.溶胶.凝胶工艺制备二氧化钛薄膜的表面组成和价态研究[J].分子催化,1999,13[5]:334~336.
    60. Takami K, Sagawa T, Uehara H, et al. Photocatalytic De-NOx-ing building materials [J]. Catalysts Catal, 1999, 41(4): 295.
    61.余家国,赵修建.多孔TiO_2光催化纳米薄膜的制备和微观结构研究[J].无机材料学报,2000,15(2):247~255.
    62. Sarmuneva B, Kozahukharov V, Trapalis C H, et al. Sol-Gel processing of titanium-containing thin coatings, part Ⅰ: preparation and structure[J]. J Mater Sci, 1993, 28: 2353~2360.
    
    
    63.余家国,赵修建,赵青南.光催化多孔TiO_2薄膜的表面形貌对亲水性的影响[J].硅酸盐学报,2000,28(3):245~250.
    64. Watanabe T, Nakaiama A, Wang R, et al. Photocatalytic activity and photo induced hydrophilicity of titanium dioxide coated glass[J]. Thin Solid Films, 1999, 351: 260~263
    65. Yu J, Zhao X. Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol-gel derived TiO_2 thin films[J]. Materials Research Bulletin, 2001,6(1~2): 97~107
    66.余家国,赵修建.热处理工艺对TiO_2纳米薄膜光催化性能的影响[J].硅酸盐学报,1999,27(6):769~774.
    67.戴清,郭妍,袁春伟等.二氧化钛多孔薄膜对含氯苯酚的电助光催化降解[J].催化学报,1999,20(3):317~320.
    68.仲维卓,罗豪苏,王步国等。极性晶体结晶习性的形成机理[J].结构化学,1997,16(2):107~112
    69.林霞.远红外线加热对细菌内毒素的破坏效果[J].中国消毒学杂志,1994.4
    70.徐怀平.远红外加热枝术.河北:人民出版社。1979:38-39.
    71.卢为开.远红外辐射加热枝术.上海:上海科学出版社.1983:2-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700