用户名: 密码: 验证码:
梁拱组合体系设计理论关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梁拱组合体系是对传统拱桥的发展,是梁桥和拱桥的结合体,集合了两者的优点。在60~200m跨径范围内,梁拱组合体系造价低廉、施工难度小、对通航基本无阻碍,是最具有竞争力的桥型之一。常见的梁拱组合体系有平行式和内倾式(即提篮拱)两种;但近年来,将拱肋外倾,形成外倾式梁拱组合体系(即蝶形拱)的桥梁也屡见不鲜。本文对平行式梁拱组合体系的概念设计进行了归纳总结,对平行式梁拱组合体系的简化计算和梁拱协作机理进行了研究,对外倾式梁拱组合体系的拱肋倾角和吊杆夹角进行了参数分析以及提出了一种新的确定外倾式梁拱组合体系空间多索面吊杆张拉力的方法。
     1.平行式和外倾式梁拱组合体系的概念设计
     比较全面地归纳和总结了平面梁拱组合体系总体设计参数(矢跨比、拱肋高跨比、主梁高跨比、拱肋倾角、索面布置等)的一般确定原则以及结构截面尺寸(包括拱肋、主梁、吊杆)的常用取值;结合现有工程实例,总结了外倾式梁拱组合体系的结构布置规律。比较全面地总结了梁拱组合体系关键部位的试验和有限元分析结果,提出了梁拱组合体系关键部位钢筋的四个作用:拱肋的配筋要求;主梁的配筋要求、拱肋与主梁结合传力的配筋要求;局部应力集中的配筋要求。由此得出了关键部位钢筋布置的四个原则:拱肋的纵向钢筋和箍筋;主梁的纵向钢筋和箍筋;垂直于拱肋的斜拉筋;支座和角隅的加强钢筋网。
     2.梁拱组合体系的实用计算
     对均布荷载作用下,梁拱组合体系吊杆力的有限元结果进行分析、综合,作出了吊杆力大小相等的假定,并将吊杆力假定为膜张力,将梁拱组合体系分解成梁拱组合体和吊杆两种构件,由变形协调方程,通过结构力学方法求解出了均布荷载作用下梁拱组合体系的吊杆均布膜张力以及跨中拱肋、主梁挠度的简化公式。分析了简化公式误差产生的原因,即,用四次抛物线膜张力修正均布膜张力、余弦荷载修正膜张力产生的误差,分别提出了修正系数c1、c2,再将修正后的结果与有限元结果的比较,提出了综合修正系数c3。讨论了轴向变形的影响,给出了特例情况下的公式简化,并从动态变形协调角度得出了同样的计算公式。提出了集中荷载作用下的影响线求解思路。
     3.梁拱组合体系的梁拱协作机理研究
     由结构力学方法,给出了外荷载分别作用在拱肋、主梁以及均布膜张力作用下梁拱组合体的有关计算公式,并求解出了梁拱组合体的弹性中心公式。求解出了拱梁荷载比、拱梁弯矩比的计算公式,讨论了梁拱截面抗弯刚度比、吊杆拱肋等代弯矩刚度比、矢跨比、轴向变形影响系数对它们的影响曲线关系。由拱梁弯矩比、主梁轴力、主梁挠度、拱肋挠度四个指标,对刚拱柔梁、柔拱刚梁、刚拱刚梁进行了界定,得出了界定值,认为可将EI_b/EI_a≤1/50定义为刚拱柔梁;可将EI_b/EI_a≥20定义为柔拱刚梁,且必须将柔拱刚梁的计算模式取为朗格拱,不能仅将EI_a=20EI_b。
     4.外倾式梁拱组合体系的合理倾角确定
     根据拱肋、主梁、吊杆的夹角关系对外倾式梁拱组合体系进行了分类,由拱肋与竖直平面的夹角关系提出了基本体系Ⅰ、由拱肋和吊杆的夹角关系提出了基本体系Ⅱ。通过基本体系Ⅰ的位移、内力影响线分析,以及梁拱结构变形、结构内力、吊杆力、结构稳定性能等结构性能指标与拱肋倾角的关系的参数分析,得到了这些指标与拱肋倾角的变化关系,提出了合理的拱肋倾角值,即不超过30°;通过这些指标与吊杆夹角的关系的参数分析,得到了这些指标与吊杆夹角的变化关系,提出了合理的吊杆夹角值为零,即拱肋外力与拱肋同平面。
     5.空间多索面吊杆张拉力的确定
     探讨了桥梁结构的合理设计状态含义,并将其分为施工、成桥、运营等三个阶段,论述了三个阶段合理设计状态的定义和相互关系。提出运营阶段是桥梁合理设计状态的核心,但由于运营阶段的可变作用、收缩徐变等影响难于确定,实际中常常求解成桥时的合理设计状态。提出了一种新的、借助于大型通用有限元软件ANSYS的一阶优化算法的、能确保施工、成桥、营运设计受力和线型状态合理的、根据实际施工过程全仿真的、方便处理各种非线性因素影响的成桥合理设计状态索力(吊杆力)确定方法。这种方法简单可行,能建立成桥索力(设计变量)与合理设计状态指标(优化目标)的直接、正向联系。
Beam-arch association bridge, which combined by beam and arch, is adevelopment to the traditional arch and integrate their merits. Between the span of60~200 meters, beam-arch association bridge is of competition for its strongpoints, such as low manufacturing cost, little difficulty to construct, nearly no-obstacle toships, etc. Usual styles for this kind of bridge are parallel one and inward one; recently, the outward one more and more comes into being. The paper summed up theregularities of concept design for the beam-arch association bridge, did researches onthe practical formula and cooperation mechanics between beam and arch, didparametric analysis on the arch slope angle and the suspender slope angle, and gave anew method on how to get the forces of multi spatial suspenders for the outwardbeam-arch association bridge.
