用户名: 密码: 验证码:
许氏平鲉和褐牙鲆标志技术与标志放流追踪评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许氏平鲉(Sebastes schlegelii)和褐牙鲆(Paralichthys olivaceus)均为我国重要的海洋渔业经济鱼类,其广泛分布于中国、朝鲜半岛和日本沿海区域。近年来,由于许氏平鲉和褐牙鲆自然资源量的持续下降,通过人工投放幼苗来增加自然水域的野生种群资源量,即海洋生物资源增殖放流工作由此兴起。为了更好的了解放流许氏平鲉和褐牙鲆幼苗在野外的生存动态,正确评价增殖放流项目的效果,并为海水鱼类资源的补充、保护及合理利用提供科学依据。本文主要围绕以下四个方面的内容展开研究:许氏平鲉新型荧光标志技术的研究;褐牙鲆放流苗种的形态学标记方法的开发;褐牙鲆幼鱼的标记回捕实验研究;褐牙鲆增殖放流策略的优化,主要研究结果如下:
     1.本部分分别用300–500mg/L盐酸四环素(TC),200–400mg/L茜素络合指示剂(ALC),50–250mg/L钙黄绿素(CAL)和100–500mg/L茜素红(ARS)的海水溶液对许氏平鲉幼鱼(30–40mm,TL)浸染24h标记。经过60d的养殖实验后,对许氏平鲉的星耳石、矢耳石、鳞片、鳍条和鳍棘进行取样及荧光标记检测。实验结果显示当ARS染液浓度分别为200–500mg/L、300–500mg/L、200–500mg/L时,当ALC染液浓度分别为200–400mg/L、250–400mg/L、250–400mg/L时,浸染24h后,对应的许氏平鲉幼鱼的矢耳石、星耳石、鳍棘上能形成在自然光下肉眼可见的紫红色标记。实验结果同时显示四种荧光染料较高浓度处理组对许氏平鲉幼鱼的鳞片和鳍条均有较好的标记效果,其中对鳞片有较好标记效果对应的荧光染料浓度分别为≥350mg/LTC,≥250mg/LALC,≥50mg/L CAL和≥300mg/LARS,对鳍条有较好标记效果的荧光染料浓度分别为≥350mg/LTC,≥300mg/LALC,≥50mg/L CAL和≥200mg/L ARS。本研究中对许氏平鲉幼鱼有最好的染色效果(即在所有取样样品上均能检测到荧光标记)的四种荧光染料对应的染液浓度分别为350–500mg/LTC,300–400mg/L ALC,150–250mg/L CAL和300–500mg/L ARS。此外,在60d的养殖实验中,许氏平鲉幼鱼的全长和体重(湿重)在TC,ALC,CAL和ARS各浓度处理组与对照组之间均无显著差异(p>0.05)。
     2.对采自日照、威海4个褐牙鲆养殖群体和1个海捕群体的外部形态特征进行观察,发现4个养殖群体褐牙鲆无眼侧皮肤均存在不同程度的黑化现象,黑化比例为100%,而海捕群体体色正常。鱼体内部结构解剖发现,养殖群体褐牙鲆脊椎骨存在愈合现象,愈合个体占解剖总数的34.1%,海捕群体未发现有脊椎骨愈合现象。对5个群体的可量性状进行主成分分析、聚类分析、判别分析和单因素方差分析,并对可数性状进行了单因素方差分析。主成分分析和聚类分析结果表明,威海圣航群体和海捕群体差异最大。主成分分析构建了4个主成分,其贡献率分别为37.00%、18.92%、12.55%、7.68%,累积贡献率为76.15%。第一主成分主要受眼径/头长、眼间距/头长、背面腹鳍基长/体长、腹面胸鳍基长/体长的影响。判别分析对于所属群体的判别,其中威海圣航养殖群体为100%,海捕群体最低为92.9%,综合判别率为96%。对可量性状和可数性状进行单因素方差分析,结果显示5个群体的眼径/头长、眼间距/头长、背鳍鳍条、尾鳍鳍条和脊椎骨数存在显著差异,其中4个养殖群体与1个海捕群体间的差异为极显著。本研究结果丰富和完善了褐牙鲆不同群体的形态学数据库,并为开发褐牙鲆苗种形态学放流标记方法,正确评估褐牙鲆增殖放流效果提供了科学依据。
     3.作为山东省褐牙鲆增殖放流研究项目的一部分,在2009年和2010年分别利用绿色和黄色塑料椭圆标牌(Plastic oval tags,POTs)标志放流褐牙鲆幼鱼。2009年和2010年分别标志放流褐牙鲆幼鱼(70–133mm,TL)21202和18350尾,放流地点分别选在威海北海和威海俚岛的近岸人工鱼礁区,放流后一个月即开展回捕调查。实验对POTs的标志部位、脱标率、标志速度以及标记后死亡率进行了初步研究。2009年和2010年放流实验回捕放流褐牙鲆的数目分别为434尾(绝对回捕率=2.05%)和620尾(绝对回捕率=3.38%)。根据所回捕标志褐牙鲆的地理数据,实验发现2009年放流褐牙鲆自放流地点呈辐射状无规律的扩散迁移,而2010年放流的褐牙鲆绝大部分自放流地点向北迁移运动,并且计算得出2009年和2010年放流的褐牙鲆幼鱼的迁移速度分别为0.46km/day和1.05km/day。此外,2009年放流褐牙鲆在放流后6个月里全长和湿重的平均生长率为36.3±8.4mm/month和27.13±16.09g/month,而2010年放流褐牙鲆全长和湿重的平均生长率为14.7±8.8mm/month和5.65±4.17g/month。
     4.为了提高增殖放流后褐牙鲆幼鱼在野外的适应性和成活率,对褐牙鲆幼鱼的底质选择性行为、潜沙行为以及饥饿对其饵料转换行为的影响进行了实验研究。底质选择性实验的结果表明褐牙鲆幼鱼对于粒径(GS)小于2.0mm的底质具有明显的选择性,并且在此类底质的潜沙率大于94%。饵料转换实验结果显示,饥饿对饵料转换的影响存在一个“时间转折点”,即饥饿持续84h时。综合本实验的结果,我们建议在褐牙鲆幼鱼增殖放流之前要进行饥饿处理,并且饥饿持续时间应控制在36至84h,因为这样既有利于褐牙鲆幼鱼的饵料转换,也不会引起因为过度饥饿导致的野外死亡率。总之,本实验结果显示在褐牙鲆幼鱼增殖放流之前,对放流地点底质类型的调查是必要的,并且放流之前的适当饥饿有利于其饵料转换。
Both black rockfish (Sebastes schlegelii) and Japanese flounder (Paralichthysolivaceus) are widely distributed along the coastal areas of China, the Koreanpeninsula, and Japan. In recent years, the commercial catches of black rockfish andJapanese flounder, which have been important model species for stock enhancement,have significantly decreased due to habitat degradation and overfishing. With anattempt to better understand the wild survival dynamic of released juvenile blackrockfish and Japanese flounder, to correctly estimate the effectiveness of the stockenhancement strategies, and to provide useful methods to improving artificialreproduction technique, fisheries management and recruiting natural stock,fluorescent marking methods for black rockfish were researched, and themorphological marking methods, mark-recapture programs and release strategies forJapanese flounder were also studies. This paper consisted with four sections, and themain results were listed as follows:
     1. Juvenile black rockfish Sebastes schlegelii (30–40mm total length) wereimmersed in a range of tetracycline hydrochloride (TC) solutions at concentrationsranging from300to500mg l-1, alizarin complexone (ALC) solutions atconcentrations ranging from200to400mg l-1, calcein (CAL) solutions atconcentrations ranging from50to250mg/l, and alizarin red S (ARS) solutions atconcentrations ranging from100to500mg/l in filtered sea water (salinity of30) for24h, respectively. After a60-day growth experiment, clearly visible marks in sagittae,asteriscus and fin spines under normal light (score≥4) were observed atconcentrations of200–400mg l-1,250–400mg l-1and250–400mg l-1ALC and200–500mg/l,300–500mg/l and200–500mg/l ARS, respectively. Scales and fin rays showed acceptable marks at much higher concentrations (≥350mg l-1TC,≥250mg l-1ALC,≥50mg/l CAL,≥300mg/l ARS for scales and≥350mg l-1TC,≥300mg l-1ALC,≥50mg/l CAL,≥200mg/l ARS for fin rays). In the presentinvestigation, the best mark quality (i.e., acceptable marks were observed in allsampled structures after immersion marking) were obtained with TC between350–500mg l-1, ALC between300–400mg l-1, CAL between150–250mg/l, and ARSbetween300–500mg/l. In addition, there was no significant difference in survival andgrowth conditions of marked fish compared to controls60days post-marking (p>0.05).
     2. In this study, external and internal morphological characters of fourhatchery-reared populations of Paralichthys olivaceus from Rizhao Shunyuan(RZSY), Rizhao Liangzhong (RZLZ), Weihai Shenghang (WHSH) and WendengXiaoguan (WDXG) were compared with one sea-caught population from Beihai ofWeihai (HBQT). The results showed that ambicoloration occurred on the blind side ofall Japanese flounder (100%) from four hatchery-reared populations, but the skin ofsea-caught flounder was normal. The hatchery-reared flounders had fused vertebraand the frequency of specimen was34.1%. On the contrary, fused vertebra neverappeared in sea-caught flounders. Fourteen morphometric characters of fivepopulations were analysed by PCA (principal component analysis), clustering anddiscriminant methods. The results of PCA and clustering analysis showed thatindividuals from WHSH and WDXG were pooled into one group, while individualsfrom other three sites were pooled into another group. According to the result ofprincipal component analysis, four principal components were constructed by factorloading, in which the first principal component was affected by ED/HL, EI/HL,BVL/BL and VPL/BL. The contribution ratios of four principal components were37.00%,18.92%,12.55%and7.68%, respectively, and the cumulative contributionratio was76.15%. In discriminant analysis, the total accuracy of discrimination onJapanese flounder from five populations was96%. HBQT was the lowest,92.9%, while WHSH was the highest,100%. Fourteen morphometric and eight meristiccharacters of five populations were analysed by one-way ANOVA. The resultsshowed that significant differences existed in ED/HL, EI/HL, doral fin rays, caudalfin rays and the number of vertebra among the five populations, and the differencesbetween hatchery-reared populations and sea-caught were extremely significant.Theresults of this study enrich the morphometric database of Japanese flounder betweendifferent groups, and provide basic references for new morphometric markingmethods, and for correctly assessing the effectiveness of Japanese flounder stockenhancement for fishery management.