     1. Concept design of parallel and outward beam-arch association bridges
     The popular rules that how to valuate general design parameters (such as ratio ofrise to span, ratios of height to span for arch and beam, slope angle of arch, layout ofcable plane, etc) and structural sectional dimensions (such as arch, beam, suspender)of parallel beam-arch association bridges were summed up. The actual layout rules foroutward beam-arch association were listed. Moreover, the paper generalized theresults of experiments and FEM analysis for the keypoints, and presented an ideal thatbars in the keypoints should have four functions: for the arch stress; for the beamstress; for the force transferring between arch and beam; and for the stress raisers.According to the ideal, the rule to arrange bars in the keypoints was presented: thelongitudinal and hoop reinforcements of arch; the longitudinal and hoopreinforcements of beam; the sloping bars normal to arch; the grid of reinforcements onthe bearings and the corners.
     2. Practical formula of the beam-arch association bridges
     With the FEM results of suspender forces under the uniform load, the paperassumed that all the suspender forces were equal, and the suspender forces could be regarded as filmy ones. The beam-arch association bridge was departed intobeam-arch body and filmy suspender. Through the deforming balance equation at themidpoint, the practical formulas of filmy suspender forces, deflections at the midpointwere acquired. Then, reasons of error between the FEM results and practical formulaswere discussed. Using quartic parabolic curve to replace uniform curve, cosine forceto filmy force, coefficients of correction—c1 and c2 were valuated; comparingbetween the FEM results and corrected formulas by c1 and c2, the third one—c3 wasvaluated. Effect of axial deformation, simplification of the formulas for special case, another way to the formulas of dynamic deformation balance equation were the nextwork. Finally, the influence line method, which is used to mechanically resolve thestructure under point force, was presented.
     3. Cooperation mechanic between beam and arch for beam-arch association bridges
     With the mechanical method, the formulas about beam-arch body were acquiredwhen it was individually loaded on arch, beam, arch and beam. The formula of elasticcenter was also got. Next, the paper presented the expressions on ratio of load sharingand ratio of moment sharing between beam and arch. Moreover, the influence curvesabout ratio of beam-arch sectional flexural rigidity, ratio of suspender-arch equivalentflexural rigidity, ratio of rise to span, influence coefficient of axial deformation weredealt with graph. Four performance indexes were used to defined the specificationbetween rigid arch and flexible beam, flexible arch and rigid beam, or rigid arch andrigid beam. The four indexes were beam-arch ratio of moment sharing, axial force ofbeam, arch deflection, and beam deflection. The author holds the ideal that thebeam-arch association bridge can be dealt into rigid arch and flexible beam whenEI_b/EI_a≤1/50; flexible arch and rigid beam when EI_b/EI_a≥20.
     4. Rational sloping angle of outward beam-arch association bridges
     Outward beam-arch association bridges were classified according to therelationship of sloping angles between arch, beam, and suspender. From therelationship of sloping angle between arch plane and vertical plane, basic systemⅠwas defined; and relationship of sloping angle between arch plane and suspenderplane, basic systemⅡ. Through the influence line analyzing of displacement andinner force, and parametric analysis between structural performance indexes (such as) and arch sloping angle, the relation curves between those indexes and arch slopingangle were achieved, then the conclusion that rational arch sloping angle is less than30°was drawn; Through the parametric analysis between those indexes andsuspender sloping angle, the relation curves between those indexes and suspendersloping angle were achieved, then the conclusion that rational arch sloping angle is 0°was drawn. That is to say, when the external force is coplanar to arch plane, thesuspender angle is the most rational.
     5. Valuating of pushing forces for spatial multi suspenders
     The meaning of rational design point for bridge was discussed, and it wasdivided into three stages—construction stage, completed bridge stage, and servicestage. Then, the meaning and relationship between the three rational design pointswas discussed. The core stage was service stage, but because of the uncertainty ofeffects by variable forces, shrinkage, and creep, the rational design point at the servicestage was usually solved. A new method to valuate the pushing forces for spatial multisuspenders was presented, which was based on the first-order algorithm in the popularFEM software—ANSYS, could ensure the rationality of internal force and line shapein all the three design points, was completely emulated from the actual construction, and was convenient to deal with all the nonlinear factors. The method is simple andfeasible, and can set up the direct and forward connection between the suspenderforces (design variables) and indexes of rational design point.
引文
[1] 李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,2002
    [2] 金成棣.预应力混凝土梁拱组合桥梁——设计研究与实践.北京:人民交通出版社,2001
    [3] 钟新谷.单拱面预应力混凝土系杆拱桥极限承载力分析:(博士学位论文).长沙:长沙铁道学院,1997
    [4] 郝维索.卢浦大桥尾端节点设计.城市道桥与防洪,2003(6)
    [5] 朱卫国,张松,项贻强.三跨连续梁拱组合体系桥梁稳定性分析.中国市政工程,2004(3)
    [6] 叶红玲,隋允康.应力约束下连续体结构的拓扑优化.北京工业大学学报,32(4),2006
    [7] 刘帮俊.拓扑优化技术在桥梁规划中的应用.公路交通技术,2006(1)
    [8] 潘盛山.钢管混凝土窄拱桥的横向稳定性研究:[博士学位论文].大连:大连理工大学,2005
    [9] 陈峰,胡大琳.大跨径钢管混凝土拱桥非线性静风稳定性.长安大学学报,2006,26(2)
    [10] 钟新谷,曾庆元.吊杆刚度对系杆拱桥极限承载力的影响分析.湘潭矿业学院学报,1999,14(4)
    [11] 刘煜,肖汝诚,董萌.大跨度拱桥的结构优化与建议.结构工程师,2002(3)
    [12] 张俊杰等.卢浦大桥空间结构分析.上海市公路学会第五届年会学术论文集,上海,2000
    [11] 杨永清.抛物线双肋拱在保向力作用下的横向稳定性.西南交通大学学报,2003,38(1)
    [12] 黄大元.钢管混凝土桁式拱桥简化计算模式研究.桥梁建设,2002(2)
    [13] 周和林.广东省中山市蝴蝶拱桥空间模型计算分析.四川建筑科学研究,2004,30(3)
    [14] 刘钊,吕志涛.有横撑系杆拱桥的侧向稳定承载力.工程力学,2004,21,(3)
    [15] 岳贵平.上海卢浦大桥施工临时索塔设计.城市道桥与防洪,2003(2)
    [16] 唐杰林.广西南宁大桥蝶形拱桥施工方案介绍.公路与汽运,总第103期
    [17] 顾安邦.中、下承式拱桥短吊杆结构行为分析.重庆交通学院学报,2002,21(4)
    [18] 戴公连,李建德,曾庆元等.深圳市芙蓉大桥连续钢管拱系杆拱桥空间稳定性分析.中国公路学报,2001,14(1)
    [19] S. H. Ju. Statistical analyses of effective lengths in steel arch bridges. Computers and Structures, 2003 (81)
    [20] A. S. Namzy. Stability and load-carrying capacity of three-dimensional long-span steel arch bridges, Computers and Structures, 1997, 65 (6)
    [20] 李新平,钟健聪.空间系杆拱桥吊杆张拉控制分析.华南理工大学学报,2004,32(7)
    [21] 林同炎.拱是结构也是建筑.土木工程学报,1997,30(3)
    [22] N. Hussian and I. Wilson. The Hume Arch Bridge, Manchester, Civil Engineering, 1999, 132, Feb. 11640, 2-13
    [23] 海诺·恩格尔.结构体系与建筑造型.天津:天津大学出版社,2002
    [23] 郭宝成,王新玲,蒋晓东.建筑结构体系概念和设计.北京:黄河水利出版社,2001
    [23] 林同炎.结构概念和体系(第二版).北京:中国建筑工业出版社,1999
    [24] 范立础.桥梁工程(上).北京:人民交通出版社,2000
    [25] 顾安邦.桥梁工程(下).北京:人民交通出版社,2000
    [26] 项海帆,刘光栋.拱结构的稳定与振动.北京:人民交通出版社,1999
    [27] 顾安邦,孙国柱.公路桥涵设计手册-拱桥.(上)北京:人民交通出版社,1994
    [28] 顾安邦,孙国柱.公路桥涵设计手册-拱桥.(下)北京:人民交通出版社,1994
    [29] 蒋彦征.预应力混凝土梁拱组合桥系杆拱桥性能研究(硕士学位论文).上海:同济大学土木工程学院,2000
    [30] 李国平,连续拱梁组合桥的特性研究.第十三届全国桥梁学术会议论文集,1999
    [31] 肖汝诚,郭瑞等.无推力斜靠式拱桥体系及其优化设计.长沙:第十六届全国桥梁学术会议论文集,2004
    [32] 孙海涛,肖汝诚,孙斌,贾丽君.无推力斜靠式拱桥体系及其优化设计.长沙:第十六届全国桥梁学术会议论文集,2004
    [33] 李宏辉,金建洲,刘光远.九曲河提篮拱桥受力特性研究.郑州大学学报(理学版),2003(12)
    [34] 杨兴旺,赵雷,李乔.提篮式系杆拱桥施工全过程承载力分析.四川建筑科学研究,2004(9)
    [35] 郑宪政.钢管混凝土拱桥设计现状.第十五届全国桥梁学术会议论文集,2002
    [36] 李生智,王玮遥,邬妙年.异形拱桥.北京:人民交通出版社,1996
    [37] 陈天本.桁式组合拱桥.北京:人民交通出版社,2001
    [38] 尼尔斯.J.吉姆辛.缆索支承桥梁—概念与设计(第二版).北京:人民交通出版社,2002
    [39] 梁鹏,肖汝诚等.超大跨度缆索承重桥梁结构体系.公路交通科技,2004(5)
    [40] 陈宝春.钢管混凝土拱桥计算理论研究进展.土木工程学报,2003(6)
    [41] 施曙东.大跨度钢桁架拱桥技术分析.交通科技,2005(6)