     3. As part of the stock enhancement research project of Shandong Province, China,plastic oval tags (POTs) were used to mark juvenile Japanese flounder for release,Paralichthys olivaceus (70–133mm total length, TL), in2009and2010. Optimal tagplacement locations, retention, tagging rates, and mortality were initially evaluated.mark–recapture experiments were carried out in the coastal waters of Weihai City tostudy their migratory movements:21,202individuals in July2009at Beihai and18,350individuals in July2010at Lidao. The number of recaptured individuals were434(2.05%recapture rate) in2009and620(3.38%recapture rate) in2010. Aradiative movement from the release site was observed in the2009experiment;however, the tagging experiment showed a predominantly northward dispersal oftagged flounder from the release site in2010. The mean movement speed of thereleased fish was calculated as0.46km day-1in2009and1.05km day-1in2010.Furthermore, in2009, the average TL and wet mass increments were36.3±8.4mmmonth-1and27.13±16.09g month-1, respectively,1–6months after releasing;however, the increments were14.7±8.8mm month-1and5.65±4.17g month-1,respectively, in2010.
     4. To increase survival rate in stock enhancement of Japanese flounderParalichthys olivaceus, the substrate selection behavior and effect of starvation ondiet shift from extruded pellets to live mysids were investigated under laboratory conditions. In the present investigation, the results of substrate selection behaviorclearly indicated that juvenile flounder had obvious selectivity for the substrate ofgrain sizes GS <2.0mm, and the burying rates of fish at the sides of those substrateswere more than94%. The results of effect of starvation on diet shift showed thatstarvation had a positive effect on diet shift, and the “turning point” appeared whenthe juvenile flounder were deprived of food for about84hours. Additionally, in thestock enhancement of Japanese flounder the starvation through duration of handlingstress before released were controlled about36to84hours, thus the starvation couldfacilitate the transformation of food and could also reduce or avoid themortality caused by overlong starvation. Overall, it is suggested that appropriatesubstrate grain size should be considered before mass releasing, and a mild starvationmay benefit the process of diet shift.
引文
[1]邓景耀,叶昌臣.渔业资源学[M].重庆:重庆出版社,2001:306–307.
    [2] Doherty, P.J. Recruitment limitation is the theoretical basis for stock enhancement in marinepopulations [M]//Howell B R, Moksness E, Svasaod T. Stock enhancement and sea ranching.Oxford: Blackwell Publishing,1999:9–21.
    [3]潘绪伟,杨林林,纪炜炜,等.增殖放流技术研究进展[J].江苏农业科学,2010(4):236–240.
    [4]李继龙,王国伟,杨文波,等.国外渔业资源增殖放流状况及其对我国的启示[J].中国渔业经济,2009,3(27):111–123.
    [5] Cowx, I.G.,1994. Stocking strategies. Fisheries Management and Ecology.1:15–30.
    [6] Jackson, J.B.C., Kirby M.X., Berger W.H.,2001. Historical overfishing and the recent collapseof coastal ecosystems. Science.293:629–638.
    [7] Pauly, D.V., Christensen, S. Guenette, T.J., et a1.,2002. Towards sustainability in worldfisheries. Nature.418:689–695.
    [8]程家骅,姜亚洲.海洋生物资源增殖放流回顾与展望[J].中国水产科学,2010,17(3):610-617.
    [9] FAO. The state of world fisheries and aquaculture [C]. Rome: FAO,2006,323–339.
    [10] Grimes, C.B.,1998. Marine stock enhancement: sound management or techno-arrogance?.Fisheries.23:18–23.
    [11] Blankenship, H.L., Leber, K.M.,1995. A responsible approach to marine stock enhancement
    [C]//Am Fish Soc Symp.15:165–175.
    [12] Lorenzen, K.,2008. Understanding and managing enhancement fisheries system. Rev FishSci.16(1-3):10–23.
    [13] Sv sand T, Kristiansen T S, Salvanes A G V, et a1.,2000. The enhancement of cod stocks.Fish Fish.1:173–205.
    [14] Boyce J, Herrmann M, Bischak D, et a1.,1993. The Alaska salmon enhancement program: acost/benefit analysis. Mar Res Econ.8:293–31.
    [15] Brown, M.L., Powell, J.L., Lucchesi, D.O.,2002. In-transit oxytetracycline marking,nonlethal mark detection, and tissue residue depletion in yellow perch. North American Journalof Fisheries Management.22:236-242.
    [16] Taylor, M.D., Fielder, D.S., Suthers, I.M.,2005. Batch marking of otoliths and fin spines toassess the stock enhancement of Argyrosomus japonicus. Journal of Fish Biology.66:1149-1162.
    [17] Baer, J., R sch, R.,2008. Mass-marking of brown trout (Salmo trutta L.) larvae by alizarin:method and evaluation of stocking. Journal of Applied Ichthyology.24:44-49.
    [18] Liao I C. How can stock enhancement and sea ranching help sustain and increase coastalfisheries?[M]//Howell B R, Moksness E, Sv sand T. Stock Enhancement and Sea Ranching.Oxford: Fishing News Book,1999:132–149.
    [19] Solomon, D.J.,2006. Salmon stock and recruitment, and stock enhancemen. J Fish Biol.27:45–57.
    [20] Masuda, R., Tsukamoto, K.,1998. Stock enhancement in Japan: review and perspective. BullMar Sci.62(2):337–358.
    [21] Bartley, D.M., Leber, K.M.,2004. Marine ranching [R]. FAO Fisheries Technical Paper No.429:1-18.
    [22] St ttrup, J.G., Sparrevohn, C.R.,2007. Can stock enhancement enhance stocks?. Journal ofSea Research.57:104-113.
    [23] Boyce, J., Hcrrmann, M., Bischak, D., et a1. The Alaska salmon enhancement program: acost/benefit analysis. Mar Res Econ.8:293-312.
    [24] Bell, J.D., Bartley, D.M., Lorenzen, K., Loneragan, N.R.,2006. Restocking and stockenhancement of coastal fisheries: potential, problems and progress. Fisheries Research.80:1-8.
    [25] Araki, H., Schmid, C.,2010. Is hatchery stocking a help or harm?: Evidence, limitations andfuture directions in ecological and genetic surveys. Aquaculture.308: S2-S11.
    [26] Kitada, S., Shishidou, H., Sugaya, T., Kitakado, T., Hamasaki, K., Kishino, H.,2009. Geneticeffects of long-term stock enhancement programs. Aquaculture.290:69-79.
    [27] Laikre, L., Schwartz, M.K., Waples, R.S., Ryman, N., The GeM Working Group,2010.Compromising genetic diversity in the wild: unmonitored large-scale release of plants andanimals. Trends in Ecology&Evolution.25:520-529.
    [28] Blaxter, J.H.S.,2000. The enhancement of marine fish stocks. Advances in Marine Biology.38:1-54.
    [29] Born, A.F., Immink, A.J., Bartley, D.M.,2004. Marine and coastal stocking: global status andinformation needs. In: Bartley, D.M., Leber, K.M.(Eds.), FAO Fisheries Technical Paper429.Marine ranching, FAO, Rome, pp.1-12.
    [30] Leber, K.M.,2004. Summary of case studies of the effectiveness of stocking aquaculturedfishes and invertebrates to replenish and enhance coastal fisheries. In: Bartley, D.M., Leber,K.M.(Eds.), FAO Fisheries Technical Paper429. Marine ranching, FAO, Rome, pp.203-213.
    [31] Fushimi, H.,2001. Production of juvenile marine finfish for stock enhancement in Japan.Aquaculture.200:33-53.
    [32] Nakagawa, M., Okouchi, H., Adachi, J., Hattori, K., Yamashita, Y.,2007. Effectiveness ofstock enhancement of hatchery-released black rockfish Sebastes schlegeli in Yamada Bay:evaluation by a fish market survey. Aquaculture.263:295-302.
    [33] Obata, Y., Yamazaki, H., Iwamoto, A., Hamasaki, K., Kitada, S.,2008. Evaluation of stockingeffectiveness of the Japanese Spanish mackerel in the eastern Seto Inland Sea, Japan. Reviewsin Fisheries Science.16:235-242.
    [34] Tomiyama, T., Watanabe, M., Fujita, T.,2008. Community-based stock enhancement andfisheries management of the Japanese flounder in Fukushima, Japan. Reviews in FisheriesScience.16:146-153.
    [35] Kitada, S., Kishino, H.,2006. Lessons learned from Japanese marine finfish stockenhancement programmes. Fisheries Research.80:101-112.
    [36] Yamashita, Y., Aritaki, M.,2010. Stock enhancement of Japanese flounder in Japan. In:Daniels, H.V., Watanabe, W.O.(Eds.), Practical Flatfish Culture and Stock Enhancement.Wiley-Blackwell, Ames, pp.239-255.
    [37] Brown, C., Day, R.L.,2002. The future stock enhancements: lessons for hatchery practicefrom conservation biology. Fish and Fisheries.3:79-94.
    [38] Lv, H.J., Zhang, X.M., Zhang, P.D., Li, W.T., Miao, Z.Q.,2011. The implement of plasticoval tags for mark-recapture in juvenile Japanese flounder, Paralichthys olivaceus, on thenortheast coast of Shandong Province, China. Afr. J. Biotechnol.10(61):13263-1327.
    [39] Liu, Q., Zhang, X.M., Zhang, P.D., Nwafili, S.A.,2009. The use of alizarin red S and alizarincomplexone for immersion marking Japanese flounder Paralichthys olivaceuse (T.). Fish. Res.98:67-74.
    [40] Lorenzen, K.,2005. Population dynamics and potential of fisheries stock enhancement:practical theory for assessment and policy analysis. Phil. Trans. R. Soc. B.360:171-189.
    [41] Munro, J.L., Bell, J.D.,1997. Enhancement of marine fisheries resources. Rev. Fish. Sci.5:185-222.
    [42] Howell, B.R., Moksness, E., Svasand, T.,1999. Stock Enhancement and Sea Ranching.Fishing News Books/Blackwell Publishing, Oxford.
    [43] Bell, J.D., Rothlisberg, P.C., Munro, J.L., Loneragan, N.R., Nash, W.J., Ward, R.D., Andrew,N.L.,2005. Restocking and stock enhancement of marine invertebrate fisheries. Adv. Mar. Biol.49:1-370.
    [44] Travis, J., Coleman, F.C., Grimes, C.B., Conover, D., Bert, T.M., Tringali, M.,1998.Critically assessing stock enhancement: an introduction to the Mote Symposium. Bull. Mar.Sci.62:305-311.
    [45] Hilborn, R.,1998. The economic performance of marine stock enhancement projects. Bull.Mar. Sci.62:661-674.