    [42] 于淑兰.梁拱组合桥梁结构体系性能分析[硕士学位论文].大连:大连理工大学,2003
    [43] 李国平.连续拱梁组合桥的性能与特点.桥梁建设,1999(1)
    [44] 夏旻,刘浩.不同吊杆布置形式下简支梁拱组合体系拱桥的影响线特性分析.交通科技与经济,2004(2)
    [45] 刘钊,李鹏,丁文胜.大跨度系杆拱桥的结构形式对动力特性及地震响应的影响探讨.桥隧工程,2005(4)
    [46] 王幅敏,徐伟.重庆朝天门长江大桥主桥结构体系研究.公路交通技术,2005(3)
    [47] 李莹.斜靠式梁拱组合体系桥梁设计理论研究(硕十学位论文].上海:同济大学土木工程学院,2006
    [48] 黄文金,陈宝春.钢管混凝土单肋拱面外屈曲参数分析.福建建筑,2005(3)
    [49] 刘钊,吕志涛.有横撑系杆拱桥的侧向稳定承载力工程力学,2004(6)
    [50] 王玫玲,刘毓湘,张卫.108m跨拱梁组合钢桥自振性能分析.中外公路,2006(6)
    [51] 曾德荣,张庆明.提篮式拱桥拱肋内倾角对横向稳定性的影响.重庆交通学院学报,2006(6)
    [52] 陈宝春,郑怀颖.钢管混凝土飞鸟式拱桥桥型分析.中外公路,2006(3)
    [53] 陈宝春,王远洋,黄卿维.波形钢腹板混凝土拱桥新桥型构思 世界桥梁,2006
    [54] 胡大琳等.拱上拱式结构钢筋砼拱桥极限承载力分析.中国公路学报,1993,(1),69—75
    [55] 胡大琳等.大跨径钢管砼拱桥空间几何非线性分析.中国公路学报,1998,(2),45—51
    [56] 谢尚英等.砼拱桥在施工阶段的非线性稳定分析,两南交通大学学报,99,(1),32—35
    [57] 项海帆等.高等桥梁结构理论.北京:人民交通出版社,2001
    [58] 陈礼忠,曹映泓.拱桥稳定分析的有限元方法及程序编制.华东公路,1997(2)
    [59] 赵长军,王锋君,徐兴.考虑弹性大位移影响的中承式钢管混凝土拱桥稳定性.西安公路交通大学学报,2001,21(2)
    [60] 颜全胜,韩大建.钢管混凝土系杆拱桥的非线性与稳定分析.上海:第十三届全国桥梁学术会议论文集,1998
    [61] 颜全胜,骆宁安等.大跨度拱桥的非线性与稳定分析.华南理工大学学报,2000,28(6)
    [62] 戴公连,李德建等.深圳市芜蓉大桥连续钢管拱系杆拱桥空间稳定性分析.中国公路学报,2001,14(1)
    [63] 潘家英,张国政.大跨度桥梁极限承载力的几何与材料非线性耦合分析.土木工程学报,2000,33(1)
    [64] 刘来君.拱桥极限承载力分析的逐次逼近法.西安公路交通大学学报,1999,19(1)
    [65] 程进,肖汝诚等.大跨径悬索桥静风稳定性的参数研究.公路交通科技,2001,18(2)
    [66] 中华人民共和国交通部标准.公路桥涵设计通用规范(JTJ021-89).北京:人民交通出版社,1989
    [67] 杨文奇.铁路拱桥拱圈的优化设计.兰州铁道学院学报,1992,11(4)
    [68] 罗辉.一种新型的拱轴线及拱圈优化设计.桥梁建设,1997,(2)
    [69] Jing Liu, Stephen J. Foster . A three-dimensional finite element model for confined concrete structures. Computers and Structures 77(2000): 441~451
    [70] Maohong Yu, Songyan Yang, S. C. Fan, Guowei Ma Unified elasto-plastic associtated and non-associated constitutive model and its engineering applications. Computers and Structures 71(1999): 627~636
    [71] J. M. Desir, M. R. B. Romdhane. Steel-concrete interface: revisiting constitutive and numerical modeling. Computers and Structures 71(1999): 489~503
    [72] Xuelin Wang, Ji Zhou. An accelerated subspace iteration method for gereralized eigenproblerms. Computers and Structures 71(1999): 293~301
    [73] 江忠贵.铁路钢管混凝土拱桥结构分析及截面拟定.桥梁建设,1999.1 33~36
    [74] 李国平,张哲元.钢—混凝土组合桥混凝土徐变收缩分析.结构工程师,1999(1):12~17
    [74] 涂凌.钢管混凝土拱桥承载力计算.重庆交通学院学报,1999.6 Vol.18 No.2:8~11
    [75] 陈政清、曾庆元、颜全胜.空间杆系结构大挠度问题内力分析的UL列式法.土木工程学报,1992,25(2):34-43
    [76] B. Assa, M. Dhanasekar. A layered line element for the flexural analysis of cyclically loaded reinforced concrete beam-columns. Computers and Structures 78(2000): 517~527