    [46] Uki, N.,2006. Stock enhancement of the Japanese scallop Patinopecten yessoensis inHokkaido. Fish. Res.80:62-66.
    [47] Bartley, D.M., Bondad-Reantaso, M.G., Subasinghe, R.P.,2006. A risk analysis frameworkfor aquatic animal health management in marine stock enhancement programmes. Fish. Res.80:28-36.
    [48] Ward, R.D.,2006. The importance of identifying spatial population structure in restockingand stock enhancement programmes. Fish. Res.80:9-18.
    [49] Ye, Y., Loneragan, N.R., Die, D.J., Watson, R.A., Harch, B.,2005. Bioeconomic modellingand risk assessment of tiger prawn (Penaeus esculentus) stock enhancement in Exmouth Gulf,Australia. Fish. Res.73:231-249.
    [50] Medley, P.A.H., Lorenzen, K.,2006. EnhanceFish: A Decision Support Tool forAquaculture-based Fisheries Enhancement. Software Package. Imperial College, London,available on http://www.aquaticresources.org/enhancefish.
    [51] Tsukamoto, K., Kuwada, H., Uchida, K., Masuda, R., Sakakura, A.,1999. Fish quality andstocking effectiveness: behavioural approach. In: Howell, B.R., Moksness, E., Sv sand, T.(Eds.), Stock Enhancement and Sea Ranching. Fishing News Books, Oxford, pp.203-218.
    [52] Kitada, S.,1999. Effectiveness of Japan's stock enhancement programs: current perspectives.In: Howell, B.R., Moksness, E., Sv sand, T.(Eds.), Stock enhancement and sea ranching.Fishing News Books, Oxford, pp.103-131.
    [53] Stoner, A.W.,1994. Significant of habitat and stock pre-testing for enhancement of naturalfisheries: experimental analyses with Queen conch Strombus gigas. J. World Aquac. Soc.25:155-165.
    [54] Stoner, A.W., Davis, M.,1994. Experimental out planting of juvenile queen conch, Strombusgigas-comparison of wild and hatcheryreared stocks. Fish. Bull.92:390-411.
    [55] Kellison, G.T., Eggleston, D.B., Bruke, J.S.,2000. Comparative behaviour and survival ofhatchery-reared versus wild summer flounder (Paralichthys dentatus). Can. J. Fish. Aquat. Sci.57:1870-1877.
    [56] Davis, J.L.D., Eckert-Mills, M.G., Young-Williams, A.C., Hines, A.H., Zohar, Y.,2005.Morphological conditioning of a hatchery-raised invertebrate, Callinectes sapidus, to improvefield survivorship after release. Aquaculture.243:147-158.
    [57] Ishida, M.,1974. Burrowing ability of hatchery-raised Kuruma prawn postlarvae, withspecial reference to the relation with the disorder of legs. Saibaigiken.3:11-18(In Japanese).
    [58] Fushimi, H.,1983. Stock enhancement of Kuruma prawn (Penaeus japonicus) in Hamana-ko(lagoon). In: Oshima, Y.(Ed.), Tsukuru Gyogyou. Shigen Kyokai, Tokyo, pp.236-253(Latestedn, In Japanese).
    [59] Nakano, H., Shirahata, S.,1988. An evaluation of the physiological quality of hatchery rearedchum salmon fry Onchorhyncus keta. Nippon Suisan Gakkaishi.54:1263-1269.
    [60] Swain, D.P., Riddell, B.E.,1990. Variation in agonistic behavior between newly emergedjuveniles from hatchery and wild populations of coho salmon, Oncorhynchus kisutch. Can. J.Fish. Aquat. Sci.47:566-571.
    [61] Finstad, B., Heggberget, T.G.,1993. Migration, growth and survival of wild andhatchery-reared anadromous Artic charr (Salvelinus alpinus) in Finnmark, northern Norway. J.Fish Biol.43:303-312.
    [62] Bannister, R.C.A., Addison, J.T., Lovewell, S.R.J.,1994. Growth, movement, recapture rateand survival of hatchery-reared lobsters (Homarus gammarus Linnaeus,1758) released intothe wild on the English east-coast. Crustaceana67:156-172.
    [63] Berejikian, B.A.,1995. The effects of hatchery and wild ancestry and experience on therelative ability of steelhead trout fry (Oncorhyncus mykiss) to avoid a benthic predator. Can. J.Fish. Aquat. Sci.52:2476-2482.
    [64] Malavasi, S., Georgalas, V., Lugli, M., Torricelli, P., Mainardi, M.,2004. Differences in thepattern of antipredator behaviour between hatchery-reared and wild European sea bassjuveniles. J. Fish Biol.65(Suppl A):143-155.
    [65] Tateishi, M., Ikeda, Y.,1987. Differentiation of pectoral soft-rays between hatchery-rearedred sea bream Pagrus major and wild fish. Suisanzoshoku.35:77-82(In Japanese).
    [66] Ellis, T., Howell, B.R., Hughes, R.N.,1997. The cryptic response of hatchery raised sole to anatural sand substratum. J. Fish Biol.51:389-401.
    [67] Hilome-Garcia, G.,1997. Morphological abnormalities in hatcherybred milkfish (Chanoschanos Forsskal) fry and juveniles. Aquaculture152:155-166.
    [68] Carillo, J., Koumoundouros, G., Divanach, P., Martinez, J.,2001. Morphologicalmalformations of the lateral line in reared gilthead bream (Sparus aurata L.1758).Aquaculture.192:281-290.
    [69] Cahu, C., Zambonino Infante, J.L., Takeuchi, T.,2003. Nutritional components affectingskeletal development in fish larvae. Aquaculture.227:245-258.
    [70] Van Der Meeren, G.I., Uksnoey, L.E.,2000. A comparison of claw morphology anddominance between wild and cultivated male European lobster. Aquac. Int.8:77-94.
    [71] Uchida, K., Kuwada, H., Tsukamoto, K.,1993. Tilting behavior, a fear response tofrightening stimuli, as a possible predictive index for stocking effectiveness in the juveniles ofred sea bream, Pagrus major. Nippon Suisan Gakkaishi.59:991-999.
    [72] Stunz, G.W., Minello, T.J.,2001. Habitat-related predation on juvenile wild caught andhatchery-reared red drum Sciaenops ocellatus (Linnaeus). J. Exp. Mar. Biol. Ecol.260:13-25.
    [73] Mork, O.I., Bjerkeng, B., Rye, M.,1999. Aggressive interactions in pure and mixed groups ofjuvenile farmed and wild Atlantic salmon Salmo salar L. in relation to tank substrate. Aquac.Res.30:571-578.
    [74] Furuta, S.,1991. Improvement of in behavioral quality with short term acclimation measuredby bottom-off feeding time in Japanese flounder. Saibai Giken.19:117-125(In Japanese).
    [75] Ellis, T.,Hughes, R.N.,Howell, B.R.,2004.Artificial dietary regimemay impair subsequentforaging behaviour of hatchery-reared turbot released into the natural environment. J. Fish Biol.61:252-264.
    [76] Kurata,H.,1986. Acclimation rearing. In:Kurata, H.,Hiyama, F., Fushimi, H.(Eds.),Guidebook of theKuruma prawn stock enhancement. Japan Sea Farming Association, Tokyo, pp.83-89(In Japanese).
    [77] Schiel, D.R., Welden, BC.,1987. Responses to predators of cultured and wild red abalone,Haliotis rufescens, in laboratory experiments. Aquaculture.60:173-188.
    [78] Nakano, H.,1996. Comprehensive methodology of evaluation on the finfish larval health.JASFA Bull.68:48-54(In Japanese).
    [79] Kanazawa, A., Teshima, S., Koshio, S., Higashi, M., Itoh, S.,1992. Effect ofL-Ascorbiyl-2-phosphate–Mg on the yellowtail Seriola quinqueradiata as a vitamin C source.Nippon Suisan Gakkaishi.58:337-341.
    [80] Gapasin, R.S.J., Bombeo, R.M, Lavens, P., Sorgeloos, P., Nelis, H.,1998. Enrichment of livefood with essential fatty acids and vitamin C: effects on milk fish (Chanos chanos) larvalperformance. Aquaculture.162:269-286.
    [81] Dedi, J., Takeuchi, T., Seikai, T., Watanabe, T., Hosoya, K.,1997. Hypervitaminosis A duringvertebral morphogenesis in larval Japanese flounder. Fish. Sci.63:466-473.
    [82] Suzuki, T., Oohara, I., Kurokawa, T.,1999. Retinoic acid given at late embryonic stagedepresses sonic hedgehog and Hoxd-e expression in the pharyngeal area and induced skeletalmalformation in flounder (Paralichthys olivaceus) embryos. Dev. Growth Differ.41:143-152.
    [83] Takeuchi, T., Dedi, J., Haga, Y., Seikai, T., Watanabe, T.,1998. Effect of vitamin Acompounds on bone deformity in larval Japanese flounder (Paralichthys olivaceus).Aquaculture.169:155-165.
    [84] Akiyama, T., Murai, T., Nose, T.,1986. Role of tryptophan metabolites in inhibition of spinaldeformity of chum salmon fry caused by tryptophan deficiency. Bull. Jap. Soc. Sci. Fish.52:1255-1259.
    [85] Zambonino Infante, J.L., Peres, A.,1997. Partial substitution of di-and tripeptides for nativeproteins in sea bass diet improves Dicentrarchus labrax larval development. J. Nutr.127:608-614.
    [86] Izquierdo, M.S.,1996. Essential fatty acid requirements of cultured marine fish larvae. Aquac.Nutr.2:181-191.
    [87] Yamamoto, S.,1984. Effects of the diets supplemented by some phospholipids on survival,growth, and incidence of malformation in the larval ayu Plecoglossus altivelis. Bull. Fish. Exp.Stn. Okayama Prefect.1983:80-87.
    [88] Haga, Y., Takeuchi, T., Maruyama, Y., Ohta, K., Fukunaga, T.,2004. Vitamin D3compoundsinduce hypermelanosis on the blind side and vertebral deformity in juvenile Japanese flounderParalichthys olivaceus. Fish. Sci.70:59-67.
    [89] Udagawa, M.,2001. The effect of dietary vitamin K (phylloquinone and menadione) levelson the vertebral formation in mummichog Fundulus heteroclitus. Fish. Sci.67:104-109.
    [90] Sato, M., Kondo, T., Yoshinaka, R., Ikeda, S.,1983. Effect of water temperature on theskeletal deformity in ascorbic acid-deficient rainbow trout. Nippon Suisan Gakkaishi.49:443-446.