    [77] Bazant Z. P. -Prediction of concrete creep effects using age-adjusted effective modulus method ACI Journal 1972, 69(4): 212~217
    [78] W. Chen-Plasticity in reinforced concrete, McGraw-Hill, 1982
    [79] Y. Dubois-Pelerin, Th. Zimmermann, P. Bomme-Object-oriented finite element programming: Ⅱ A prototype program in Smalltalk, Comp. Meth. Appl. Mech, Eng. (98), 1992
    [80] Y. Dubois-Pelerin, P. Pegon-Object-oriented programming in nonlinear finite element analysis, Computers & Structures, 67, pp. 225-241, 1998
    [81] Ph. Menetrey, Th. Zimmermann-Object-oriented nonlinear finite element analysis: application to J2 plasticity, Computers & Structures, 49, pp. 767-777, 1993
    [82] 钟善桐,《钢管混凝土结构》(修订版).哈尔滨:黑龙江科学技术出版社,1994
    [83] 华孝良,徐光辉.桥梁结构非线性分析.北京:人民交通出版社,1997
    [84] 陈宝春.钢管混凝土拱桥设计与施工.北京:人民交通出版社.1999
    [85] Austin, M. A. and Preston J. L. (1992). Solid modeling of R. C. beams. Ⅰ: data structures and algorithms. J. Comp. in Civ. Engrg. ASCE, 6(4) 389~403
    [86] Zienkiewicz O. C. The Finite Element Method 3rd Ed. McGraw-Hill Company, 1977
    [87] Scholz S. P.. Element of an object-oriented FEM ++ program in C++. Computer and Structures. 1992, 43: 517~529
    [88] 蔡绍怀.钢管混凝土结构.中国建筑科学研究院
    [89] 谢肖礼,秦荣.收缩徐变对钢管混凝土拱桥影响的理论研究.桥梁建设 2001(4):1~ 4
    [90] 何雄君,文武松,胡志坚.钢管混凝土拱桥温度荷载分析.桥梁建设.2000(1):17~19
    [92] 吴波,瞿光义.钢管混凝土拱桥徐变产生的截面内力重分布计算.西安公路学院学报 1991.Vol.11.No.4:22~27
    [93] 龚尧南,王林梅.结构分析中的非线性有限元素法.北京:北京航空学院出版社,1986
    [94] Y. Dubois-Pelerin, Th. Zimmermann-Object-oriented finite element programming: Theory and C++ implementation for FEM Object C++ 001, Elmepress International, 1993
    [95] Y. Dubois-Pelerin, Th. Zimmermann-Object-oriented finite element programming: Ⅲ An efficient implementation in C++, Comp. Meth. Appl. Mech, Eng. (108), 1993
    [96] XiLin Lu, Yong Yu. Nonlinear analysis on concrete-filled rectangular tubular composite columns. Structural Engineering and Mechanics, Vol. 10. No. 6 (2000) 577~587
    [97] T. J. R. Hughes-Generalization of selective integration procedures to anisotropic and nonlinear media, International Journal for Numerical Methods in Engineering, 15, pp. 1413-1418, 1980
    [98] T. J. R. Hughes-The finite element method, Prentice-Hall, 1987
    [99] T. J. R. Hughes, T. Belytschko-Nonlinear finite element analysis, Paris Short-Course Notes, 1997
    [100] Th. Zimmermann, Y. Dubois-Pelerin, P. Bomme-Object-oriented finite element programming: I Governing principles, Comp. Meth. Appl. Mech, Eng. (98), 1992
    [101] ObjectARX developer's guide-Autodesk Inc. Jan. 19, 1999