    [91] Bolla, S., Holmefjord, I.,1988. Effect of temperature and light on development of Atlantichalibut larvae. Aquaculture.74:355-358.
    [92] Wang, L.H., Tsai, C.L.,2000. Effects of temperature on the deformity and sex differentiationof tilapia, Oreochromis mossambicus. J. Exp. Zool.286(5):534-537.
    [93] Haddy, J.A., Pankhurst, N.W.,2000. The effects of salinity on reproductive development,plasma steroid levels, fertilization and egg survival in black bream Acanthopagrus butcheri.Aquaculture.188:115-131.
    [94] Bolla, S., Ottesen, O.H.,1998. The influence of salinity on the morphological development ofyolk sac larvae of Atlantic halibut, Hippoglossus hipoglossus (L.). Aquac. Res.29(3):203-209.
    [95] Waples, R.S., Winans, G.A., Utter, F.M., Mahnken, C.,1990. Genetic approaches to themanagement of Pacific salmon. Fisheries.15:19-25.
    [96] Ryman, N., Utter, F., Laikre, L.,1995. Protection of intraspecific biodiversity in exploitedfishes. Rev. Fish Biol. Fish.4:417-446.
    [97] Frankham, R.,2005. Stress and adaptation in conservation genetics. J. Evol. Biol.18:750-755.
    [98] Miller, L.M., Kapuscinski, A.R.,2003. Genetic guidelines for hatchery supplementationprograms. In: Hallerman, E.M.(Ed.), Population Genetics: Principles and Applications forFisheries Scientists. American Fisheries Society, Bethesda, Maryland, pp.329-356.
    [99] Oota, T., Matsuishi, T.,2005. Increase of inbreeding by stocking on wild population assessedby using individual-based life history model. Fish. Sci.71:73-78.
    [100]陈锦淘,戴小杰.鱼类标志放流技术的研究现状[J].水产学报,2005(4):451-456.
    [101] Lorenzen, K., Leber, K.M., Blankenship, H.L.,2010. Responsible approach to marine stockenhancement: an update. Rev. Fish. Sci.18:189-210.
    [102] Bergman, P.K., Haw, F., Blankenship, H.L., Buckley, R.M.,1992. Perspectives on design,use, and misuse of fish tags. Fisheries.17:20-25.
    [103] Marullo, F., Emiliani, D.A., Caillouet, C.W., Clark, S.H.,1976. A vinyl streamer tag forshrimp (Penaeus spp.). Transactions of the American Fisheries Society.105:658–663.
    [104] Howe, N., Hoyt, P.R.,1982. Mortality of juvenile brown shrimp Penaeus aztecus associatedwith streamer tags. Transactions of the American Fisheries Society.111(3):317-325.
    [105] Block, B.A.,2006. Accelerating electronic tag development for tracking free-ranging marineanimals at sea. National Oceanographic Partnership Program (NOPP), http://www.nopp.org/2006.
    [106] Metcalfe, J.D., Arnold, G.P.,2000. Tracking fish with electronic tags. Nature.387(6634):665-666.
    [107] Bolle, L.J., Hunter, E., Rijnsdorp, A.D., Pastoors, M.A., Metcalfe, J.D., Reynolds, J.D.,2005. Do tagging experiments tell the truth? Using electronic tags to evaluate conventionaltagging data. ICES Journal of Marine Science.62:236-246.
    [108] Nielsen, L.A.,1992. Methods of marking fish and shellfish. New York: American FisheriesSociety Special Publication.23:37-38.
    [109]孙忠,余方平,王跃斌.鮸鱼增殖放流标志技术的初步研究[J].海洋渔业,2007,29(4):344-348.
    [110] Dietrich, J.P., Cunjak, R.A.,2006. Evaluation of the impacts of Carlin tags, fin clips, andpanjet tattoos on juvenile Atlantic salmon. North American Journal of Fisheries Management.26(1):163-169.
    [111] Lea o, E.M., Liao, I.C.,2006. Tagging of Litopenaeus vannamei (Boone) by uropod cutting:a comparison of two methods. Aquaculture Research.37(9):885-890.
    [112] Bryant, M.D., Dolloff, C.A., Porter, P.E., Wright, B.E.,1990. Freeze branding with CO2: aneffective and easy-to-use field method to mark fish. American Fisheries Society Symposium.7:30-35.
    [113] Knight, A.E.,1990. Cold-branding techniques for estimating atlantic salmon parr densities.American Fisheries Society Symposium.7:36-37.
    [114] Davis, J.L.D., Young-Willams, A.C., Hines, A.H., Zmora, O.,2004. Comparing two types ofinternal tags in juvenile blue crabs. Fisheries Research.67:265-274.
    [115] Brennan, N.P., Leber, K.M., Blankenship, H.L., Ransier, J.M., DeBruler Jr, R.,2005. Anevaluation of coded wire and elastomer tag performance in juvenile common snook under fieldand laboratory conditions. North American Journal of Fisheries Management.25:437-445.
    [116] Astorga, N., Afonso, J.M., Zamorano, M.J., Montero, D., Oliva, V., Fernández, H., Izquierdo,M.S.,2005. Evaluation of visible implant elastomer tags for tagging juvenile giltheadseabream (Sparus auratus L.); effects on growth, mortality, handling time and tag loss.Aquaculture Research.36:733-738.
    [117] Volk, E.C., Schroder, S.L., Grimm, J.J.,1999. Otolith thermal marking. Fisheries Research.43(1):205-219
    [118] Brothers, E.B. Otolith marking techniques for the early life history stages of lake trout. Finalreport to great lakes fishery commission,1985:34.
    [119] Bergstedt, R.A., Eshenroder, R.L., Bowen, C., Seelye, J.G., Locke, J.C.,1990.Mass-marking of otoliths of lake trout sac fry by temperature manipulation. AmericanFisheries Society Symposium.7:216-223.
    [120] Mosegaard, H., Steffner, N.G., Ragnarsson, B.,1987. Manipulation of otolith microstructureas a means of mass-marking salmonid yolk sac fry. Proceedings of the Fifth Congress ofEuropean Ichthyologists.213-220.
    [121] Hagen, P., Munk, K., Van Alen, B., White, B.,1995. Thermal mark technology for in-seasonfisheries management: a case study. Alaska Fishery Research Bull.2:143-155.
    [122] Song, Z.B., He, C.L., Fu, Z.D., Shen, D.Z.,2008. Otolith thermal marking in larval Chinesesucker, Myxocyprinus asiaticus. Environmental Biology of Fishes.82:1-7.
    [123] Barker, J.M., Mckaye, K.R.,2004. Immersion marking of juvenile midas cichlids withoxytetracycline. Trans. Am. Fish. Soc.24:262-269.
    [124] Oliveira, K.,1996. Field validation of annular growth rings in the American eel, Anguillarostrata, using tetracycline-marked otoliths. US National Marine Fisheries Service FisheryBulletin.94(1):186-189.
    [125] Leips, J., Baril, C.T., Rodd, F.H., Reznick, D.N., Bashey, F., Visser, G.J., Travis, J.,2001.The suitability of calcein to mark poeciliid fish and a new method of detection. Trans. Am.Fish. Soc.130:501-507
    [126] Frenkel, V., Kindschi, G., Zohar, Y.,2002. Noninvasive, mass marking of fish by immersionin calcein: evaluation of fish size and ultrasound exposure on mark endurance. Aquaculture.214:169-183.
    [127] Eckmann, R.,2003. Alizarin marking of whitefish, Coregonus lavaretus otoliths during eggincubation. Fish. Manag. Ecol.10:233-239.
    [128] Bashey, F.,2004. A comparison of the suitability of alizarin red S and calcein for inducing anonlethally detectable mark in juvenile guppies. Trans. Am. Fish. Soc.133:1516-1523.
    [129] Skov, C., Gr nkj r, P., Nielsen, C.,2001. Marking pike fry otoliths with alizarincomplexone and strontium: an evaluation of methods. J. Fish. Biol.59:745-750.
    [130] Walt, B.V.D., Faragher, R.A.,2003. Otolith marking of rainbowtrout fry by immersion inlow concentrations of alizarin complexone. N. Am. J. Fish. Manag.23:141-148.
    [131]王永顺,黄鸣夏,张庆生,等.海蜇标志放流试验[J].浙江水产学院学报,1994,13(3):201-204.
    [132] Humphreys, M., Park, R.E., Reichle, J.J., Mattson, M.T.,1990. Stocking checks on scale asmarks for identifying hatchery striped bass in the hudson river. American Fisheries SocietySymposium.7:78-83.
    [133] Schweigert, J.F.,1990. Comparison of morphometric and meristic data against trussnetworks for describling pacific herring stocks. American Fisheries Society Symposium.7:47-62.
    [134] Palsb ll, P.J.,1999. Genetic tagging: contemporary molecular ecology. Biological Journal ofthe Linnean Society.68:3-22.
    [135] Sekino, M., Saitoh, K., Yamada, T., Hara, M., Yamashita, Y.,2005. Genetic tagging ofreleased Japanese flounder (Paralichthys olivaceus) based on polymorphic DNA markers.Aquaculture.244:49-61.
    [136] Obata, Y., Imai, H., Kitakado, T., Hamasaki, K., Kitada, S.,2006. The contribution ofstocked mud crabs Scylla paramamosain to commercial catches in Japan, estimated using agenetic stock identification technique. Fisheries Research.80:113-121.
    [137] Gonzalez, E.B., Nagasawa, K., Umino, T.,2008. Stock enhancement program for black seabream (Acanthopagrus schlegelii) in hiroshima bay: monitoring the genetic effects.Aquaculture.276:36-43.
    [1]朱元鼎,张春霖,成庆泰.东海鱼类志.北京:科学出版社,1963.
    [2]陈大刚.黄渤海渔业生态学.北京:海洋出版社,1991.
    [3] Taylor, M.D., Fielder, D.S., Suthers, I.M.,2005. Batch marking of otoliths and fin spines toassess the stock enhancement of Argyrosomus japonicus. J. Fish. Biol.66:1149-1162.
    [4] Baer, J., R ch, R.,2008. Mass-marking of brown trout (Salmo trutta L.) larvae by alizarin:method and evaluation of stocking. J. App. Ichth.24:44-49.
    [5] Lorenzen, K., Leber, K.M., Blankenship, H.L.,2010. Responsible approach to marine stockenhancement: an update. Rev. Fish. Sci.18:189-210.
    [6] Barker, J.M., Mckaye, K.R.,2004. Immersion marking of juvenile midas cichlids withoxytetracycline. Trans. Am. Fish. Soc.24:262-269.