    [102] Kenny J. R. -Removal of yield stress limitation for concrete tubular columns AISC, Engineering Journal, First Quarter pp1~4, 1994
    [103] Xu X, Cai R. F.. A new plate shell element of 16 nodes 40 degrees of freedom by relative displacement method. Communications in Numerical Methods in Engineering, 1993, 9: 15~20
    [104] Austin WJ, Ross TJ.. Elastic buckling of arches under symmetrical loading. J Struct Div ASCE, 102(5)1085~1095
    [105] He Ruo-Quan The Load Capacity of Long Columns of CFST under Axial Compressive Loading Proc. of The International Speciality Conference on Concrete Filled Steel Tubular Structures(Harbin China), 1985
    [106] 金伟良.钢筋混凝土拱桥极限承载力.浙江大学学报,1997 No.4 Vol.31:449~460
    [107] 盛洪飞等.无风撑钢管混凝土中承拱桥非线性试验分析.哈尔滨建筑大学学报,Vol.30 No. 4 Aug. 1997:103~108
    [108] ANSYS inc. Ansys Theory Manual 12th Edition (Release 9.0)
    [109] K. J. Bathe: Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc. 1982
    [110] Jinan Chung, Chiaki Matsui, Keigo Tsuda. Simplified design formula of slender concrete filled steel tubular beam-columns. Structural Engineering and Mechanics, Vol. 12, No. 1 (2001) 71~84
    [111] Z. M. Lin, D. Polyzois and A. Shah. Nonlinear analysis of fibre-reinforced plastic poles. Structural Engineering and Mechanics, Vol. 6, No. 7 (1998) 785~800
    [112] A. Yalcin Akeoz, Nihal Eratl. A sectorial element based on Reissner plate theory. Structural Engineering and Mechanics, Vol. 9. No. 6 (2000) 519~540
    [113] 刘忠,顾安邦等.万县长江大桥稳定与承载力分析.第十二届全国桥梁学术会议论文集:379~384,1996.11.18广州
    [114] Stephen P. Schneider. Axially loaded concrete-filled steel tubes. Journal of Structural Engineering, ASCE, Vol.124, No. 10:1125~113
    [115] 韩林海.钢管混凝土高强混凝土轴压稳定承载力研究.哈尔滨建筑大学学报,98(3):23~28
    [116] Z. M. Lin, D. Polyzois and A. Shah. Nonlinear analysis of fibre-reinforced plastic poles. Structural Engineering and Mechanics, Vol. 6, No. 7 (1998): 785~800
    [117] Abdullah and Katsuki Takiguchi. Complete collapse test of reinforced concrete columns. Structural Engineering and Mechanics, Vol. 12, No. 2(2001): 157~168
    [118] Karabinis A. I. Effects of comfinement on concrete columns: Plasticity Approach. Journal of Structural Engineering, Vol. 120, No. 9:2747~2767
    [119] 周广师.钢管混凝土偏心受压构件稳定极限承载力的研究.哈尔滨建筑工程学院,1982 (4)
    [120] Rechard W. Furlong. Design of Steel Encased Concrete Beam-Column. Journal of Structural Division, 1967(ST5)
    [121] Robert B. Knowles, Robert Park. Axial Load Design for Concrete Filled Steel Tubes. Journal of Structural Division, 1970(ST10)
    [122] 汤关祚,招炳泉.钢管混凝土受压构件承载力计算.工业建筑,1985(4)
    [123] W. Furlong. Concrete Encased Steel Columns—Design Tables. Journal of Structural Division, 1974(ST9)
    [124] Kenji Sakino, Yan Xiao. Elastic-Plastic Behavior of Concrete Confined in Circular Steel Tube or Spiral Reinforcement. Proc. of the International Specialty Conference of CEST Structures (Harbin China), 1988
    [125] 铁道部.《铁路桥涵设计基本规范》(TB10002.1-99)北京:铁道出版社,1999
    [126] 肖汝诚.确定大跨度桥梁的合理设计状态[博士学位论文].上海:同济大学土木工程学院,1997
    [127] 颜东煌.斜拉桥的合理设计状态确定与施工控制[博士学位论文].长沙:湖南大学土木工程学院,2001
    [128] 刘钊 编译.尼尔森—洛泽钢桥的拱肋极限强度检算办法.国外桥梁,2001(3):22~25
    [129] 叶建龙,孙建渊等.梁拱组合桥柔性吊杆张拉力的确定及分析.东北公路,2001,23(1):44~47
    [130] 刘新生等.梁拱组合体系桥梁荷载横向分布计算及试验研究.苏州城建环保学院学报,2001,14(1):58~63
    [131] 刘新生等.空间梁拱组合体系桥梁荷载横向分布计算.武汉理工大学学报(交通科学与工程版),2001,25(4):490~492
    [132] 李宗坤等.钢管混凝土拱梁结合结构的动力分析.工业建筑,2002,32(8):68~71
    [133] 项贻强,李新生等.空间梁拱组合式桥梁的分析理论与试验研究.中国公路学报,2002,15(1):67~71
    [134] 上官兴,童林等.三座梁拱组合桥梁的设计简介.中南公路工程,2003,28(2):98~01
    [135] 上官兴,童林等.钢管混凝土拱梁组合桥梁体系的研究.城市道桥与防洪,2004,(3):28~31
    [136] 童林,李传习等.钢管混凝土拱梁组合体系桥吊杆成桥索力的确定,长沙交通学院学报,2004,20(3):11~14
    [137] 曹洪武,杨碧波.一座预应力混凝土梁拱组合桥梁的设计.山西建筑,2005,31(2):190~192
    [138] 杨忠明,高波等.拱梁组合体系桥一类稳定问题探讨.桥梁建设,2005,(1):9~11
    [139] 孙树礼.连续梁拱组合桥梁设计关键技术对策研究.铁道标准设计,2005,(5):25~27
    [140] 朱英磊,张玉娥.红星街连续梁拱组合体系桥施工工艺.公路工程与运输,2004,(145):136~138
    [141] 李秉南.刚性吊杆系杆拱桥空间稳定性分析方法.中国市政工程,2006(1):26~28
    [142] 李勇,聂建国等.深圳彩虹大桥设计与研究.土木工程学报,2002,35(3):52~56
    [143] 刘振标,严爱国等.梁拱组合结构收缩、徐变效应的影响分析.桥梁,2006(8):22~25
    [144] 黎靖.连续梁拱组合结构柔性吊杆张拉力的确定.工业建设,2006,38(3):30~33
    [145] 项贻强,朱卫国等.中承式3跨连续梁拱组合式桥的分析与试验研究.公路交通科技,2006,25(3):43~45
    [146] 张浩,陈钦治.中承式连续梁拱组合式桥梁无支架施工的挠度控制.城市道桥与防洪,2006,(3):87~89
    [147] 王洪超.连续梁拱组合体系桥梁设计参数分析.岩土工程届,2006,9(4):27~29
    [148] 朱英磊,王国安.红星街桥—连续梁拱组合体系桥梁的设计简介.公路,2006(1):41~43
    [149] 黄纳新,严爱国.温福铁路昆阳大桥特大桥主桥连续梁拱施T设计.铁道标准设计,2005(11):30~32
    [150] 罗世东.铁路桥梁大跨度组合桥式结构的应用研究.铁道标准设计,2005(11):1~4
    [151] 罗世东,严爱国等.大跨度连续刚构柔性拱桥组合桥式研究.铁道科学与工程学报.2004,1(2):57~59
    [152] 张天航,李清富.多跨连续斜靠式异形拱桥的设计与稳定分析.郑州大学学报(工学版),2006,27(2):107~109
    [153] 秦顺全.宜万铁路万州长江大桥设计与施工.铁道工程学报,2006,(2):20~22
    [154] 孙永刚.苏州澹台湖大桥钢管拱安装工艺.世界桥梁,2006,(2):24~26
    [155] 徐明毅,薛栾滢等.大花水拱坝的块体元法和拱梁分载法藕合分析.岩石力学与工程学报,2005,24(增2)
    [156] 孙树礼.青藏铁路拉萨河特大桥设计关键技术与试验研究.桥梁建设,2005(5):4~7
    [157] 李凤芹,王贞.拉萨河特大桥主桥结构设计.桥梁建设,2005(5):8~10
    [158] 孙建渊,孟涛等.钱江四桥预应力钢骨混凝土纵梁极限承载力模型试验及计算分析.桥梁建设,2004(5),11~14
    [159] 张海荣.槽溪路桥拱脚局部应力分析及构造措施研究.铁道标准设计,2003(4):38~39
    [160] 邵长宇,朱旭初等.大跨连续钢桁拱—梁组合体系桥梁在万州长江铁路大桥的应用.桥梁建设,2003(3),53~55