    [7] Lv, H.J., Zhang, X.M., Zhang, P.D., Li, W.T., Miao, Z.Q.,2011. The implement of plastic ovaltags for mark-recapture in juvenile Japanese flounder, Paralichthys olivaceus, on the northeastcoast of Shandong Province, China. Afr. J. Biotechnol.10(61):13263-1327.
    [8] Hagen, P., Munk, K., Alen, B.V., White, B.,1995. Thermal mark technology for inseasonfisheries management: a case study. Alaska Fishery Research Bulletin.2(2):143-155.
    [9] Volk, E.C., Schroder, S.L., Grimm J.J.,1999. Otolith thermal marking. Fish. Res.43:205-219.
    [10] Wild, A., Wexler, J.B., Foreman, T.J.,1995. Extended studies of increment deposition rates inotoliths of yellowfin and skipjack tunas. Bull. Mar. Sci.57:555-562.
    [11] Liu, Q., Zhang, X.M., Zhang, P.D., Nwafili, S.A.,2009. The use of alizarin red S and alizarincomplexone for immersion marking Japanese flounder Paralichthys olivaceuse (T.). Fish. Res.98:67-74.
    [12] Meyer, S., S rensen, S.R., Peck, M.A., St ttrup, J.G.,2012. Sublethal effects of alizarincomplexone marking on Baltic cod (Gadus morhua) eggs and larvae. Aquculture.324-325:158-164.
    [13] Gelsleichter, J., Cortés, E., Maniré, C.A., Hueter, R.E., Musick, J.A.,1997. Use of calcein asa fluorescent marker for elasmobranch vertebral cartilage. Trans. Am. Fish. Soc.126:862-865.
    [14] Lagardère, F., Thibaudeau, K., Bégout Anras, M.L.,2000. Feasibility of otolith markings inlarge juvenile turbot, Scophthalmus maximus, using immersion in alizarin-red S solutions. ICES.J. Mar. Sci.57:1175-1181.
    [15] Monaghan Jr, J.P.,1993. Comparison of calcein and tetracycline as chemical markers insummer flounder. Trans. Am. Fish. Soc.122:298-301.
    [16] Honeyfield, D.C., Ostrowski, C.S., Fletcher, J.W., Mohler, J.W.,2006. Dietary calceinmarking of brook trout, Atlantic salmon, yellow perch, and coho salmon scales. N. Am. J. Fish.Manag.26:431-437.
    [17] Leips, J., Baril, C.T., Rodd, F.H., Reznick, D.N., Bashey, F., Visser, G.J., Travis, J.,2001. Thesuitability of calcein to mark poeciliid fish and a new method of detection. Trans. Am. Fish.Soc.130:501-507.
    [18] Oliveira, K.,1996. Field validation of annular growth rings in the American eel, Anguillarostrata, using tetracycline-marked otoliths. US National Marine Fisheries Service FisheryBulletin.94(1):186-189.
    [19] Frenkel, V., Kindschi, G., Zohar, Y.,2002. Noninvasive, mass marking of fish by immersionin calcein: evaluation of fish size and ultrasound exposure on mark endurance. Aquaculture.214:169-183.
    [20] Eckmann, R.,2003. Alizarin marking of whitefish, Coregonus lavaretus otoliths during eggincubation. Fish. Manag. Ecol.10:233-239.
    [21] Bashey, F.,2004. A comparison of the suitability of alizarin red S and calcein for inducing anonlethally detectable mark in juvenile guppies. Trans. Am. Fish. Soc.133:1516-1523.
    [22] Skov, C., Gr nkj r, P., Nielsen, C.,2001. Marking pike fry otoliths with alizarin complexoneand strontium: an evaluation of methods. J. Fish. Biol.59:745-750.
    [23] Walt, B.V.D., Faragher, R.A.,2003. Otolith marking of rainbowtrout fry by immersion in lowconcentrations of alizarin complexone. N. Am. J. Fish. Manag.23:141-148.
    [24] Simon, J., D rner, H.,2005. Marking the European eel with oxytetracycline, alizarin red andcoded wire tags: an evaluation of methods. J. Fish. Biol.67:1486-1491.
    [25] Beckman, D.W., Schulz, R.G.,1996. A simple method for marking fish otoliths with alizarincompounds. Trans. Am. Fish. Soc.125:146-149.
    [26] Eckmann, R., Czerkies, P., Helms, C., Kleibs, K.,1998. Evaluating the effectiveness ofstocking vendace (Coregonus albula (L.)) eleutheroembryos by alizarin marking of otoliths.Archiv fur Hydrobiologie, Special Issues, Advance in Limnology.50:457-463.
    [27] Purcell, S.W., Blockmans, B.F., Nash, W.J.,2006. Efficacy of chemical markers and physicaltags for large-scale release of an exploited holothurians. J. Exp. Mar. Biol. Ecol.334:283-293.
    [28] Reinert, T.R., Wallin, J., Griffin, M.C., Conroy, M.J., Avyle, M.J.V.D.,1998. Longtermretention and detection of oxytetracycline marks applied to hatchery-reared larval striped bass,Morone saxatilis. Can. J. Fish. Aquat. Sci.55:539-543.
    [1]朱元鼎,张春霖,成庆泰.东海鱼类志.北京:科学出版社,1963.
    [2]陈大刚.黄渤海渔业生态学.北京:海洋出版社,1991.
    [3] Taylor, M.D., Fielder, D.S., Suthers, I.M.,2005. Batch marking of otoliths and fin spines toassess the stock enhancement of Argyrosomus japonicus. J. Fish. Biol.66:1149-1162.
    [4] Baer, J., R ch, R.,2008. Mass-marking of brown trout (Salmo trutta L.) larvae by alizarin:method and evaluation of stocking. J. App. Ichth.24:44-49.
    [5] Lorenzen, K., Leber, K.M., Blankenship, H.L.,2010. Responsible approach to marine stockenhancement: an update. Rev. Fish. Sci.18:189-210.
    [6] Barker, J.M., Mckaye, K.R.,2004. Immersion marking of juvenile midas cichlids withoxytetracycline. Trans. Am. Fish. Soc.24:262-269.
    [7] Lv, H.J., Zhang, X.M., Zhang, P.D., Li, W.T., Miao, Z.Q.,2011. The implement of plastic ovaltags for mark-recapture in juvenile Japanese flounder, Paralichthys olivaceus, on the northeastcoast of Shandong Province, China. Afr. J. Biotechnol.10(61):13263-1327.
    [8] Hagen, P., Munk, K., Alen, B.V., White, B.,1995. Thermal mark technology for inseasonfisheries management: a case study. Alaska Fishery Research Bulletin.2(2):143-155.
    [9] Volk, E.C., Schroder, S.L., Grimm J.J.,1999. Otolith thermal marking. Fish. Res.43:205-219.
    [10] Wild, A., Wexler, J.B., Foreman, T.J.,1995. Extended studies of increment deposition rates inotoliths of yellowfin and skipjack tunas. Bull. Mar. Sci.57:555-562.
    [11] Liu, Q., Zhang, X.M., Zhang, P.D., Nwafili, S.A.,2009. The use of alizarin red S and alizarincomplexone for immersion marking Japanese flounder Paralichthys olivaceuse (T.). Fish. Res.98:67-74.
    [12] Meyer, S., S rensen, S.R., Peck, M.A., St ttrup, J.G.,2012. Sublethal effects of alizarincomplexone marking on Baltic cod (Gadus morhua) eggs and larvae. Aquculture.324-325:158-164.
    [13] Gelsleichter, J., Cortés, E., Maniré, C.A., Hueter, R.E., Musick, J.A.,1997. Use of calcein asa fluorescent marker for elasmobranch vertebral cartilage. Trans. Am. Fish. Soc.126:862-865.
    [14] Lagardère, F., Thibaudeau, K., Bégout Anras, M.L.,2000. Feasibility of otolith markings inlarge juvenile turbot, Scophthalmus maximus, using immersion in alizarin-red S solutions.ICES. J. Mar. Sci.57:1175-1181.
    [15] Monaghan Jr, J.P.,1993. Comparison of calcein and tetracycline as chemical markers insummer flounder. Trans. Am. Fish. Soc.122:298-301.
    [16] Honeyfield, D.C., Ostrowski, C.S., Fletcher, J.W., Mohler, J.W.,2006. Dietary calceinmarking of brook trout, Atlantic salmon, yellow perch, and coho salmon scales. N. Am. J. Fish.Manag.26:431-437.
    [17] Leips, J., Baril, C.T., Rodd, F.H., Reznick, D.N., Bashey, F., Visser, G.J., Travis, J.,2001. Thesuitability of calcein to mark poeciliid fish and a new method of detection. Trans. Am. Fish.Soc.130:501-507.
    [18] Oliveira, K.,1996. Field validation of annular growth rings in the American eel, Anguillarostrata, using tetracycline-marked otoliths. US National Marine Fisheries Service FisheryBulletin.94(1):186-189.
    [19] Frenkel, V., Kindschi, G., Zohar, Y.,2002. Noninvasive, mass marking of fish by immersionin calcein: evaluation of fish size and ultrasound exposure on mark endurance. Aquaculture.214:169-183.
    [20] Eckmann, R.,2003. Alizarin marking of whitefish, Coregonus lavaretus otoliths during eggincubation. Fish. Manag. Ecol.10:233-239.
    [21] Bashey, F.,2004. A comparison of the suitability of alizarin red S and calcein for inducing anonlethally detectable mark in juvenile guppies. Trans. Am. Fish. Soc.133:1516-1523.
    [22] Skov, C., Gr nkj r, P., Nielsen, C.,2001. Marking pike fry otoliths with alizarin complexoneand strontium: an evaluation of methods. J. Fish. Biol.59:745-750.
    [23] Walt, B.V.D., Faragher, R.A.,2003. Otolith marking of rainbowtrout fry by immersion in lowconcentrations of alizarin complexone. N. Am. J. Fish. Manag.23:141-148.
    [24] Simon, J., D rner, H.,2005. Marking the European eel with oxytetracycline, alizarin red andcoded wire tags: an evaluation of methods. J. Fish. Biol.67:1486-1491.
    [25] Beckman, D.W., Schulz, R.G.,1996. A simple method for marking fish otoliths with alizarincompounds. Trans. Am. Fish. Soc.125:146-149.
    [26] Eckmann, R., Czerkies, P., Helms, C., Kleibs, K.,1998. Evaluating the effectiveness ofstocking vendace (Coregonus albula (L.)) eleutheroembryos by alizarin marking of otoliths.Archiv fur Hydrobiologie, Special Issues, Advance in Limnology.50:457-463.