    [161] 徐慧丹,史家均等.桥面板参与共同受力作用对拱梁组合体系桥梁的影响.上海市公 路学会第五界年会论文集:98~99
    [162] 李勇,聂建国等.一种新型的预应力钢—混凝土组合梁.桥梁建设,2001(6):31~33
    [163] 赵雷,卜一之.钢管混凝土系杆拱桥施工过程结构行为非线性分析.西南交通大学学报,2000,35(4):352~355
    [164] 励晓峰.预应力混凝土组合桁架拱桥主要参数分析.同济大学学报,1999,27(2):175~177
    [165] 顾安邦,徐君兰.中、下承式拱桥短吊杆结构行为分析.重庆交通学院学报,2002,21(4):1~3
    [166] 易伦雄.大跨度铁路桥梁桥型方案构思与设计.桥梁建设,2005,(2):33~35
    [167] 郑一峰,黄侨等.部分斜拉桥的概念设计.公路交通科技,2005,22(7):85~87
    [168] 李剑.钢管劲性骨架拱桥施工前期主拱肋结构优化设计[硕士学位论文].大连:大连理工大学,2005
    [169] 端茂军.三跨连续下承式系杆拱桥结构分析与研究[硕士学位论文).南京:南京林业大学,2005
    [170] 于淑兰.梁拱组合桥梁结构体系性能分析[硕士学位论文].大连:大连理工大学,2003
    [171] 陈彦江.大跨度钢管混凝土拱桥的横向稳定研究[博士学位论文].哈尔滨:哈尔滨工业大学,2001
    [172] 潘盛山.钢管混凝土窄拱桥的横向稳定性研究[博士学位论文].大连:大连理工大学,2004
    [173] 张杰.空腹式刚架拱桥受力特性分析[硕士学位论文].福州:福州大学,2002
    [174] 李丽.钢管混凝土拱桥结构特性分析[硕士学位论文].成都:西南交通大学,2003
    [175] 程小东.大跨度钢管混凝土拱桥的三维非线性分析
    [176] 董洪晶.钢管混凝土拱桥结构力学性能及桁拱计算方法研究[硕士学位论文].西安:长安大学,2003
    [177] 刘磊.大跨度混凝土桥的双非线性分析[博士学位论文].北京:北方交通大学,2000
    [178] 彭公孚.基于ansys软件二次开发的钢管混凝土拱桥吊装施工控制及仿真分析[硕士学位论文].武汉:武汉理工大学,2004
    [179] 侯长勇.中承式钢筋混凝土提篮拱桥研究[硕士学位论文].重庆:重庆交通学院,2000
    [180] 石少华.钢筋混凝土桥的弯矩增大系数分析[硕士学位论文].成都:西南交通大学,2003
    [181] 孔庆凯.大跨中承式拱桥短吊杆结构行为研究[硕士学位论文].成都:西南交通大学,2003
    [182] 姚翔.系杆拱桥吊杆破损研究
    [183] 张建民.大跨度钢管混凝土拱桥极限承载力与施工控制研究[博士学位论文].南宁:广西大学,2003
    [184] 林顺洪.中(下)承式拱桥吊索(杆)系静张力有限元分析
    [185] 杨永清.钢管混凝土拱桥横向稳定性研究[博士学位论文].成都:西南交通大学,2003
    [186] 李小光.钢筋混凝土双肋拱桥的侧倾稳定研究及地震反应分析[硕士学位论文].大连:大连理工大学,2004
    [187] 刘洪伟.新光大桥结构体系研究[硕士学位论文].大连:大连理工大学,2004
    [188] 邓安泰.铜瓦门大桥稳定性分析与研究[硕士学位论文].大连:大连理工大学,2004
    [189] 宋广君.琴桥模型试验研究[硕士学位论文].大连:大连理工大学,2004
    [190] 杨勇翔.单肋、双肋式拱桥稳定性能分析[硕士学位论文].上海:同济大学,2005
    [191] 胡坚锋.中承式多跨钢管混凝土单肋拱桥——鉴湖大桥的施工实践与研究[硕士学位论文].上海:同济大学,2001
    [192] 孙建渊.钢骨混凝土桥梁结构的力学性能及关键技术研究[博士学位论文].上海:同济大学,2004
    [193] 伍英.大跨度拱桥边跨钢拱肋与刚性系杆连接部位受力特性分析[硕士学位论文].长沙:湖南大学,2005
    [194] 申永刚.空间梁拱组合式桥梁的有限元分析及试验研究[硕士学位论文].杭州:浙江大学,2002
    [195] 童林.悬索线钢管混凝土拱梁组合体系及其吊杆张拉力计算研究[硕士学位论文).长沙:长沙交通学院,2003
    [196] 蒋彦征.预应力混凝土梁拱组合桥系杆桥性能研究[硕士学位论文].上海:同济大学,2003
    [197] 陈彦江.大跨度钢管混凝土拱桥的横向稳定研究[博士学位论文].哈尔滨:哈尔滨工业大学,2001
    [198] 端茂军.三跨连续下承式系杆拱桥结构分析与研究[硕士学位论文].南京:南京林业大学,2005
    [199] 邱顺冬.大跨度中承式无推力拱桥极限承载力的分析与研究[硕士学位论文].上海:同济大学,2003
    [200] 朱卫国.三跨连续梁拱组合体系桥梁的分析及其试验研究[硕士学位论文].杭州:浙江大学,2003
    [201] 陈宝春.拱桥技术成就与展望.第二届全国公路科技创新高层论坛论文集,2004:191~193
    [202] 陈宝春.超大跨径混凝土拱桥的研究进展.第三届全国公路科技创新高层论坛论文集, 2005:198~200
    [203] 陈宝春.钢管混凝土刚架系杆拱设计.第四届全国公路科技创新高层论坛论文集,2006:161~163
    [204] 岳永强,丁洁民等.蝶形钢索—拱桥的几个设计参数分析.结构工程师,21(3):1~3
    [205] 金伟良.大跨度拱桥的横向稳定性研究[博士学位论文].大连:大连理工大学,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700