    [27] Purcell, S.W., Blockmans, B.F., Nash, W.J.,2006. Efficacy of chemical markers and physicaltags for large-scale release of an exploited holothurians. J. Exp. Mar. Biol. Ecol.334:283-293.
    [28] Reinert, T.R., Wallin, J., Griffin, M.C., Conroy, M.J., Avyle, M.J.V.D.,1998. Longtermretention and detection of oxytetracycline marks applied to hatchery-reared larval striped bass,Morone saxatilis. Can. J. Fish. Aquat. Sci.55:539-543.
    [29] Jenkins, W.E., Denson, M.R., Bridgham, C.B., Collins, M.R., Smith, T.I.J.,2002. Retentionof oxytetracycline-induced marks on sagittae of red drum. N. Am. J. Fish. Manag.22,590-594.
    [30] Brown, M.L., Powell, J.L., Lucchesi, D.O.,2002. In-transit oxytetracycline marking,nonlethal mark detection, and tissue residue depletion in yellow perch. N. Am. J. Fish. Manag.22,236-242.
    [1]成庆泰,郑葆珊.中国鱼类系统检索[M].北京:科学出版社,1987:489-500.
    [2]孟庆闻,苏锦祥,缪学组.鱼类分类学[M].北京:中国农业出版社,1995:945-946.
    [3]张春霖,郑葆珊.黄渤海鱼类调查报告[M].北京:科学出版社,1955:274-276.
    [4]连建华.牙鲆养殖技术[M].中国农业科技出版社.2000:3-63.
    [5]吉村圭三,川下正己.天然稚魚と比較したヒラメ人工種苗の体型,脊椎骨および鰭条数の特徴[J].北水試研報,2003:105-111.
    [6]刘汉生,易祖胜,梁健宏,等.唐鱼野生种群和养殖群体的形态差异分析[J].暨南大学学报,2008,29(3):295-299.
    [7]罗智,李晓东,白海娟,等.野生和养殖矛尾复虾虎鱼营养组成和形态学的比较研究[J].上海水产大学学报,2008,17(2):182-186.
    [8]顾岩,孙中武,尹洪滨,等.野生与养殖哲罗鱼消化系统及消化酶的比较研究[J].中国水产科学,2008,15(2):330-335.
    [9]楼宝,龚小玲,毛国民,等.青岛和舟山褐牙鲆群体形态差异分析[J].上海海洋大学学报,2009,18(1):14-20.
    [10] Clara B, Flavio G. Skeletal descriptors and quality assessment in larvae and post-larvae ofwild-caught and hatchery-reared gilthead sea bream (Sparus aurata L.1958)[J]. Aquaculture,2001,192:1-22.
    [11] Ralph R. Mana, Gunzo Kawamura. A comparative study on morphological differences in theolfactory system of red sea bream (Pagrus major) and black sea bream (Acanthopagrusschlegeli) from wild and cultured stocks [J]. Aquaculture,2002,209:285-306.
    [12]高天翔,孙希福,宋娜.斑尾复鰕虎鱼群体的形态学比较[J].中国海洋大学学报,2009,39(1):35-42.
    [13]钱荣华,李家乐,董志国,等.中国五大湖三角帆蚌形态差异分析[J].海洋与湖沼,2003,34(4):436-443.
    [14] Kanazawa A. Nutritional mechanisms involved in the occurrence of abnormal pigmentationin hatchery-reared flatfish [J]. Journal of the World Aquaculture Society,1993,24:162-166.
    [15] Ottesen O H, Strand H K. Growth, development and skin abnormalities of halibut(Hippoglossus hippoglossus L.) juveniles kept on different bottom substrates [J]. Aquaculture,1996,146:17-25.
    [16] Iwata N, Kikuchi K. Effects of sandy substrate and light on hypermelanosis of the blind sidein cultured Japanese flounder Paralichthys olivaceus [J]. Aquaculture,1992,105:73-82.
    [17] Miki N, Tanigushi T, Hamakawa H. Reduction of albinism in hatchery-reared flounder“Hirame”, Paralichthys olivacues by feeding on rotifer enriched with Vitamin A [J].Suisanzoshoku,1990,38:147–155.
    [18] Estévez A, Kanazawa A. Effect of (n-3) PUFA and Vitamin A Artemia enrichment onpigmentation success of turbot, Scophthalmus maximus(L.)[J]. Aquaculture Nutrition.,1995(1):159-168.
    [19]朱杰,张秀梅,高天翔.体色异常褐牙鲆皮肤色素及鳞片发育的形态学研究[J].水生生物学报,2004(6):653-658.
    [20] Seikai T. Process of pigment cell differentiation in skin on the left and right sides of theJapanese flounder, Paralichthys olivaceus [J]. Japanese Journal of Ichthyology,1992,39:85-92.
    [21] Seikai. T. Early development of seqamation in relation to color anomalies in hatchery-rearedflounder, Paralichthys olivaceus [J]. Japanese Journal of Ichthyology,1980,27(3):249-255.
    [22]任维美.鱼饲料缺乏维生素K引起脊椎骨畸型[J].饲料研究,2006(1):61.
    [23]赵宝全,董武,王思珍,等.17β—雌二醇对斑马鱼初期胚体节形成影响的研究[J].中国比较医学杂志,2005,15(1):17–20.
    [24] Frost HM. Does bone design intend to minimize fatigue failures? A case for the affirmative[J]. J Bone Miner Metab,2000,18:278-282.
    [25] Izumi Kinoshita, Tadahisa Seikai. Geographic variations in dorsal and anal ray counts ofjuvenile Japanese flounder, Paralichthys olivaceus, in the Japan Sea [J]. EnvironmentalBiology of Fishes,2000,57:305-313.
    [26] Sunden S L F, Davis S K.Evaluation of genetic variation in a domestic population of Penaeusvannam ei Boone: a comparison with three natural populations [J]. Aquaculture,1991,97:131-142.
    [27] Wolfus G, Garcia D K, Alcivar Warren A. Application of the microsatellite technique foranalyzing genetic diversity in shrimp breeding programs [J]. Aquaculture,1997,152:35-47.
    [28]房新英,张全启,齐洁,等.野生和养殖牙鲆(Paralichthys olivaceus)遗传差异的RAPD和ISSR的研究[J].海洋与湖沼,2006,37(2):138-142.
    [1]朱元鼎,张春霖,成庆泰.东海鱼类志.北京:科学出版社,1963.
    [2]成庆泰,郑葆珊.中国鱼类志.北京:科学出版社,1987.
    [3]孟庆闻,苏锦祥,缪学祖.北京:中国农业出版社,1995.
    [4] Liu, Q., Zhang, X.M., Zhang, P.D., Nwafili, S.A.,2009. The use of alizarin red S and alizarincomplexone for immersion marking Japanese flounder (Paralichthys olivaceuse). J. Fish. Res.98:67-74.
    [5] Brown, M.L., Powell, J.L., Lucchesi, D.O.,2002. In-transit oxytetracycline marking, nonlethalmark detection, and tissue residue depletion in yellow perch. N. Am. J. Fish Manag.22:236-242.
    [6] Taylor, M.D., Fielder, D.S., Suthers, I.M.,2005. Batch marking of otoliths and fin spines toassess the stock enhancement of Argyrosomus japonicus. J. Fish Biol.66:1149-1162.
    [7] Baer, J., R sch, R.,2008. Mass-marking of brown trout (Salmo trutta L.) larvae by alizarin:method and evaluation of stocking. J. Appl. Ichthyol.24:44-49.
    [8] Perez-Enriquez, R., Taniguchi, N.,1999. Genetic structure of red sea bream population offJapan and southwest Pacific, using microsatellite DNA markers. Fish. Sci.65:23-30.
    [9] Saillant, E., Cizdziel, K., O’Malley, K.G., Turner, T.F., Pruett, C.L., Gold, JR.,2004.Microsatellite markers for red drum (Sciaenops ocellatus). Gulf Mex. Sci.22(1):101-107.
    [10] Taniguchi, N.,2004. Broodstock management for stock enhancement programs of marine fishwith assistance of DNA marker (a review). In: Leber, K.M., Kitada, S., Blankenship, H.L.,Svsand, T.(Eds.), Stock Enhancement and Sea Ranching. Blackwell Publishing, Oxford, UK,pp.329-338.
    [11] Smoker, W.W., Bachen, B.A., Freitag, G., Geiger, H.J., Linley, T.J.,2000. Alaska oceanranching contributions to sustainable salmon fisheries. In: Knudson EE, Steward CR,MacDonald DD, Williams JE, Reiser DW (Eds.), Sustainable Fisheries Management: PacificSalmon. CRC Press LLC, Boca Raton, FL, pp.407-422.
    [12] Jenkins, W.E., Denson, M.R., Bridgham, C.B., Collins, M.R., Smith,T.I.J.,2004. Retention ofoxytetracycline-induced marks on sagittae of red drum. N. Am. J. Fish. Manage.22(2):590-594.
    [13] Davis, J.L.D.,Young-Williams, A.C., Hines, A.H., Zmora, O.,2004. Comparing two types ofinternal tags in juvenile blue crabs. Fish. Res.67:265-274.
    [14] Brennan, N.P., Leber, K.M., Blankenship, H.L., Ransier, J.M., DeBruler, Jr. R.,2005. Anevaluation of coded wire and elastomer tag performance in juvenile common snook under fieldand laboratory conditions. N. Am. J. Fish. Manage.25:437-445.
    [15] Prentice, E.F., Flagg, T.A., McCutcheon, C.S.,1990. Feasibility of using implantable passiveintegrated transponder (PIT) tags in salmonids. In: Parker NC, Giorgi AE, Heidinger RC, JesterJr DB, Prince ED, Winans GA (Eds.), Fish Marking Techniques. American Fisheries SocietySymposium7, Bethesda, MD, pp.317-322.
    [16] Stoettrup, J.G., Sparrevohn, C.R., Modin, J., Lehmann, J.K.,2002. The use of releases ofreared fish to enhance natural populations: a case study on turbot Psetta maxima (Linne,1758).Fish. Res.59(1-2):161-180.
    [17] Hagen, P., Munk, K., Alen, B.V., White, B.,1995. Thermal mark technology for inseasonfisheries management: a case study. Alaska Fish Res. Bull.2:143-155.
    [18] Volk, E.C., Schroder, S.L., Grimm, J.J.,1999. Otolith thermal marking. Fish Res.43:205-219.
    [19] Simon, J., D rner, H.,2005. Marking the European eel with oxytetracycline, alizarin red andcoded wire tags: an evaluation of methods. J. Fish Biol.67:1486-1491.
    [20] Blankenship, H.L., Leber, K.M.,1995. A responsible approach to marine stock enhancement.In: Schramm Jr HL, Piper RG,(Eds.), Uses and Effects of Cultured Fishes in AquaticEcosystems. American Fisheries Society Symposium15, Bethesda, MD, pp.376-387.
    [21] Buckley, R.M., West, J.M., Doty, D.C.,1994. Internal micro-tag systems for marking juvenilereef fishes. Bull. Mar. Sci.55(2-3):848-857.
    [22] Frederick, J.L.,1997. Evaluation of fluorescent elastomer injection as a method for markingsmall fish. Bull. Mar. Sci.61(2):399-408.
    [23] Willis, T.J., Babcock, R.C.,1998. Retention and in situ detectability of visible implantfluorescent elastomer (VIFE) tags in Pagrus auratus (Sparidae). N. Z. J. Mar. Freshwater Res.32:247-254.
    [24] Curtis, J.M.R.,2006. Visible implant elastomer color determination, tag visibility, and tagloss: potential sources of error for mark-recapture studies. N. Am. J. Fish. Manage.26(2):327-337.
    [25] Isabel, S., Folke, M., Michael, J., Friedrich, B.,2011. A mark-recapture study ofhatchery-reared juvenile European lobsters (Homarus gammarus) released at the rocky islandof Helgoland (German Bight; North Sea) from2000to2009, Fish. Res.108:22-30.
    [26] Sauer, W.H.H., Lipinski, M.R., Augustyn, C.J.,2000. Tag recapture studies of the chokkasquid Loligo vulgaris reynaudii d‘Orbigny,1845on inshore spawning grounds on thesouth-east coast of South Africa. J. Fish. Res.45:283-289.
    [27] Carmen, P., Javier, R., Helene, D.P., Raquel, G.,2007. Tag and recapture of European hake(Merluccius merluccius L.) off the Northwest Iberian Peninsula: First results support fastgrowth hypothesis. J. Fish. Res.88:150-154.
    [28] Fritsch, M., Morizur, Y., Lambert, E., Bonhomme, F., Guinand, B.,2007. Assessment of seabass (Dicentrarchus labrax, L.) stock delimitation in the Bay of Biscay and the EnglishChannel based on mark-recapture and genetic data. J. Fish. Res.83:123-132.
    [29] Dewey, M.R., Zigler, S.J.,1996. An evaluation of fluorescent elastomer for marking bluegillsin experimental studies. Prog. Fish-Cult.58:219-220.
    [30] Bailey, R.E., Irvine, J.R., Dalziel, F.C., Nelson, T.C.,1998. Evaluations of visible implantfluorescent tags for marking Coho salmon smolts. N. Am. J. Fish. Manage.18:191-196.
    [31] Astorga, N., Afonso, J.M., Zamorano, M.J., Montero, D., Oliva, V., Fernández, H., Izquierdo,M.S.,2005. Evaluation of visible implant elastomer tags for tagging juvenile giltheadseabream (Sparus auratus L.): effects on growth, mortality, handling time and tag loss.Aquacult. Res.36:733-738.
    [32] Nathan, P.B., Kenneth, M.L., Brett, R.B.,2007. Use of coded-wire and visible implantelastomer tags for marine stock enhancement with juvenile red snapper (Lutjanuscampechanus). J.Fish. Res.83:90-97.
    [33] Duggan, R.E., Miller, R.J.,2001. External and internal tags for the green sea urchin. J. J. Exp.Mar. Biol. Ecol.258:115-122.
    [34] John, Stewart.,2003. Long-term recaptures of tagged Scyllarid lobsters (Ibacus peronii) fromthe east coast of Australia. J. Fish. Res.63:261-264.
    [35] Robert, T.L., Laura, R.B., Peter, L.H.,2007. Spatial, temporal, and size-specific variation inmortality estimates of red abalone (Haliotis rufescens) from mark-recapture data in California.J. Fish. Res.83:341-350.
    [36] Jakobsson, J.,1970. On fish tags and tagging. Oceanography and Marine Biology: An AnnualReview8:457-499.
    [37] Fujita, T., Mizuno, T., Nemoto, Y.,1993. Stocking effectiveness of Japanese flounder(Paralichthys olivaceus) fingerling released in the coast of Fukushima prefecture (in Japanese).Saibai Giken.22:67-73.
    [38] Tominaga, O., Watanabe, Y.,1998. Geographical dispersal and optimum release size ofhatchery-reared Japanese flounder (Paralichthys olivaceus) released in Ishikari Bay, Hokkaido,Japan. J. J. Sea. Res.40:73-81.
    [39] Tanaka, Y., Yamaguchi, H., Gwak, W.S., Tominaga, O., Tsusaki, T., Tanaka, M.,2005.Influence of mass release of hatchery-reared Japanese flounder on the feeding and growth ofwild juveniles in a nursery ground in the Japan Sea. J. J. Exp. Mar. Biol. Ecol.314:137-147.
    [40] Nihira, A.1987. General report on fisheries and stock enhancement projects of Japaneseflounder in north Pacific block in Japan (in Japanese). Japan Sea Farming Association, pp.5-18.
    [41] Yamashita, Y., Nagahora, S., Yamada, H., Kitagawa, D.,1994. Effects of release size onsurvival and growth of Japanese flounder (Paralichthys olivaceus) in coastal waters off Iwateprefecture, northeastern Japan. Mar. Ecol. Prog. Ser.105:269-276.
    [42] Sudo, H., Goto, T., Ikemoto, R., Tomiyama, M., Azeta, M.,1992. Mortality of reared flounder(Paralichthys olivaceus) juveniles released in Shijiki Bay (in Japanese with English summary).Bull. Seikai Natl. Fish. Res. Inst.70:29-37.
    [43] Furuta, S., Nishida, T., Yamada, H., Miyanaga, T., Watanabe, T., Hirano, S.,1992. Aconsideration for the technique of release based on examination result of growth conditioningbetween farm-raised and wild juvenile Japanese flounder (Paralichthys olivaceus), at the sandycoastal of central Tottori prefecture (in Japanese). Bull. Tottori Pref. Fish. Exp. Stn.33:61-82.
    [44] Tominaga, O., Mabuchi, M., Ishiguro, H.,1994. Movement and growth of wild andhatchery-reared Japanese flounder (Paralichthys olivaceus) in the Sea of Japan off northernHokkaido (in Japanese with English summary). Suisanzosyoku42:593-600.
    [45] Furuta, S.,1988. An investigation on the effect of short period acclimatization of artificiallyproduced seeds of a flounder (Paralichthys olivaceus). Contributions to the fisheries researchesin the Japan Sea block (in Japanese). Jpn. Sea Natl. Fish. Res. Inst., Niigata13:61-72.
    [46] Sauer, W.H.H., Roberts, M.J., Lipinski, M.R., Smale, M.J., Hanlon, R.T., Webber, D.M.,O’Dor, R.K.,1997. Choreography of the squids nuptial dance. The Biol. Bull.192:203-207.
    [47] Sauer, W.H.H., Lipinski, M.R.,1991. Food of squid (Loligo vulgaris reynaudii)(Cephalopoda: Loliginidae) on their spawning grounds off the Eastern Cape, South Africa.South African J. Mar. Sci.10:193-201.
    [48] Minami, T.,1997. Life history. In: Minami T&Tanaka M (ed.) Biology and StockEnhancement of Japanese Flounder, Koseisha-koseikaku, Tokyo (in Japanese) pp.9-24.
    [49] Kuwahara, A., Suzuki, S.,1982.Vertical distribution and feeding of a flounder (Paralichthysolivaceus) larva. Bull. Japan. Soc. Sci. Fish.48:1375-1381.
    [50] Kiyono, S., Hayashi, B.,1977. Studies on the stock of the flounder (Paralichthys olivaceus)in the western Wakasa Bay-III: dynamics of fish school caught in theWakasa Bay. Bull. KyotoInst. Ocean. Fish. Sci. S50:1-15(in Japanese).
    [51] Kato, K., Anzawa, W., Nashida, K.,1987. Study on resources management of flounder(Paralichthys olivaceus) in the northern coast of Niigata (in Japanese with English summary).Niigata Fish. Exp. Stn. Bull.2:42-59.
    [52] Takeno, K., Hamanaka, Y.,1994. Migration of Japanese flounder (Paralichthys olivaceus)around Wakasa Bay estimated by means releasing with tags. Bull. Kyoto Inst. Ocean. Fish. Sci.17:66-71.
    [53] Yuan, Y.L.,1998. Ocean Circulation in the Chinese Shelf Sea and Researches as well as TheirProspects of Ocean Science (in Chinese). WORLD SCI-TECH R&D.20(4):18-24.
    [54] Karakiri, M., Berghahn, R., Von Westernhagen, H.,1989. Growth differences in0-groupplaice (Pleuronectes platessa) as revealed by otolith microstructure analysis. Mar. Ecol. Prog.Ser.55:15-22.
    [55] Marchand, J.,1991. The influence of environmental conditions on settlement, distributionconditions on settlement, distribution and growth of0-group Sole (Solea solea L.) in amacrotidal estuary (Vilaine, France). Neth. J. Sea Res.27:307-316.
    [56] Sogard, S.M., Able, K.W.,1992. Growth variation of newly settled winter flounder(Pseudopleuronectes americanus) in New Jersey estuaries as determined by otolithmicrostructure. Neth. J. Sea Res.29:163-172.
    [57] Kato, K.,1996. Study on resources, ecology, management and aquaculture of Japaneseflounder (Paralichthys olivaceus), off the coast of Niigata Prefecture. Bull. Natl. Res. Inst.Aquacult., Suppl.2:105-114.
    [58] Fujii, T., Noguchi, N.,1996. Feeding and growth of Japanese flounder (Paralichthysolivaceus) in the nursery ground. In: Watanabe, Y., et al.,(Eds.), Survival Strategies in EarlyLife Stages of Marine Resources. A. A. Balkema, Rotterdam, pp.141-151.
    [59] Tanaka, M., Ohkawa, T., Maeda, M., Kinoshita, I., Seikai, T., Nishida, M.,1997. Ecologicaldiversities and stock structure of the flounder in the Sea of Japan in relation to stockenhancement. Bull. Natl. Res. Inst. Aquacult.(Suppl.3),77-85.
    [60] Furuta, S.,1996. Predation on juvenile Japanese flounder (Paralichthys olivaceus) by diurnalpiscivorous fish: field observations and laboratory experiments. In: Watanabe Y, et al.,(Eds.),Survival Strategies in Early Life Stages of Marine Resources. A. A. Balkema, Rotterdam, pp.285-294.
    [61] Tanaka, Y., Yamaguchi, H., Tominaga, O., Tsusaki, T., Tanaka, M.,2006. Relationshipsbetween release season and feeding performance of hatchery-reared Japanese flounder(Paralichthys olivaceus): In situ release experiment in coastal area of Wakasa Bay, Sea ofJapan. J. J. Exp. Mar. Biol. Ecol.330:511-520.
    [62] Iwata, N., Kikuchi, K., Honda, H., Kiyono, M., Kurokura, K.,1994. Effects of temperatureon the growth of Japanese flounder. Fish. Sci.60:527-531.
    [63] Mauchline, J.,1980. The biology of mysids. Adv. Mar. Biol.18:1-369.
    [1]朱元鼎,张春霖,成庆泰.东海鱼类志.北京:科学出版社,1963.
    [2]成庆泰,郑葆珊.中国鱼类志.北京:科学出版社,1987.
    [3]孟庆闻,苏锦祥,缪学祖.北京:中国农业出版社,1995.
    [4] Liu, Q., Zhang, X.M., Zhang, P.D., Nwafili, S.A.,2009. The use of alizarin red S and alizarincomplexone for immersion marking Japanese flounder (Paralichthys olivaceuse). J. Fish. Res.98:67-74.
    [5] Lv, H.J., Zhang, X.M., Zhang, P.D., Li, W.T., Miao, Z.Q.,2011. The implement of plastic ovaltags for mark-recapture in juvenile Japanese flounder, Paralichthys olivaceus, on the northeastcoast of Shandong Province, China. Afr. J. Biotechnol.10(61):13263-13277.
    [6] Sakakura, Y.,2006. Larval fish behavior can be a predictable indicator for the quality ofJapanese flounder seedlings for release. Aquaculture.257:316-320.
    [7] Noakes, D.L.G.,1978. Social behaviour as it influences fish production. In: Gerking, S.D.(Ed.), Ecology of Freshwater Fish Production. Blackwell, Oxford, pp.360-382.
    [8] Noakes, D.L.G., Godin, J.G.J.,1988. Ontogeny of behavior and concurrent developmentalchanges in sensory systems in teleost fishes. In: Hoar, W.S., Randall, D.J.(Eds.), FishPhysiology, vol. XI, part B. Academic Press, San Diego, pp.345-395.
    [9] Huntingford, F.A.,1993. Development of behaviour in fish. In: Pitcher, T.J.(Ed.), Behaviourof Teleost Fishes, Second Edition. Chapman and Hall, London, pp.57-83.
    [10] Miyazaki, T., Masuda, R., Furuta, S., Tsukamoto, K.,1997. Laboratory observation on thenocturnal activity of hatchery-reared juvenile Japanese flounder Paralichthys olivaceuse. Fish.Sci.63:205-210.
    [11] Gibson, R.N.,1994. Impact of habitat quality and quantity on the recruitment of juvenileflatfishes. Neth. J. Sea Res.32:191-206.
    [12] Gibson, R.N.,1997. Behaviour and the distribution of flatfishes. J. Sea Res.37:241-256.
    [13] Rogers, S.I.,1992. Environmental factors affecting the distribution of sole (Solea solea (L.))within a nursery area. Neth. J. Sea Res.29:153-161.
    [14] Jager, Z., Kleef, L., Tydeman, P.,1993. The distribution of0-group flatfish in relation toabiotic factors on the tidal flats in the brackish Dollard (Ems estuary, Wadden Sea). J. Fish Biol.43:31-43.
    [15] Wennhage, H., Pihl, L.,1994. Substratum selection by juvenile plaice (Pleuronectes platessaL.): impact of benthic microalgae and filamentous microalgae. Neth. J. Sea Res.32:343-351.
    [16] Abookire, A.A., Norcross, B.L.,1998. Depth and substrate as determinants of distribution ofjuvenile flathead sole (Hippoglossoides elassodon) and rock sole (Pleuronectes bilineatus) inKachemak Bay, Alaska. J. Sea. Res.39:113-123.
    [17] Norcross, B.L., Blanchard, A., Holladay, B.A.,1999. Comparison of models for definingnearshore flatfish nursery areas in Alaskan waters. Fish. Oceanogr.8:50-67.
    [18] McConnaughey, R.A., Smith, K.R.,2000. Associations between flatfish abundance andsurficial sediments in the eastern Bering Sea. Can. J. Fish. Aquat. Sci.57:2410-2419.
    [19] Phelan, B.A., Goldberg, R., Bejda, A.J., Pereira, J., Hagan, S., Clark, P., Studholme, A.L.,Calabrese, A., Able, K.W.,2000. Estuarine and habitat-related differences in growth rates ofyoung-of-the-year winter flounder (Pseudopleuronectes americanus) and tautog (Tautog onitis)in three northeastern US estuaries. J. Exp. Mar. Biol. Ecol.247:1-28.
    [20] Stoner, A.W., Ottmar, M.L.,2003. Relationships between size-specific sediment preferencesand burial capabilities in juveniles of two Alaska flatfishes. J. Exp. Mar. Biol. Ecol.282:85-101.
    [21] Hirota, Y., Koshiishi, Y., Naganuma, N.,1990. Size of mysids eaten by juvenile flounder,Paralichthys olivaceus, and diurnal change of its feeding activity. Nippon Suisan Gakkaishi.56:201-206(in Japanese).
    [22] Kato, K.,1996. Study on resources, ecology, management and aquaculture of Japaneseflounder (Paralichthys olivaceus), off the coast of Niigata Prefecture. Bull. Natl. Res. Inst.Aquacult., Suppl.2:105-114.
    [23] Fujii, T., Noguchi, M.,1996. Feeding and growth of Japanese flounder, Paralichthysolivaceus, in the nursery ground. In: Watanabe, Y., et al.,(Eds.), Survival Strategies in EarlyLife Stages of Marine Resources. A. A. Balkema, Rotterdam, pp.141-151.
    [24] Tanada, M.,1990. Studies of burying ability in sand and selection to the grain size forhatchery-reared marbled sole and Japanese flounder. Nippon Suisan Gakkaishi.56:1543-1548.
    [25] Furuta, S.,1996. Predation on juvenile Japanese flounder (Paralichthys olivaceus) by diurnalpiscivorous fish: field observations and laboratory experiments. In: Watanabe, Y., Yamashita, Y.,Oozeki, Y.(Eds.), Survival Strategies in Early Life Stages of Marine Resources. A.A. Balkema,Rotterdam, pp.285-294.
    [26] Laurence, G.C.,1972. Comparative swimming abilities of fed and starved larval largemouthbass,(Micropterus salmoides). J. Fish Biol.4:73-78.
    [27] Rice, J.A., Crowder, L.B., Binkowski, F.P.,1987. Evaluating potential sources of mortalityfor larval bloater (Coregonus hoyi): starvation and vulnerability to predation. Can. J. Fish.Aquat. Sci.44:467-472.
    [28] Croy, M.I., Hughes, R.N.,1991. The influence of hunger on feeding behaviour and on theacquisition of learned foraging skills by the fifteen-spined stickleback, Spinachia spinachia L.Anim. Behav.41:161-170.
    [29] Miyazaki, T., Masuda, R., Furuta, S., Tsukamoto, K.,2000. Feeding behavior ofhatchery-reared juveniles of the Japanese flounder following a period of starvation.Aquaculture.190:129-138.
    [30] Zar, J.H.,1996. Biostatistical Analysis.3rd edition. Prentice-Hall, Englewood Cliffs, NewJersey.
    [31] Walsh, S.J.,1992. Factors influencing distribution of juvenile yellowtail flounder (Limandaferruginea) on the Grand Bank of Newfoundland. Neth. J. Sea Res.29:193-203.
    [32] Gibson, R.N., Robb, L.,1992. The relationship between body size, sediment grain size andburying ability of juvenile plaice, Pleuronectes platessa L. J. Fish Biol.40:771-778.
    [33] Moles, A., Norcross, B.L.,1995. Sediment preference in juvenile Pacific flatfishes. Neth. J.Sea Res.34:177-182.
    [34] Burke, J.S., Miller, J.M., Hoss, D.E.,1991. Immigration and settlement pattern ofParalichthys dentatus and P. lethostigma in an estuarine nursery ground, North Carolina, USA.Neth. J. Sea Res.27:393-405.
    [35] Pearcy, W.G.,1978. Distribution and abundance of small flatfishes and other demersal fishesin a region of diverse sediments and bathymetry off Oregon. Fish. Bull.76:629-640.
    [36] Fresi, E., Gambi, M.C., Focardi, S., Bargagli, R., Baldi, R., Falciai, L.,1983. Benthiccommunity and sediment types: a structural analysis. Mar. Ecol. Prog. Ser.4:101-121.
    [37] Dou, S.Z., Seikai, T., Tsukamoto, K.,2000. Cannibalism in Japanese flounder juveniles,Paralichthys olivaceus, reared under controlled conditions. Aquaculture.182:149-159.
    [38] Hossain Mostafa, A.R., Tanaka, M., Masuda, R.,2002. Predator-prey interaction betweenhatchery-reared Japanese flounder juvenile, Paralichthys olivaceus, and sandy shore crab,Matuta lunaris: daily rhythms, anti-predator conditioning and starvation. J. Exp. Mar. Biol.Ecol.267:1-14.
    [39] Beukema, J.J.,1968. Predation by the three-spined stickleback, Gasterosteus aculeatus L.:the influence of hunger and experience. In: Baerends, G.P., Carpenter, C.R., Grasse, P.P., VanIersel, J.J.A., Thorpe, W.H., Fabricius, E., Hediger, H., Koehler, O., Tinbergen, N.(Eds),Behaviour. E.J. Brill, Leiden, pp.1-126.
    [40] Mazur, J.E.,1998. Learning and Behaviour (4th ed.). Prentice-Hall, New Jersey.
    [41] Furuta, S.,1998a. Comparison of feeding behavior of wild and hatchery-reared Japaneseflounder, Paralichthys olivaceus, juveniles by laboratory experiments. Nippon SuisanGakkaishi.64:393-397(in Japanese).
    [42] Furuta, S.,1998b. Effecs of starvation on feeding behavior and predation vulnerability ofwild Japanese flounder juvenile. Nippon Suisan Gakkaishi.64:658-664(in Japanese).
    [43] Furuta, S., Watanable, T., Yamada, H.,1998. Predation by fishes on hatchery-reared Japaneseflounder, Paralichthys olivaceus, juveniles released in the coastal area of Tottori Prefecture.Nippon Suisan Gakkaishi.64:1-7(in Japanese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700